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Preface

Determinization of nondeterministic finite automata is one of the most elab-
orated problems in the automata theory. It is the procedure of transforming a
given nondeterministic automaton into a language equivalent deterministic
automaton, which plays a significant role in many areas of computer science,
such as natural language processing, system verification and testing, etc., as
well as in many fields outside of computer science, such as molecular bio-
logy. Numerous algorithms have been developed for determinization of non-
deterministic automata, and the standard one is the subset construction. This
algorithm converts a nondeterministic automaton with 7 states to an equiv-
alent deterministic automaton with up to 2" states. In the worst case, subset
construction yields a deterministic automaton that is exponentially larger
than the input nondeterministic automaton, which sometimes makes the
construction impractical for large nondeterministic automata. However, this
determinization algorithm is renowned for its good performance in practice.
Recently, several algorithms based on the subset construction, that are more
memory efficient and produce smaller deterministic automata than the sub-
set construction, have been developed. Some of these algorithms even pro-
duce a minimal deterministic automaton equivalent to a given nondetermin-
isticautomaton. One of the most important algorithms for determinization of
nondeterministic automata is the Brzozowski’s determinization algorithm.
Given a nondeterministic automaton, this algorithm produces a minimal lan-
guage equivalent deterministic automaton directly. Brzozowski’s algorithm
is based on successive application of two simple operations, the reversion
and accessible subset construction, twice. Despite its worst-case exponen-
tial time complexity, the algorithm has recently gained popularity due to its
excellent performance in practice, where it outperforms theoretically faster
algorithms.

Weighted and fuzzy automata are classical nondeterministic automata in
which transitions, initial and final states take values from certain structures.
For weighted automata these values are called weights, and are usually taken
from semirings, and for fuzzy automata they are called truth values, and are
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taken from certain ordered structures, the most often from lattice-ordered
structures. These values may be used for modeling the probability or possi-
bility of the successful transition, the amount of energy needed for successful
transition, the cost paid when entering a certain state and etc. Determiniza-
tion of a weighted/fuzzy automaton is considered here as the procedure of its
conversion into an equivalent crisp-deterministic weighted/fuzzy automa-
ton. This kind of determinization was first studied by Bélohldvek [12], for
fuzzy finite automata over complete lattices and Li and Pedrycz [72], for
fuzzy finite automata over lattice ordered monoids. The algorithms pro-
vided there generalize the subset construction. Another algorithm for deter-
minization of fuzzy automata over complete residuated lattices, which is also
a generalization of the subset construction, was given by Ignjatovi¢ et al. [54].
For any input this algorithm generates a smaller crisp-detreministic automa-
ton than the algorithms developed by Bélohlavek and Lii Pedrycz. Since this
crisp-deterministic fuzzy automaton can be alternatively constructed by
means of the Nerode right congruence of the original fuzzy finite automa-
ton, it was called the Nerode automaton of this fuzzy finite automaton. The
Nerode automaton was originaly constructed for fuzzy finite automata over
a complete residuated lattice, but it was noted that the same construction
can be also applied to fuzzy finite automata over a lattice-ordered monoid,
and moreover, to weighted finite automata over a semiring.

Determinization of weighted finite automata over semirings was also
studied in [3, 65, 81, 82], but it was based on a different concept of deter-
minism. Namely, a weighted finite automaton was called there deterministic
or subsequential if it has a unique initial state and if there is at most one
transition with a given input letter out of each state.

In recent times, many authors studied weighted automata with weights
in more general structures, called strong bimonoids, which can be viewed as
semirings that might lack distributivity. Examples of strong bimonoids in-
clude the real unit interval [0,1] with t-conorm and t-norm from multivalued
logic, the string bimonoid of all words over an alphabet arising in natural lan-
guage processing, the algebraic cost structure from algebraic path problems,
etc. Important natural examples of strong bimonoids are ortho-modular lat-
tices, which serve as a basis of quantum logics where distributivity typically
fails. The study of weighted automata based on quantum logic, i.e. weighted
automata with weights in ortho-modular lattices, has recently gained big
popularity. Recently, Droste et al. [37] have initiated a study of weighted
finite automata over arbitrary strong bimonoids, and Ciri¢ et al. [27] devel-
oped algorithms and methods for determinization of these automata. Due to
the lack of distributivity, there are three different definitions of the behavior
of weighted finite automata over strong bimonoids: the run semantics, the
initial algebra semantics, and the transition semantics. Nerode automaton
was also constructed for weighted automata over strong bimonoid, and it
was proved that it is equivalent to the original automaton with respect to the
initial algebra semantics. The Myhill automaton and the run automaton are
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crisp-deterministic weighted automata equivalent to the original weighted
automaton with respect to transition and run semantics respectively. In gen-
eral, the cardinalities of these tree crisp-deterministic weighted automata are
incomparable. However, in the case of semirings all three semantics coincide
for every weighted finite automaton, and in this case the Nerode automa-
ton has always smaller cardinality than the corresponding Myhill and run
automaton.

The main aim of this dissertation is to develop new methods and algo-
rithms for determinization of weighted and fuzzy finite automata, some of
which are canonization methods, the methods which simultaneously per-
form determinization and minimization.

In the first chapter, basic concepts of the lattice theory will be considered.
Special attention will be aimed to complete residuated lattices, which are used
as the underlying truth structure in the fuzzy setting. Further, the notion of
fuzzy sets and fuzzy relations will be introduced. Afterwards, the main no-
tions from the semiring theory, as well as the notions of strong bimonoids,
vectors and matrices over semirings, and formal power series will be defined.

In the second chapter we present some basic notions and results concern-
ing weighted automata and fuzzy automata and languages. In accordance
with tree different kinds of behavior of weighted automata over a strong
bimonoid, the run semantics, initial algebra semantics and transition seman-
tics will be observed. Moreover, the notions of crisp-deterministic weighted
and fuzzy automata will be given. We also introduce the concepts of factor
fuzzy and weighted automata with respect to congruence relations on their
sets of states, as well as homomorphisms for crisp-deterministic weighted
and fuzzy automata.

In Chapter 3, for a given weighted finite automaton over a strong bimo-
noid, we provide the construction of its reduced Nerode automaton, which is
crisp-deterministic and equivalent to the original weighted automaton with
respect to the initial algebra semantics. In addition, it will be shown that
the reduced Nerode automaton is even smaller than the Nerode automaton,
which was previously used in determinization related to this semantics. The
necessary and sufficient conditions under which the reduced Nerode auto-
maton is finite will be determined and an efficient algorithm which computes
the reduced Nerode automaton whenever it is finite, will be provided. In
determinization of weighted finite automata over semirings and fuzzy finite
automata over lattice-ordered monoids this algorithm gives smaller crisp-
deterministic automata than any other known determinization algorithm.

In Chapter 4 the well-known Brzozowski’s determinization method for
nondeterministic automata is adapted to the fuzzy framework. This method
gives better results than all previously known methods for determiniza-
tion of fuzzy automata developed by Bélohlavek [12], Li and Pedrycz [72],
Ignjatovié¢ et al. [54], and Janci¢ et al. [61]. Namely, as in the case of or-
dinary nondeterministic automata, Brzozowski type determinization of a
fuzzy automaton results in a minimal crisp-deterministic fuzzy automaton
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equivalent to the starting fuzzy automaton, and it will be shown that there
are cases when all previous methods result in infinite automata, while Brzo-
zowski type determinization results in a finite one. Here we deal with fuzzy
automata over complete residuated lattices, but identical results can also be
obtained in a more general context, for fuzzy automata over lattice-ordered
monoids, and even for weighted automata over commutative semirings.

In the fifth chapter we provide two-in-one algorithms that simultaneously
perform determinization and state reduction. The idea of combining deter-
minization and state reduction methods emerged from the need to find such
methods which will mitigate the potential enormous growth of the num-
ber of states during the determinization. The algorithms developed here
perform better than all previous determinization algorithms for fuzzy finite
automata, in the sense that they produce smaller automata, while require the
same computation time. The only exception is the above mentioned Brzo-
zowski type determinization algorithm, which produces a minimal crisp-
deterministic fuzzy automaton, but we will see that the algorithms created
here can also be used within the Brzozowski type algorithm and improve its
performances.

In Chapter 6 we propose another canonization algorithm for fuzzy autom-
ata over complete residuated lattices. The motivation for this algorithm came
from the papers by van Glabbeek and Ploeger [120, 121], who have dealt with
nondeterministic automata, but here we use a completely different approach
and methodology. This approach is based on the inclusion degrees for partic-
ular fuzzy languages associated with a given fuzzy finite automaton. The
new construction of the minimal crisp-deterministic fuzzy automaton of a
given fuzzy finite automaton, which we present here, is generally different
from the Brzozowski’s construction, but like the Brzozowski’s construction
includes the construction of the reverse Nerode automaton as its first step.

Finally, I would like to express my gratitude to my mentor, Professor
Jelena Ignjatovi¢, for her outstanding contribution to the preparation of this
dissertation, for her support and her confidence. Beyond, I would like to
thank Professor Miroslav Ciri¢, for the generous help, friendly support and
encouragement in scientific research. Next, I want to thank Mr.Ivan Stankovi¢
for helping designing the program which implements the results from the
dissertation.

Last, but not the least I want to thank my family and friends, who have
supported me and supplied the necessary understanding during the prepa-
ration of the thesis. Thank you for keeping my spirits up.



Chapter 1
Fundamental concepts

In this chapter we explain the basic algebraic concepts that will be used
throughout this thesis.

In Section 1.1. we consider strong bimonoids and semirings, some prop-
erties of these structures that are important for our research, and we list
their most commonly used particular types. Further, we recall the definition
of the vectors and matrices over arbitrary strong bimonid and products be-
tween them. In Section 1.2. we deal with binary relations on an arbitrary set,
properties of binary relations as well as ordered sets and lattices.

Section 1.3. is dedicated to residuated lattices, which are used as the
underlying truth structure in the fuzzy setting. In the last section, we consider
fuzzy sets and relations, together with fuzzy equivalences and fuzzy quasi
orders.

1.1. Strong bimonoids and semirings

In this section, we consider bimonoids and semirings.
A monoid is a triple (M,-,1), where

(1) Misanon-empty set,
(2) abinary operation - on M, called the multiplication, is associative,
(3) anelement1 e M, called a neutral element, satisfies

m-1=1-m=m, foreverymeM.

If the multiplication operation and the neutral element of M are understood,
then we denote the monoid simply by M. If the operation - is commutative,
thatis, if m-n =n-m for every m,n € M, the monoid M is called commutative. A
commutative monoid M is often denoted by (M, +,0). For example, if we de-
note by R the set of all real numbers and by N the set of all natural numbers,
than we can easily draw the conclusion that (R,+,0) and (N,-,1) are com-



6 1 Fundamental concepts

mutative monoids. One of the most important types of a monoids is the free
monoid X", generated by a nonempty set X, called an alphabet. The elements
of X are called letters. The set X" is composed of all the words over X:

X ={x1..x0]|x1,..., xn € X,n 2 1} U{e}.

The multiplication operation is the concatenation and the neutral element of X*
is the empty word €. The length of anonempty word w = x1...x,;, denoted by |w],
is defined to be n, and |¢] = 0.

A bimonoid is a structure (K,+,-,0,1) where:

(1) (K, +,0) is a monoid with the neutral element 0;
(2) (K,-,1)is a monoid with the neutral element 1.

As usual, we identify the structure (K, +,-,0,1) with its carrier set K.
A strong bimonoid is a structure (K, +,-,0,1) where:

(1) (K,+,-,0,1)is a bimonoid;
(2) the operation + is commutative;
(3) 0 acts as multiplicative zero, i.e., k-0=0=0-k for every k € K.

We say that a strong bimonoid K is right distributive, if it satisfies
(@a+b)-c=a-c+b-c,

for every a,b,c € K, and we call K left distributive, if
a-(b+c)y=a-b+a-c,

for everya,b,c e K.

Example 1.1. The set N of natural numbers together with co forms a strong bi-
monoid called the tropical bimonoid (N U {co}, +,min, 0, o), where the addition
operation is the classical addition of natural numbers, whereas the multipli-
cation operation is defined to be the minimum. The neutral element for addi-
tion is 0 and the natural element for multiplication is co.

Example 1.2. The real unit interval [0, 1], with the ordinary multiplication - of
reals as the addition operation, and the multiplication operation defined by

a®b=a+b-a-b (algebraic sum)
is a strong bimonoid with neutral elements 0 and 1, respectively.

Example 1.3. The real unit interval [0, 1], with the ordinary multiplication - of
reals as the addition operation, and the multiplication operation defined by

a®b=min(a+b,1) (bounded sum)

is a strong bimonoid with neutral elements 0 and 1, respectively.
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Example 1.4. Any bounded lattice L together with A and V operations as the
addition and multiplication operations, respectively, is a strong bimonoid.

Example 1.5. For any alphabet X, the set X* U {co} of all the words over X to-
gether with oo, forms a strong bimonoid (X* U {eo}, A, -, 00, ¢), called the string
bimonoid, where

A is the longest common prefix operation;
- is usual concatenation of words;
WA= AW=wW, w-oo=co-w=o00, foreverywe X" U{co}.

A semiring is a set S together with two binary operations + and - and two
constant elements 0 and 1 such that:

(1) (S,+,0) is a commutative monoid,

(2) (S,-,1)is a monoid,

(3) the distributivity laws hold for every a,b,c € S,
(4) 0-a=a-0=0foreveryacs.

In other words, a semiring is a strong bimonoid which is right and left distri-
butive. A semiring S is called commutative if a-b =b-a for everya,b € S.
Here we give some of the most important examples of semirings:

Example 1.6. The set of all natural numbers IN together with co forms a semir-
ing with respect to minimum and addition operation. This semiring, called
the tropical semiring, has co and 0 as neutral elements. The set of all positive
real numbers R, together with co forms a semiring with respect to the same
operations.

Example 1.7. The set of all natural numbers N together with co and —co, as well
as the set of all positive real numbers R, together with co and —co form semi-
rings with respect to maximum and addition operation. These semirings are
called arctic semirings.

Example 1.8. The real unit interval [0, 1], with respect to the maximum opera-
tion and the ordinary multiplication, forms a semiring called the Viterbi semi-
ring.

Example 1.9. The two element set {0,1} forms a semiring with respect to the
maximum and minimum operations. This semiring is called the Boolean semi-
ring and has 0 and 1 as its neutral elements.

Example 1.10. Given a non empty set X, a semiring of formal languages over X
is a semiring (#(X"),Y,-,0,{¢}), where &(X") is the set of all subsets of the
free monoid X*, U is the classical union and - is the concatenation operation.

An algebra is locally finite if any of its finitely generated subalgebras is fi-
nite. It can be shown that a semiring (S, +,-,0,1) is locally finite if and only if
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both monoids (S,+,0) and (S,-,1) are locally finite. Indeed, if (S,+,0) and
(5,+,1) are locally finite and U is a finite subset of S, then the submonoid V
of (S,-,1) generated by U is finite and the submonoid W of (S, +,0) generated
by V is also finite. Now, it is easy to check that W-W C W and we deduce
that the subsemiring of (S, +,-,0,1) generated by U is the finite set W.

For instance, if both addition and multiplication are commutative and
idempotent, then the semiring is locally finite. Consequently, any bounded
distributive lattice (L, V, A,0,1) is a locally finite semiring. In particular, the
chain ([0,1], max, min, 0,1) and any Boolean algebra are locally finite. Further,
the Lukasiewicz semiring ([0, 1], max, ®,0,1) is locally finite, since its additive
and multiplicative monoids are commutative and locally finite.

In the further text, if not noted otherwise, K will be a strong bimonoid.

An K-valued vector over a non-empty finite set A is a mapping v: A — S.
Ordinary crisp subsets of A can be viewed as K-valued vectors of A, where
K is the Boolean semiring ({0,1},max, min,0,1).

An K-valued matrix over non-empty finite sets A and B (in this order) is
any mapping p: AXB — S, i.e., any K-valued vector of A X B. In particular,
an K-valued matrix over A is any function from A XA to K, i.e., any K-valued
vector over A X A.

For non-empty finite sets A, B and C, and K-valued matrices j11 : AXB — S
and py : BX C — K, their product i1 - s is an K-valued matrix over A and C
defined by

(- 2)(@,0) = ), (@, b)- pabc), (L1)
beB
forallae Aand ce€C. Next, ifv1:A—= K, y: AXB— Sand vp: B —= K, the
products v; -y and p - v, are K-valued vectors over B and A, respectively,
which are defined by

- p)®) =) @-p@b), (@v)@=) uwab)-ve), (12

acA beB

for everya€ Aand b € B.
The product of two K-valued vectors v; and v, of A is an element of K
given by:
v1-v2 = ) vi(@) @va(a). (1.3)
acA
It is interesting to note that, in the case when K is a semiring, due to
distributivity, we have that all of these products are associative.
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1.2. Ordered sets and lattices

A binary relation on a non-empty set A is a subset R of the Cartesian product
AXA={(x,y)|x,y € A}. We say that x,y € A are R-related whenever (x,y) € R,
this often being written in the equivalent form x R yy. Generally, there are many
properties that binary relations may satisfy on a given set A. In particular, a
binary relation R on A is said to be

(1) reflexive, if it satisfies (x,x) € R, for all x € A;

(2) symmetric, if (x,y) € R implies (y,x) € R, for all x,y € A;

(3) anti-symmetric, if (x,y) € R and (y,x) € R implies x = y, for all x,y € A;
(4) transitive, if (x,y) € R and (y,z) € R implies (x,z) € R, for all x,y,z € A.

The dual of a binary relation R is the relation R™! given by
(x,y)eRT o (yx)€ER

A binary relation which is reflexive, symmetric and transitive is called an
equivalence relation, whereas a binary relation which is reflexive, anti-symmet-
ric and transitive is called a partial order, or briefly an order. We usually denote
an order by the symbol <. It is traditional to write the expression (x,y) €< in
the equivalent form x < y which we read as "x is less than or equal to y”.

By a partially ordered set, or simply ordered set (A,<) we shall mean a set A
on which there is defined an order <.

According to Birkhoff [13], the defining properties of an order occur in a
fragmentary way in the work of Leibniz (circa 1690). The present formulation
emerged from the work of Peirce [91], Schroder [101], and Hausdorff [62].

Examples of some of the most commonly used ordered sets are given
belove:

Example 1.11. Given an arbitrary set A, the relation of equality ”= " is an
order on A.

Example 1.12. On the set Z?(A) of all subsets of a non-empty set A the relation
C of set inclusion is an order.

Example 1.13. The set of even positive integers may be ordered in the usual
way, or by divisibility.

Example 1.14. If (A1,<1), . . ., (An, <) are ordered sets then the Cartesian
product set A1 X --- X A, can be given the Cartesian order < defined by

(xl/"'/xn) < (yl/---/]/n) < xi <i yi/ l € {1,...,1’1}.

In the sequel, we shall denote the dual of an order < on A by the symbol >
which we read as “greater than or equal to”. Then the ordered set (4, >) is
called the dual of (A, <), hence to every statement that concerns an order on
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a set A there is a dual statement that concerns the corresponding dual order
on A. This is the basis of the useful

Principle of Duality:  To every theorem that concerns an ordered set A there
is a corresponding theorem that concerns the dual ordered set. This is ob-
tained by replacing each statement that involves <, explicitly or implicitly,
by its dual.

In what follows we shall use the notation x < y to mean x < y and x # y. Note
that the relation < thus defined is transitive but is not an order since it fails
to be reflexive; moreover, x < y and y < x are incompatible. We denote the
dual of the relation < by the symbol >. An order < on A is a linear order on A
if for every x,y € A holds x < y or x < y. In this case A is a linearly ordered set.

If (A,<) is an ordered set then by the greatest element of A we mean an
element x € A such that y < x for every y € A. The greatest element, when it
exists, is unique. In fact, if x, y are both greatest elements of A then on the one
hand y < x and on the other x < ¥ whence, by the anti-symmetric property
of <, we have x = y. The dual notion is that of the least element, namely an
element z € A such that z < y for every y € A. By the above and the Principle
of Duality, we can assert immediately that the least element, when it exists,
is unique. The element x € A is called the maximal element of the set A, if x <y
implies x = y for every y € A, that is, if there is no element in the set A which
is strictly larger than x. The dual notion is that of the minimal element of the
set A, i.e. the element x € A is said to be minimal element of A if y < x implies
x =y forevery y € A.

Next, let B be a non-empty subset of an ordered set A. The upper bound
of the set B is an element x € A such that y < x, for every y € B. The lower
bound of the set B is an element x € A such that x <y, for every y € B. The least
upper bound or the supremum of the set B is the element x € A, which is the
least element in the set of all upper bounds of B, in other words, which is the
upper bound of B and for any upper bound y of the set B there holds x < y.
Dually, the greatest lower bound or the infimum of the set B is the element x € A,
which is the greatest element in the set of all lower bounds of B, that is, which
is the lower bound of B and for any lower bound y of the set B there holds
y < x. The supremum of the set B, if it exists, is denoted by \/ B, whereas the
infimum of B, if it exists, is usually denoted by A B. If B = {x;|i € I}, instead
of \/ B and A B we can write, respectively:

\/x,- and /\xi.
iel iel

A lattice is an ordered set such that every two-element subset has the supre-
mum and the infimum. Given a lattice L, we can define two binary operations
V and A on L, by:

\/(x,y) =xVy and /\(x,y) =XAY.
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These operations are called union and intersection, respectively.
Theorem 1.1. Let L be a lattice. Then for every x,y,z € L the following holds:

(L1) xAx=x, xVx=x (idempotents);

(L2) xAy=yAx, xVy=yVx (commutativity);

(L3) (xAy)Az=xA(yAz), (xVy)Vz=xV(yVz) (associativity);
(L4) xA@xVy)=x, xV(xAy)=x (absorption).

The conditions (L1) — (L4) of the Theorem 1.1 are called the lattice axioms.
A subset A of a lattice L is called a sublattice if x Ay € A and xV y € A, for all
elements x,y € A.

For a lattice L and an element x € L, sublattices

[)={yellx<yl i (]=lyelly<x}
are half-open intervals of the lattice L, and for all x, y € L sublattices
(x,y)={zellx<z<y} i [xyl={zel|lx<z<y}

are an open interval and a closed interval, respectively.

An algebra with one binary idempotent, commutative and associative
operation is called a semilattice. If a non empty set L together with arbitrary
elements x,y € L contain x A y, respectively x V y then L is called A-semilattice
or lower semilattice, i.e. V-semilattice or upper semilattice.

A non-empty subset [ of a lattice L is called an ideal if:

(1) foralla,xeL,byx<aandae€litfollowsxel;
(2) xvyelforallx,yelL.

It can easily be shown that a subset ] is an ideal of the lattice L if the following
is true:

xAyel ifand only if both x and y are elements of I.

The dual notion to the notion of anideal is the dual ideal. Namely, a non-empty
subset D of a lattice L is a dual ideal if:

(1) foralla,xeL,bya<xandaeD it follows x € D;
(2) xAyel forallx,yel.

Letx € L. Notice that the half-openintervals (x] and [x), are anideal and a dual
ideal of the lattice L, respectively, and they are called the principal ideal gener-
ated by x and the principal dual ideal generated by x .

The least element of the lattice L, if it exists, is denoted by 0, and the greatest
element, if it exists, is denoted by 1. A bounded lattice is a lattice that has the
greatest element 1 and the least element 0.

It can easily be shown that for every lattice L the following conditions are
equivalent:
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(L5) xA(yVz)=(xAy)V(xAz),forallx,y,zeL;
(LY) xV(yAz)=xVy)A(xVz),forall x,y,zeL.

A lattice which satisfies any of the previous conditions is called a distributive
lattice.

Let L be a bounded lattice with 0 and 1. An element y € L is called a com-
plement of an element x € L if

xAy=0, xvy=1

In that case, the element x € L is a complement of the element y € L. In other
words, the relation “to be a complement” is a symmetric relation. In every
distributive lattice it can easily be shown that every element x € L has at most
one complement, which will be denoted with x’.

A bounded distributive lattice in which every element has a complement
is called a Boolean lattice. The mapping x — x’ is a unary operation on L called
the complement operation.

As we have maintained before, every finite subset of a lattice has a supre-
mum and infimum. However, it does not have to be the case when the subset
of a lattice is infinite. A lattice in which every subset (finite or infinite) has a
supremum and an infimum is called a complete lattice. Clearly, every such a
lattice is bounded. A subset K of a complete lattice L is a complete sublattice
of L if the supremum and the infimun (in L) of every non-empty subset of K
belong to K.

Next, we give some examples of ordered set which are lattices:

Example 1.15. A singleton set A = {a} is a lattice under the only possible order
on A. This is a trivial lattice. Any lattice with more than one element is a non-
trivial lattice.

Example 1.16. The ordered set (#(A), C) is a bounded lattice, for every set A.
The supremum and infimum operations are union and intersection, respec-
tively.

Example 1.17. The set N of natural numbers is a lattice under division, where

xAy=gcd(x,y) and xVy=lcm(x,y).

1.3. Complete residuated lattices

Contrary to classical logic, which is bivalent, the fuzzy logic is the logic of
graded truth. In classical logic, each proposition is either assigned truth
degree 1 (true) or truth degree 0 (false), whereas, in fuzzy logic, each propo-
sition is assigned a truth degree taken from some scale L of truth degrees.
Scale L is partially ordered and contains 0 and 1 as its boundary elements.
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That is, L is equipped with a partial order < and we have 0 <a <1 for each
a € L. Elements a from L are called truth degrees. If propositions ¢ and ¢
are assigned truth degrees a and b, then a < b means that we consider ¢ less
true than 1. That is why it is needed for L to be partially ordered. It is in this
sense that fuzzy logic is a logic of graded truth.

The set L needs to be equipped with logical connectives. That is, as in clas-
sical logic, we need binary functions ® : LX L — L of conjunction, =:LXL — L
of implication, etc. Just as classical logic, fuzzy logic is also truth-functional.
This means that a truth degree of a composed proposition is computed from
truth degrees of its constituent propositions using logical connectives. The
only difference is that in fuzzy logic, logical connectives are not uniquely
given. In fuzzy logic, it is useful to postulate desirable properties of connec-
tives and consider as a “good connective” any one satisfying the properties.
For instance, a desirable property of conjunction is monotony — the more true
the propositions, the more true their conjunction. In the following, we pro-
ceed this way to justify a particular structure of truth degrees. The structure
will be called a complete residuated lattice and will play the role of a basic
structure of truth degrees in our investigation. Our justification of complete
residuated lattices as suitable structures of truth degrees is due to Goguen
[45].

As stated before, a set L of truth degrees should be equipped with a partial
order < and bounded by 0 and 1. Furthermore, we want L to have arbitrary
infimum and supremum, i.e. we want (L, <,0,1) to be a complete lattice. This
is due to the fact that we need supremum (infimum) for modeling existential
(universal) quantifier. Basic requirements regarding conjunction ® are that
(L,®,1) is a commutative monoid. This means that ® is a binary operation
on L which is commutative, associative, and 1 is a neutral element for ®. We
proceed by (truth function of) implication which we denote by —. Several
desirable properties of implication follow from a simple condition called
adjointness. Adjointness itself says that for each a,b,c € L we have a®b < c if
and only if a < b — c. This condition follows from how modus ponens should
behave in fuzzy setting. Recall first that in classical logic, modus ponens is
an inference rule saying: if ¢ is valid and ¢ implies 1 is valid then we may
infer that 1p is valid. An appropriate formulation of modus ponens in fuzzy
setting is the following: if ¢ is valid in degree at least a and ¢ — 1) is valid in
degree at least b then we may infer that ¢ is valid in degree at least a x b.

A structure consisting of a set L of truth degrees, a partial order < bounded
by 0 and 1, and functions ® and — which satisfy the above conditions is called
a complete residuated lattice and plays the role of a basic structure of truth
degrees in our investigation.

A residuated lattice is an algebra .Z = (L, A, V,®,—,0,1) such that:

(L1) (L,A,V,0,1) is a lattice with the least element 0 and the greatest
element 1,

(L2) (L,®,1)is a commutative monoid with the unit 1,
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(L3) ® and — form an adjoint pair: for each a,b,c € L we have a®b < c if
andonlyifa<b—c.

If, in addition, (L, A, V,0,1) is a complete lattice, then .Z is called a complete
residuated lattice.

The operation ® is called multiplication, while the operation — is called
residuum. These operations are intended for modeling the conjunction and
implication of the corresponding logical calculus.

An operation < called biresiduum is given by:

xey=x-yAY-—x). (1.4)

It is used for modeling the equivalence of truth values.
The operation negation, denoted by —, is defined by:

—x=x—0, (1.5)

and is used for modeling the complement of a truth value.
Most important examples of complete residuated lattices are those with
the universe L being a real unit interval [0,1] where:

xAy=min(x,y) and xVy=max(x,y)

and multiplication and residuum operations are defined as follows:
the Goguen (product) structure:

1, ifx<y,
y/x, otherwise,

x®y=x-y, x—’yz{

the Godel structure:

1, ifx<y,
y, otherwise,

X®y =min(x,y), x—>y:{
and the Lukasiewicz structure:
x®y=max(x+y—-1,0), x—=y=min(l-x+y,1).
Another important set of truth values is the set {ag, a1, ...,a,}, with
Ak ®a; = Amax(k+l-n,0) and  ax = a; = Amin(u—k+1,1),

where0=ap<---<a, =1.

A special case of the latter algebras is the two-element Boolean algebra
of classical logic with the support {0,1}. The only adjoint pair on the two-
element Boolean algebra consists of the classical conjunction and implication
operations. This structure of truth values we call the Boolean structure.
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All of the structures mentioned before, the Lukasiewicz, Goguen and
Godel structures are residuated lattices induced by t-norms, a binary oper-
ation on [0,1] which is associative, commutative, monotone and where 1 is
unit element. In the case of the Lukasiewicz, Goguen and Godel structures ®
is a t-norm. Generally, an algebra ([0,1],V,A,®,—,0,1) is a complete residu-
ated lattice if and only if ® is a left-continuous t-norm, i.e. a t-norm satisfying

lim (a2, ®b) = (lim a,) ®D,
n—oo n—-o00
and then the residuum is defined by

X—y= \/{ue[0,1]|u®x<y}.

Here we recall some important truth structures, which are residuated lat-
tices, but satisfy some additional conditions.

A residuated lattice .Z satisfying x® y = x Ay is called a Heyting algebra.
Moreover, if . is a complete lattice, then it is called a complete Heyting algebra,
and if the partial order in < in .Z is linear, then . is a linearly ordered Heyting
algebra. The most important example of a linearly ordered Heyting algebra is
the real unit interval [0, 1] with the Godel pair of adjoint operations, i.e. with
the standard minimum t-norm.

A BL-algebra (basic logic algebra) is a residuated lattice satisfying the con-
ditionaAb=a®(a — b) (divisibility) and (a = b) vV (b = a) = 1 (prelinearity). An
MV-algebra (multi-valued algebra) is a BL-algebra in which a = =—a holds (the
double negation is allowed). A P-algebra (product algebra) is a BL-algebra which
satisfies (c > 0) > 0< ((a®c) = (b®c)) > (@—>b)andan(@—0)=0. A G-
algebra (Godel algebra) is a BL-algebra which satisfies a®a = a (idempotency). A
Boolean algebra is a residuated lattice which is both a Heyting algebra and an
MV-algebra.

Note that every Godel algebra, and hence, the Godel structure, is locally
finite, whereas the product structure is not locally finite.

In what follows, we recall some basic properties of residuated lattices:

Theorem 1.2. For every residuated lattice the following holds:

x®0=00x=0, (1.6)
XQY<X, X<Y-—YX, 1.7)
XQYSXAY, (1.8)
x—ox=1, x->1=1 1-x=x, (1.9)
0—-x=1, (1.10)
y<x— (xQy), xSx—=y) -y, (1.11)
X®(x—y)<y, (1.12)

(x=yey—2)<(x—2), (1.13)
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x<y © x—-y=1, (1.14)
x — y is the greatest element of {z|x®z < y} (1.15)
x®y is the least element of {z|x < y — z}. (1.16)

Theorem 1.3. In every residuated lattice the following inequalities hold:

x> y<(xAz)—= (YAZ), (1.17)
x—=y<(xVz)—(yVz), (1.18)
x>y (x®z)—> (y®2z), (1.19)
x->y<(y—z) - (x—-z), (1.20)
xoyY<(zox)->(zZ-oy). (1.21)

Theorem 1.4. The following assertions hold in every residuated lattice:

xoy=((x—-y)-y) -y (1.22)
Whx-y=y © (Fz)(xkz=y), (1.23)
x=> @y =y © (I)(x—z=y), (1.24)
y—=x)—>x=y & Az)z—>x=y), (1.25)
xXAY®(XVY)<x®Y, (1.26)
XVY< (x> y) = Ay =) > 2), (127)
XANYZx®(x—y), (1.28)
Xy —z)<y— (x®2z). (1.29)

The next theorem shows that with respect to <, the operation ® is isotonic
in both arguments, the operation — is isotonic in the second and antitonic
in the first argument.

Theorem 1.5. In every residuated lattice the following holds:

YIS DXy <X, (1.30)
VISP XD YIS Y, (1.31)
<020 -Y<x . (1.32)

The next theorem describes a relationship between operations V and A, for
any family of residuated lattice elements, and operations ® and —.

Theorem 1.6. The following assertions hold for every index set I:

xo(\/5)=\/@ow), (1.33)

iel iel

2= (A\w)= \&- ), (1.34)

iel iel



1.4. Fuzzy sets and fuzzy relations 17

(W) 2y= A(xi —y), (1.35)

Ql(xf oY= (; xi) =y, (136)
:Q; /\ Yi s /\(:;’ Yi)- (1.37)
A‘xl — < - (A\x) = (/\w) (1.38)
K(x, ~ Y < VI Vly (1.39)
i/j(x—>y,-)<xi(i/€>yi) N 140

1.4. Fuzzy sets and fuzzy relations

In the further text the complete residuated lattice .2 will be a structure of
truth values.

A fuzzy subset of a set A over £, or simply a fuzzy subset of A, is any
mapping from A into L. Ordinary crisp subsets of A are considered as fuzzy
subsets of A taking membership values in the set {0,1} C L. Let f and g be two
fuzzy subsets of A. The equality of f and g is defined as the usual equality of
mappings, i.e., f = g if and only if f(x) = g(x), for every x € A. The inclusion
f < gisalso defined pointwise: f < gif and only if f(x) < g(x), for every x € A.
Endowed with this partial order the set .7 (A) of all fuzzy subsets of A forms
a complete residuated lattice, in which the meet (intersection) A fi and
the join (union) V¢ f; of an arbitrary family {f;}ie; of fuzzy subsets of A are
mappings from A to L defined by

Aﬂ]m: N\ fi), (\/ﬂ](x) =\/ fix),

iel iel iel iel

and the product f® g is a fuzzy subset defined by f® g(x) = f(x) ® g(x), for
every x € A. The crisp part of a fuzzy subset f € F(A) is a crisp subset
f={acAlf(a) =1} of A.

A fuzzy relation between sets A and B (in this order) is any mapping
from AXB to L, i.e. , any fuzzy subset of A X B, and the equality, inclusion
(ordering), joins and meets of fuzzy relations are defined as for fuzzy sets.
The set of all fuzzy relations between A and B will be denoted by Z(A, B).
In particular, a fuzzy relation on a set A is any function from AxXA to L, ie.,
any fuzzy subset of A x A. The set of all fuzzy relations on A will be denoted
by Z(A). The inverse(converse, or transpose) of a fuzzy relation ¢ € Z(A,B) is
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a fuzzy relation ¢! € %Z(B, A) defined by ¢~'(b,a) = ¢(a,b), for all a € A and
b € B. A crisp relation is a fuzzy relation which takes values only in the set
{0,1}, and if @ is a crisp relation of A to B, then expressions “@(a,b) =1” and
”(a,b) € ¢” will have the same meaning.

For arbitrary non-empty sets A, B and C, and fuzzy relations ¢ € Z(A, B)
and ¢ € Z(B,C), their composition is a fuzzy relation ¢ o) € Z(A,C) given by

(po)a0)=\/ plab)ey(b,o), (1.41)
beB

for all a € A and c € C. Further, for f € .#(A), ¢ € Z(A,B) and g € .%#(B), the
compositions f o@ and @ o g are fuzzy subsets of B and A, respectively, which
are defined by

(fop)®)=\/ f@p@b), (@ogia)=\/p@abogb),  (142)
acA beB

foreverya€ Aand b € B.
In particular, for fuzzy subsets f and g of A we write

fog=\/ f@®gla). (1.43)

acA

Let A, B, C and D be non-empty sets. Then for any ¢ € Z(A,B), g2 € Z(B,C)
and @3 € Z(C,D) we have:

(pro@2)ops=pio(p2093), (1.44)
and for g € Z(A,B), 1,2 € Z(B,C) and @3 € Z(C,D) we have

p1< @y implies @oopi<poopz and @ropz<props.  (1.45)

Further, for any ¢ € Z(A,B), ¢ € Z(B,C), f € #(A), g€ #(B)and h € #(C) we
can easily verify that

(fop)oy=fo(poy), (fop)og=fol(pog), (poyp)oh=¢o(Poh), (1.46)

and consequently, the parentheses in (1.46) can be omitted, as well as the
parentheses in (1.44). Finally, for all ,¢; € Z(A,B), (i € I) and ¢, ¢; € Z(B,C),
(i € I) we have that

(po 111))_1 = (p_1 o 11[)_1 (1.47)
po(\/ )=\ wov), (\e)ov=\/ @y (1.48)
iel iel iel iel

(Vo) =\Ve (149)

iel iel
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We note that if A, B and C are finite sets of cardinality |A| =k, |B| = m and
|C| = n, then ¢ € Z(A,B) and ) € #Z(B,C) can be treated as kxm and m xn
fuzzy matrices over .Z, and @ o1} is the matrix product. Analogously, for
f €. F(A) and g € #(B) we can treat f o ¢ as the product of a 1 X k matrix f
and a k X m matrix ¢ (vector-matrix product), ¢ o g as the product of an k x m
matrix ¢ and an m X 1 matrix ¢', the transpose of g (matrix-vector product),
and f o g as the scalar product of vectors f and g.

Let ¢, € Z(A). The right residual of 1 by @ is a fuzzy relation @\1ip € Z(A)
defined by

(@\Y)ab) =\ plea) - (eb),

ceA
and the left residual of 1 by ¢ is a fuzzy relation /¢ € Z(A) defined by

Wlp)ab)= [\ p(b,c) = ¥(@a,0),

ceC

foralla,b € A. Further, for f,g € #(A), the right residual of g by f is a fuzzy rela-
tion f\g € #(A) and the left residual of g by f is a fuzzy relation g/ f € #(A) de-
fined by

(f\9)(a,b) = f(a) = g(b), (9/)b,a) = f(a) — g(b),

foralla,b e A.
A fuzzy relation R on a set A is said to be:

(R)  reflexive (or fuzzy reflexive) if R(a,a) =1, for everya € A;
(S) symmetric (or fuzzy symmetric) if R(a,b) = R(b,a), for alla,b € A;
(T) transitive (or fuzzy transitive) if R(a,b) @ R(b,c) < R(a,c), for alla,b,c € A.

It can easily be shown, that RoR = R holds for any reflexive and transitive
relation R on A.

A reflexive, symmetric and transitive fuzzy relation on A is called a fuzzy
equivalence. With the respect to the inclusion of fuzzy relations, the set £(A) of
all fuzzy equivalences on A is a complete lattice, in which the meet coincide
with the ordinary intersection of fuzzy relations, but in the general case, the
join in £(A) does not coincide with the ordinary union of fuzzy relations.

A fuzzy equivalence E on a set A is called a fuzzy equality if E(a,b) =1
implies a = b, for all a,b € A. In other words, E is a fuzzy equality if and only
if its crisp part Eisa crisp equality.

The equivalence class of fuzzy relation E on A determined by a € A is the
fuzzy subset E; of A defined by

Eq.(b) =E(a,b), foreverybeA.

The set A/E = {E;|a € A} is called the factor set of A w.r.t. E (cf. [11]). The
natural function from A to A/E is the fuzzy relation ¢r € Z(A,A/E) defined
by @r(a,Ey) = E(a,b), for alla,b € A.
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For a fuzzy relation R on a set A, a fuzzy relation R* on A defined by

R® = \/R".

nelN

is the least transitive fuzzy relation on A containing R, and it is called the
transitive closure of R.

A fuzzy relation on a set A which is reflexive and transitive is called a fuzzy
quasi-order, and a reflexive and transitive crisp relation on A is called a quasi-
order. Like the set £(A), the set 2(A) of all fuzzy quasi-orders on % is also a
complete lattice, in which the meet coincides with the ordinary intersection
of fuzzy relations and, in the general case, the join in 2(A) does not coincide
with the ordinary union of fuzzy relations. Namely, if R is the join in 2(A)
of a family {R;};¢; of fuzzy quasi-orders on A, then R can be represented by:

R=(V/R= /(Y-

i€l nelN iel

For a fuzzy relation R € Z(A) and an element a € A, the R-afterset of a is the
fuzzy set R, € .#(A) defined by:

R4(b) =R(a,b), forany b € A,
while the R-foreset of a is the fuzzy set R* € .7 (A) defined by:
R(b) =R(b,n), forany b € A.

The set of all R-aftersets will be denoted by A/R, and the set of all R-foresets
will be denoted by A\R. Clearly, if R is a fuzzy equivalence, then A/R = A\R
is the set of all equivalence classes of R.

For a fuzzy quasi-order R on A, a fuzzy relation Eg defined by Eg = RAR™!
is a fuzzy equivalence on A, which is called the natural fuzzy equivalence of R.
A fuzzy quasi-order R on a set A is a fuzzy order if R(a,b) = R(b,a) = 1 implies
a=0b,forallabeA,ie, if the natural fuzzy equivalence Er of R is a fuzzy
equality. Clearly, a fuzzy quasi-order R is a fuzzy order if and only if its crisp
part R is a crisp order.

The following theorem recalls some important features of quasi orders
and natural equivalences.

Theorem 1.7. Let R be a fuzzy quasi-order on a set A and E the natural fuzzy
equivalence of R. Then

(a)  For arbitrary a,b € A the following conditions are equivalent:
(i) E@b)=1;
(ii)  E,=Ey;
(iii) Ry, =Ry,
(iv) R*=R°.
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(b)  Functions R, = E; of A/Rto A/E, and R, — R® of A/R to A\ R, are bijective
functions.

For more information about fuzzy equivalence and fuzzy quasi-order
relations we refer to [116].






Chapter 2
Weighted and fuzzy automata

Fuzzy and weighted automata are classical nondeterministic automata in
which transitions, initial and final states take values from certain structures.
These values may be used for modeling the probability or possibility of the
successful transition, the cost paid when entering a certain state, etc. For
weighted automata these values are called weights, and are usually taken
from semirings, and for fuzzy automata they are called truth values, and are
taken from certain ordered structures, the most often from lattice-ordered
structures. It is worth noting that fuzzy and weighted automata have found
application in many areas of computer science such as naturtal language pro-
cessing, lexical analysis, description of natural and programming languages,
learning systems, control systems, neural networks, clinical monitoring, pat-
tern recognition, databases, discrete event systems, and many other areas.
The chapter is organized in the following way. In Section 2.1., we recall
the notions of a formal power series and a weighted finite automaton over a
strong bimonid. Furthermore, we consider tree different kinds of behaviors
of a weighted automaton over a strong bimonoid. Section 2.2. is dedicated to
fuzzy automata and fuzzy languages over a complete residuated lattice. In
section 2.3. we deal with crisp-deterministic fuzzy and weighted automata
together with language, respectively behavior of these automata. Finally, in
Section 2.4., we consider afterset, foreset and factor fuzzy automaton.

2.1. Weighted finite automata and series over strong
bimonoids

In the rest of this section, if not noted otherwise, let K be a strong bimonoid and X
an alphabet.

A formal power series over X and K, for short a series, is any mapping
@ : X* — K. Instead of ¢(u) we write (¢,u) for every u € X*. The set of all
series over X and K is denoted by K(X")). The image of ¢ is the set Im(¢p) =

23
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{(p,u) € K| u € X*}, and the kernel of ¢ is the relation kerp on X* defined as
follows: for u,v € X* we set (1,v) € ker ¢ if and only if (p,u) = (¢, v).

A weighted finite automaton (for short: wfa) over X and K is a quadruple
o/ =(A,0,0,7), where A is a finite non-empty set of states, 5 : AX X XA — Kis
a weighted transition function, o : A — Kis an initial weight vectorand 7: A — K
is a final weight vector. For each x € X we define a weighted transition matrix
(or a weighted transition relation) 6y : AX A — K by 6x(a,b) = 6(a,x,b), for all
a,be A. If &/ is a wfa, we will write |.</| = |A|, i.e., || denotes the number of
states of 7.

Due to lack of distributivity in K, we define the behavior of wfa in sev-
eral different ways. In particular, we distinguish the initial algebra semantics,
the run semantics, and the transition semantics of a weighted finite automaton
[37].

Initial algebra semantics: For each u € X* we define a vector 0, : A — K
inductively, as follows: 0. = 0, and for all u € X* and x € X we set 6, = 0, - Ox.
Clearly, if u = x1x---x,, where x1,...,x,; € X, then

0y =(...((0-0x;) - Oxy) =) - Ox- (2.1)
The i-behavior of <7 is the series [[«/]]; in K(X*)) defined by
([T u) = 0u-T=((-..((0 Ox;) * Ox,) +-..) - Ox,) T (2.2)

for every u = x1x2---x, € X*, where x1,x2,...,x, € X.

Transition semantics: For each u € X* we define a matrix 6, : AXA - K
inductively, as follows: 0, is the unit matrix, and for all u € X* and x € X we set
Oux = 0y - Ox. In other words, if u = x1x7---x,, € X*, where x1,x3,...,x, € X, then

Bu = (oo (Bxy - Oy) By) -2 - Oy 2.3)

Matrices 6, u € X*, will be also called weighted transition matrices.
The t-behavior of 7 is the series [[#/]]; in K(X")) defined by

(L Nt u) = (0-6u) - T (24)

forevery u € X*. If K is a semiring, then the matrix product and matrix-vector
product (wWhenever defined) are associative and the above parentheses can
be deleted. In this case, the t-behavior becomes the f-behavior defined in [37].

Run semantics: The r-behavior of o7 is the series [[#/]], in K{X")) defined by

(L1, u) = Z 0(ag) - Ox, (a0,a1) - Ox,(a1,a2) - ...+ Ox,, (An-1,an) - T(an) -
(a0,a1 .-y )EANTL
(2.5)
for every u = x1x2---x, € X*, where x1,x2,...,x, € X. Here, a sequence
(ao,a1,...,a,) € A" is often called a run of o7 on u = x1x2 - Xy,.
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Let s € {i,f,7}. A series ¢ € K{X")) is called s-recognizable if there exists a
wfa o/ over X and K such that [[#/]]s = ¢. We say that two wfa &/ and &’
over X and K are s-equivalent if [/ ]]s = [«/"]];.

Given a series @ € K{(X*)) and v € X*, we define the series v‘l(p € K{X*)
and pov~! € K{X*) by letting (v™¢,u) = (p,ou) and (pv~1,u) = (p,uv) for
u € X*. The series v™¢ is called a left derivative, and the series pv~! a right
derivative of ¢ with respect to v. Derivatives of series have been well investi-
gated for series over semirings (cf.[15]).

2.2. Fuzzy automata

In the further text, £ will be a complete residuated lattice and X will be an
(finite) alphabet. A fuzzy automaton over .2 and X, or simply a fuzzy automaton,
is a quadruple &/ = (4, 6A,GA,TA), where A is a non-empty set, called the set
of states, 3 : AXXx A — L is a fuzzy subset of Ax XX A, called the fuzzy
transition function, and 04 : A — L and 14 : A — L are the fuzzy subsets
of A, called the fuzzy set of initial states and the fuzzy set terminal states,
respectively. We can interpret 6(a, x, b) as the degree to which an input letter
x € X causes a transition from a state a € A into a state b € A, whereas we can
interpret 0 (a) and 74 (a) as the degrees to which a is respectively an input
state and a terminal state. For methodological reasons we sometimes allow
the set of states A to be infinite. A fuzzy automaton whose set of states is
finite is called a fuzzy finite automaton.

In cases where it is clear which set of states is underlying for 6%, 0 and
74, the superscript A will be omitted, i.e., instead of &/ = (A,(SA,GA,TA) we
will write simply &/ = (4, 6,0, 7).

Let o7 = (A, 6,0,7) be a fuzzy automaton over X and .Z, let X* denote the
free monoid over X, and let ¢ € X* be the empty word. The function 6 can be
extended up to a function 6" : AX X* XA — L as follows: If a,b € A, then

1, ifa=b
5(a,eb)={ "’ ! 2.6
@e,b) { 0, otherwise, 26)
andifa,be A, ue X* and x € X, then
5*(a,ux, b) = \/ 5*(a,u,¢)®5(c, x, b). 2.7)
ceA

By (1.33) and Theorem 3.1 [72] (see also [96, 100]), we have that

5*(a,uv,b) = \/ 5*(a,1,0)®5*(c,0,b), (2.8)
ceA
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foralla,be A and u,v € X*.
If for any u € X* we define a fuzzy relation 6, on A by

Oula,b) =06%(a,u,b), (2.9)

for all a,b € A, called the fuzzy transition relation determined by u, then (2.8)
can be written as
Oup = 0400y, (2.10)

for all u,v € X*.

A fuzzy language in X* over ., or briefly a fuzzy language, is any fuzzy
subset of X", i.e., any function from X" into L. A fuzzy language recognized
by a fuzzy automaton o/ = (A,6,0,7), denoted as [[</]], is a fuzzy language in
F(X*) defined by

[ T(u) = \/ o(a)®5"(a,u,b) @ T(b), 2.11)

a,beA

forany u =x1xp...x, € X*, where x1,x,...,x, € X. In other words, the equality
(2.11) means that the membership degree of the word u to the fuzzy language
[«/]] is equal to the degree to which & recognizes or accepts the word u.
Using notation from (1.42), and the second equality in (1.44), we can state
(2.11) as

[N(u)=0c006,01. (2.12)

Fuzzy automata </ and Z# are called language equivalent, or sometimes just
equivalent, if [[/]] = [[#]].

Fuzzy automata &7 = (A, 64,04,1) and &’ = (A',(SA,,GA,,TA,) are isomor-
phicif there is a bijective function ¢ : A — A’ such that 5%(a,b) = 6?' (P(a), (D)),
foralla,b € A and x € X, and also, 0%(a) = oAl(gb(a)) and (1) = (¢(a)), for
every a € A. It is easy to check that in this case we also have that

54(a,b) = 6% (d(a), p(b)), foralla,be Aand u € X" (2.13)

Givenafuzzylanguage ¢ : X* — Land v € X*, we define the fuzzy language
v l¢: X* - Land pov!: X* — L by letting v p(u) = ¢(vu) and pov~(u) =
@(uv) for u € X*. The fuzzy language v™'¢ is called a left derivative, and the
fuzzy language v ™! a right derivative of ¢ with respect to .

Cardinality of a fuzzy automaton .7 = (A, 6,0, 7), in notation |.<7|, is defined
as the cardinality of its set of states A. A fuzzy automaton .« is called minimal
fuzzy automaton of a language f € .#(X") if it recognizes f and |</| < |%7’|,
for any fuzzy automaton &/’ recognizing f. A minimal fuzzy automaton
recognizing a given fuzzy language f is not necessarily unique up to an
isomorphism. This is also true for nondeterministic automata.

For more information on fuzzy automata over complete residuated lattices
we refer to [33, 116, 53, 54, 55, 96, 100, 125, 128, 57].
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2.3. Crisp-deterministic fuzzy (weighted) automata

Let o = (A,6,0,7) be a fa over X and .Z, respectively a wa over X and K. The
fuzzy (weighted) transition function 0 is called crisp-deterministic if for every
x € X and every a € A there exists a’ € A such that 0x(a,a") =1, and 0x(a,b) =0,
for all b € A\ {a’}. The fuzzy set of initial states (initial weight vector) o is
called crisp-deterministic if there exists ag € A such that o(ap) =1 and o(a) =0
for every a € A\ {ap}. If both 0 and 6 are crisp-deterministic, then 7 is called
a crisp-deterministic fuzzy (weighted) finite automaton, (for short: cdffa (cdwfa))
Equivalently, we can define a crisp-deterministic fuzzy (weighted) finite
automaton over X and .Z (K) as a quadruple </ = (A,0,a9,7), where A is a
non-empty set of states, 6 : Ax X — A is a transition function, ag € A is an initial
stateand 7: A — L (t: A — K)is afuzzy set of final states (final weight vector). The
transition function 6 can be extended to a function 6" : A X X* — A as follows:
0*(a,e) = a, for each a € A, and 0*(a,ux) = 6(6*(a,u),x), for everya € A, u € X*
and x € X. Also, we allow the set A to be infinite, and then & is called
a crisp-deterministic fuzzy (weighted) automaton (for short: cdfa (cdwa)). The
language(behaviour) of </ is the fuzzy language (series) [[«/]: X* — L ([[/]] €
K{X*)) defined by
(LT, u) = (5" (ag, u)) - (2.14)

for every u € X*. Obviously, the image of [[</]] is contained in the image of T
which is finite if the set of states A is finite. By /| we denote the cardinality
of the set of states of <7, i.e., |<7| = |Al.

A fuzzy language (series) ¢ : X* — L (@ € K{X")) is called cdffa-recognizable
(cdfwa-recognizable) if there exists a crisp-deterministic fuzzy (weighted) fi-
nite automaton . over X and .Z (K) such that [[«/]] = ¢. We also say that &/
recognizes (.

A crisp-deterministic fuzzy (weighted) automaton & is called minimal
crisp-deterministic fuzzy (weighted) automaton of a language (series) f € #(X")
(f e KKX*))ifitrecognizes f and |.#7| < |</’|, for any crisp-deterministic fuzzy
(weighted) automaton .7’ recognizing f.

For a fuzzy language ¢ : X* — L, let A, = {u™ ¢ | u € X*} denote the set of all
left derivatives of ¢, and let 6, : Ay X X — A, and 1 : Ay — L be mappings
defined by

Sp(h,x)=x""Y and T,(Y) = P(e), (2.15)

forevery ¢ € A, and x € X. Then </, = (A, 0p, ¢, T¢) is an accessible cdfa, and
itis called the derivative automaton of the fuzzy language ¢ [57, 53]. It has been
proved in [57] that the derivative automaton .27, is finite if and only if the
fuzzy language ¢ is cdffa-recognizable. Namely, <7/, is a minimal cdfa which
recognizes @ [57]. An algorithm for construction of the derivative automaton
of a fuzzy language, based on simultaneous construction of the derivative
automata of ordinary languages ¢ ~1(a), for all a € Im(¢p), has been also given
in [57].
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Let & = (A,6,a0,7) and &’ = (A’,&',a(,7’) be cdfa (cdwa). If p: A — A’ is
a mapping satisfying ¢(ao) = a;, ¢(6(a,x)) = &' (¢(a),x), foralla€ Aand x € X,
and 7(a) = t'(¢(a)), for every a € A, then ¢ is called a homomorphism of these
cdfa (cdwa). If ¢ is a bijective homomorphism, then it is called an isomorphism
of cdfa (cdwa), and we say that o7 and .&/” are isomorphic cdfa (cdwa).

Let o7 = (A,0,a0,7) be a cdfa (cdwa). An equivalence relation p on A is a
congruence on 7 if (a,b) € u implies t(a) = 7(b) and (6(a, x),0(b,x)) € u, for all
a,be A and x € X (cf. [57]). If u is a congruence on </ and A, = A/ is the
related factor set, then we define mappings 6, : Ay XX > Ay and 7, : Ay > L
(tu : Ay = K) by 64([a]y,x) = [6(a, )], and 7,4([a],) = T(a), for all a € A and
x € X, and the quadruple <, = (A, 6y, [a0],,Ty) is a cdwa (cdfa), called the
factor automaton of </ with respect to .

2.4. Afterset and factor fuzzy automata

For a fuzzy automaton o7 = (A,(SA,GA, ) over an alphabet X and a complete
residuated lattice .Z, and a fuzzy quasi-order R on A, the afterset fuzzy autom-
aton of o7 withrespectto Risa fuzzy automaton <7 /R = (A/R, SAIR GAIR TAIRY
whose set of states is the set A/R = {R, | a € A} of all R-aftersets, the fuzzy tran-
sition function 64/R : A/Rx X x A/R — L is defined by

YRR, x,Ry) = \/ R(a,a') @5, x,b') @RV, b), (2.16)
a’ b eA
or equivalently by
64" (Rq, x,Rp) = (R0 6 o R)(@,b) = R0 87 o R, (2.17)

for all R;, Ry € A/R and x € X, the fuzzy set o4/R: A/R — L of initial states is
defined by

dR(R,) = v c(@)®R(@,a) = (6” oR)(@) =0 oR?, R,€A/R; (2.18)
a’eA
and the fuzzy set 7/R : A/R — L of terminal states is defined by
TR(R,) = \/ R(a,a")®1@’) = (Rot™)(a)=R,074, R,€A/R. (2.19)
a’eA
The fuzzy language [[.«//R]] recognized by the afterset fuzzy automaton
4/ [Ris given by
[//R]l(¢) = 0" oRo 7,

2.20
[[d/R]](u)zoAORO(SflORO(SfZORO---ORO(Sﬁ‘WOROTA ( )
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for every u = x1x2...x, € X*, where x1,x2,..., %, € X.

Let us note that the previous equation follows directly from the definition
of the afterset automaton 27/R and the fact that RoR = R for every fuzzy
quasi-order R.

Analogously, for a fuzzy automaton &/ = (A, 64,04,74), the foreset fuzzy
automaton of o/ w.rt. R is a fuzzy automaton o/ \R = (A\R, AR AR TA\RY
defined as follows: the set of states is A\R = {R? | a € A}, the fuzzy transition
function 6*'\R is defined by

SMR(RY, x, RY) = \/ R(a,a')®5a’,x,b") @RV, b)
a’ beA

=(Rod%oR)(a,b) =R, 004 0R?, 2.21
X X

for all R,R? € A\R and x € X, the fuzzy set oA\ e [AR of initial states is
given by

oM\R(R = \/ (@ )®R(@,a) = (6? oR) @) =0 oR?, R € A\R, (2.22)

a’eA

A\R

and the fuzzy set 74'\R € LA\R of terminal states is given by

WR(RY) = \/ R(a,a )@t (@)= (Rot?)@)=R,01?, R*eA\R. (2.23)

a’eA
It can easily be shown that:

Theorem 2.1. For any fuzzy quasi-order R on a fuzzy automaton <f the afterset
fuzzy automaton <7 | R and the foreset fuzzy automaton <f \ R are isomorphic.

It is interesting to note that in the case when R is a fuzzy equivalence
relation on A, the afterset fuzzy automaton <7 /R and the foreset fuzzy au-
tomaton 7 \ R will be equal, and in this case the automaton .27/R (< \ R)
will be called the factor fuzzy automaton of </ with respect to R.






Chapter 3
Reduced Nerode automaton

Determinization of a weighted/fuzzy finite automaton is considered here as a
procedure of its conversion into an equivalent crisp-deterministic weighted/
fuzzy automaton, which is deterministic, but it has weights/truth values at-
tached to terminal (final) states. This kind of determinism was first studied by
Bélohlavek [12], for fuzzy finite automata over a complete distributive lat-
tice, and Li and Pedrycz [72], for fuzzy finite automata over a lattice-ordered
monoid, where such algorithms were given which generalize the subset con-
struction. Another algorithm, provided by Ignjatovié et al. [54], is also a gen-
eralization of the subset construction and for any input it generates a smaller
crisp-deterministic fuzzy automaton than the algorithms from [12, 72]. Since
this crisp-deterministic fuzzy automaton can be alternatively constructed by
means of the Nerode right congruence of the original fuzzy finite automaton,
itwas called in [57] the Nerode automaton of this fuzzy finite automaton. The
Nerode automaton was constructed in [54] for fuzzy finite automata over a
complete residuated lattice, but it was noted that the same construction can
also be applied to fuzzy finite automata over a lattice-ordered monoid, and
moreover, to weighted finite automata over a semiring.

Recently, weighted automata with weights in more general structures have
attracted the attention of researchers. These structures are called strong bimo-
noids, and can be viewed as semirings that might lack distributivity. Exam-
ples of strong bimonoids include the real unit interval [0,1] with t-conorm
and t-norm from multi-valued logic [68], the algebraic cost structure from
algebraic path problems [73], etc. Important natural examples of strong bimo-
noids are ortho-modular lattices, which serve as a basis of quantum logics
where distributivity typically fails. Automata based on quantum logics, i.e.,
automata with weights in orthomodular lattices, have been investigated in
[70, 98, 101, 130, 131, 132]. Automata modeling, e.g., peak power consump-
tion of energy and with particular strong bimonoids as weight structures
were recently studied in [23, 24, 25]. Fuzzy automata and fuzzy tree automata
defined by a pair of a t-conorm and a t-norm on the real unit interval were
investigated in [8, 9] respectively [10], and their study for non-distributive
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pairs has been appraised as especially interesting. Automata over arbitrary
bounded lattices were investigated in [38].

Study of weighted finite automata over arbitrary strong bimonoids has
been recently initiated by Droste et al. [37], and methods and algorithms for
their determinization have been studied by Ciri¢ et al. [27]. Due to lack of
distributivity, there are three different definitions of the behavior of weighted
finite automata over strong bimonoids: the run semantics, the initial algebra
semantics, and the transition semantics. The Nerode automaton was also con-
structed for a weighted finite automaton over a strong bimonoid, and it was
proved that it is equivalent to the original automaton with respect to the
initial algebra semantics. With respect to transition and run semantics, crisp-
deterministic weighted automata equivalent to the original weighted au-
tomaton are respectively the Myhill automaton and the run automaton (cf.
[27]). Each of these three automata can have strictly less number of states than
the other two automata. Namely, in [27] certain examples were given which
show that finiteness of the Nerode and Myhill automaton, and definabil-
ity of the run automaton, are completely independent of each other, i.e., all
combinations of finiteness/infiniteness of the Nerode and Myhill automaton,
and definability/undefinability of the run automaton are possible. However,
in the case of semirings all three semantics coincide for every weighted fi-
nite automaton, and in this case the Nerode automaton has always smaller
cardinality than the corresponding Myhill and run automaton.

The aim of this chapter is to provide an new algorithm for determinization
of weighted finite automata over strong bimonoids which generates a crisp-
deterministic weighted automaton that is equivalent to the original weighted
automaton with respect to the initial algebra semantics, and is even smaller
than the Nerode automaton. This automaton was called in [61] the reduced
Nerode automaton. Therefore, in determinization of weighted finite automata
over strong bimonoids and semirings, and fuzzy finite automata over lattice-
ordered monoids, this algorithm gives smaller crisp-deterministic automata
than any other known determinization algorithm for that kind of automata.

The organization of this chapter is the following. In Section 3.1., we recall
the definition of the Nerode automaton of the given weghted finite autom-
aton over a strong bimonoid. In Section 3.2., given any weighted finite au-
tomaton 7, we define the reduced Nerode automaton .27, and we show that
it is a crisp-deterministic weighted automaton equivalent to .« with respect
to the initial algebra semantics (cf. Theorem 3.2). In Section 3.3. we prove that
the cardinality of the reduced Nerode automaton @7 is always less or equal
than the cardinality of the related Nerode automaton 2 (cf. Theorem 3.4),
and we demonstrate by an example that this inequality may be strict (Exam-
ple 3.9). In fact, we show that the automaton .2 can be obtained by reduction
of the Nerode automaton .«fy by means of a suitable congruence on #. For
that reason, @y is called the reduced Nerode automaton of .o7.

In contrast to nondeterministic finite automata, for which there is always
an equivalent deterministic finite automaton, for weighted and fuzzy finite
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automata there is no necessarily an equivalent crisp-deterministic finite auto-
maton. In other words, determinization procedures for weighted and fuzzy
finite automata may result in a crisp-deterministic automaton with possibly
infinitely many states. Consequently, it is interesting to investigate the condi-
tions under which these automata are finite. Here we provide necessary and
sufficient conditions for the reduced Nerode automaton 7 to be finite (cf.
Theorem 3.7). In the final section, we develop an algorithm which computes
o/ if it is finite. We also prove minimality results for the reduced Nerode
automaton @ in a suitable class of crisp-deterministic weighted automata
(Theorem 3.10).

The determinization algorithm provided here for weighted and fuzzy
automata generalizes determinization using the transition sets, developed in
[120, 121] for nondeterministic automata, and improves determinization al-
gorithms for weighted and fuzzy finite automata provided in [12, 27, 54, 72].

3.1. Nerode automaton

Let o/ = (A, ,0,7) be a weighted finite automaton over an alphabet X and a
strong bimonoid K. Set Ay = {0, | u € X"}, and define 6y : Ay X X — Ay and
TN : AN — Kby

On(ou,x) =0yx and Tn(0w)=0u-T, (3.1)

for every u € X* and x € X. Then /4y = (An,0N,0¢,TnN) is a crisp-deterministic
weighted automaton over X and K, and it is i-equivalent to 7, i.e., [[o\]] =
[« 1N; (cf. [27]).

The automaton oy = (An,0n,0¢,TN) is called the Nerode automaton of the
weighted finite automaton <. The concept of the Nerode automaton was first
introduced in [54] (see also [57]), and it was used there in determinization
of fuzzy finite automata over complete residuated lattices. Moreover, it was
noted in [54] that the same construction can be used for determinization of
fuzzy finite automata over lattice-ordered monoids and weighted finite auto-
mata over semirings. Not long afterward, Nerode automata were also asso-
ciated with weighted finite automata over strong bimonoids (cf. [27]). How-
ever, there are three different definitions of the behavior of such automata: the
run semantics, the initial algebra semantics, and the transition semantics. The
Nerode automaton .« is equivalent to the original automaton ./ with
respect to the initial algebra semantics, and with respect to the transi-
tion and run semantics, crisp-deterministic weighted automata equivalent
to &7 are respectively the Myhill automaton < and the run automaton
(cf. [27,57]). Generally, the cardinalities of the sets of states of these three au-
tomata are not comparable. In particular, in [27] certain examples were given
which demonstrate that finiteness of .y and @7, and definability of <7, are
completely independent of each other, i.e., for a wfa < all combinations of
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finiteness/infiniteness of <y and @), and definability/undefinability of .27,
are possible. But, in the case of semirings all three semantics coincide for
every weighted finite automaton, and in this case the Nerode automaton al-
ways has smaller cardinality than the corresponding Myhill automaton and
run automaton. Here we construct a crisp-deterministic weighted automaton
which always has smaller cardinality than the Nerode automaton.

3.2. Definition of the reduced Nerode automaton

In the rest of this chapter, if not noted otherwise, K will be a strong bimonoid,
and we will assume that X = {x1,x>, ..., x;;}, for some m € IN.

Let 7 = (A,0,0,7) be a weighted automaton over X and K. For each word
u € X" and each letter x € X let us define a vector i}, : A — K by

T]i = Oux, (3.2)
ie., 17 = 0y 0x. Moreover, for each word u € X* we define a scalar x, € K by
Ky =0y T (3.3)

Next, for each word u € X* we define the weighted transition (m + 1)-tuple 0,
by
911 = (nill'-'/nimrku)' (34)

The following lemma shows how the weighted transition (m+1)-tuple 0,,x
can be computed from 6,,, for arbitrary u € X* and x € X.

Lemma 3.1. Let o/ = (A, 0,0,7) be a weighted finite automaton over X and K. Then
forall u e X* and x € X the following is true:

Oux = (Tlﬁ'éxl/---ﬂ]ﬁ'éxrwnﬁ ") (3.5)

Proof. According to (3.2) and (3.3), for each j € {1,...,m} we have

T?féc = O'uxxj =Oux- 5xj = T]ﬁ : 5xjr Kuyx =Oux"T= T]i T,
and hence, (3.5) holds. O

Now, let us set Ag = {6, | u € X*}, and let us define 6g : Ag X X — Ar and
TR : Agp = Kby
Or(Ou,x) =0y and 7r(04) = Ky, (3.6)

forevery u € X* and x € X.
We have that the following is true.



3.3. Finiteness conditions 35

Theorem 3.1. Let o/ = (A,0,0,7) be a weighted finite automaton over X and K.
Then /g = (AR, OR, O, TR) is a crisp-deterministic weighted automaton over X and
K, and it is i-equivalent to <7, i.e. [[oR]] = [[/]l;.

Proof. Letu,v € X* such that 0, = 0, thatis i}, =1y for all x € X, and «x;, = .
Then by Lemma 3.1, for each x € X we have that

qu = (T]:Z '6x1""’ni '6xm’n§ ’ T) = (Tflg ’ 63(1""’77325 ’ 63(171’7]}25 ’ T) = Q'UX’

and therefore, 6r is a well-defined mapping. It is clear that 7y is also a well-
defined mapping. By this it follows that <& = (Ag,0Or, ¢, Tr) is a crisp-deter-
ministic weighted automaton.

Finally, let us show that < is i-equivalent to </z. For any u € X* we have
that

(LRIl u) = TR(O6R(Oc, 1)) = TR(Ou) = K4 = 00 T = ([ ]i, ),
and therefore [[2R]] = [«];. O

Note that for every word u € X* the weighted transition (m + 1)-tuple
6, = (r]fl1 e ", %) can be viewed as the ordered pair whose first component
is the n-tuple (17, ...,n/"), and the second component is k. On the other
hand, the n-tuple (nﬁl, ..,T,/") can be identified with the X X A-matrix 1, over
K defined by

Nu(x,a) = m,(a), (3.7)

for all x € X and a € A, since for arbitrary u,v € X* we have that

=10 & (VxeX)(YaeA)nx,a)=n(x,a) &
& (VxeX)(YaeA)nia) =n3@) ©
o (xeX)m=n & i) =, ).

Therefore, 6,, can be considered as the pair (1, k).
According to (3.2) and (3.7), for all u € X*, x € X and a € A we have that

0u(%,8) = 01x(@) = (0 6:)(8) = ) 0u(b) - 5(b,0). (338)
beA

In particular, in the case when 7 is a nondeterministic (Boolean) automaton,
1y can be naturally interpreted as follows: 1, is the set of all outgoing tran-
sitions from the set of states o, (cf. [120, 121]). In this case, unlike the subset
construction, which deals with sets of states, the construction of &z deals
with sets of transitions.
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Fig. 3.1 The transition graph of the wfa %7 from Example 4.1

3.3. Finiteness conditions

It is well-known that the Nerode automaton of a weighted finite automaton
over a strong bimonoid is not necessarily finite (cf. [27, 54]). This also holds
for the automaton @7, as the following example shows.

Example 3.1. Let &7 = (A, 6,0,7) be a weighted finite automaton over the alpha-
bet X = {x} and the Viterbi semiring K given by the transition graph shown
in Figure 3.1. Then for every u € X* we have that

0 ifa=ag
x a) = 4 ! Ky = Ol‘ul,
(@) {0.1'””, otherwise, "

where |u| denotes the length of the word u. Therefore, there are infinitely many
pairs of the form 6, = (1}, ku), so the set Ag is infinite.

Now we show that the automaton .z always has smaller or equal number
of states than the corresponding Nerode automaton 27y.

Theorem 3.2. Let o/ = (A,0,0,7) be a weighted finite automaton over X and K.
Then | ofR| < ||

Proof. Let us define a mapping ¢ : Ay — Ag by
Plou) =0y,

for every u € X*. Let u,v € X" such that 0, = 0,. Then
Qb(o'u) =0, = (04" 63(1!"'10-14 : 53(,,/(714 1) = (09 '6x1/mr(7v '6xnr(7v 1) =0y = ¢(GU)I

so we have that ¢ is well-defined mapping. It is clear that ¢ is surjective, and
hence, || < |an|. O

We will show later that .2z may have strictly smaller number of states than
</ (cf. Example 3.2).

It is easy to verify that ¢ is a homomorphism of crisp-deterministic
weighted automata, and its kernel g = ker ¢ is a congruence on the Nerode
automaton &y given by



3.3. Finiteness conditions 37

(0w 00) € 0 & ((Vx € X)n(0u,X) = On(00,%)) & TN(0u) = TN(T)

& ((Fw € X*)63,(0u,w) = 63,(00,w)) & Tn(04) = Tn(00),

for all u,v € X*. Hence, the automaton <z can be obtained by reduction of
the Nerode automaton #y by means of the congruence . For that reason we
will call @7 the reduced Nerode automaton of <7 .

Remind that the greatest congruence y on &y is given by

(0u,00) €y & (Yw e X) T (8y (0, w)) = T (S} (00, w)),

for all u,v € X*, and the related factor automaton 27y /y is minimal (cf. [57]).
The congruence g resembles the greatest congruence y, but in general it is dif-
ferent from it, i.e., the automaton 7 is not necessarily minimal (cf. Example
3.2).

Let S be semigroup and u a crisp equivalence on S. If for all a,b,x € S, we
have that (a,b) € u implies (ax, bx) € i, then u is called a right congruence on S.
Next, let u be aright congruence on the free monoid X, and let [u], denote the
equivalence class of u € X* with respect to u. Then one can define a function
O (X)X X — (X*/u) by

O ([uly,x) = [ux]y,

for all u € X* and x € X, and for every series ¢ € K{(X*)) such that u C kerg
one can define a function T;f 1(X*/u) = Kby

ol ([uly) = (p,u),

foreachu € X*.Now, &, = (X*/ 1, 6,, [€], T;f) isa crisp-deterministic weighted
automaton over X and K such that [[«/,]] = ¢, and it is called the right congru-
ence automaton associated with u (cf. [57]).

If o =(A,6,0,7) is a weighted finite automaton over X and K, then the
relation N, on X* defined by

(u,v)ENy & 0,=0y,

forallu,v € X*,is aright congruence on X*, and it is known as the Nerode right
congruence of o/. We can regard the Nerode automaton .27y as the right con-
gruence automaton associated with N, and just for that reason we called
</ the Nerode automaton. Similarly, a relation R, on X* defined by

(u,v)eRy & 6,=06,,

forall u,v € X", is also a right congruence on X*, and we can regard the crisp-
deterministic weighted automaton .2 as the right congruence automaton
associated with R, .
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Let &7 = (A, 6,0, 7) be a weighted finite automaton over X and K. For every
7’ : A — K, the weighted finite automaton (4, ,0,7’) is called a final variant
of <7, and by Rec;(</,0) we denote the family of all series in K{(X")) which
are i-behaviors of some final variant of <. For each a € A, a series [/ in
K{X)) is defined by
M1, u) = ou(a),

for every u € X*. The following result was proved in [27].

Theorem 3.3. Let o/ = (A,0,0,7) be a weighted finite automaton over X and K.
Then the following conditions are equivalent:

(1) The Nerode automaton <y is finite.

(2)  The Nerode right congruence Ny of </ has finite index.

(3)  The series [/ has a finite image, for every a € A.

(4) Any series from Rec;(<,0) is cdwfa-recognizable.

Remind that the index of an equivalence is defined as the cardinality of the
related factor set, i.e., an equivalence relation has finite index if it has finitely
many equivalence classes.

Further, for any weighted finite automaton </ = (A,0,0,7) over X and K,
and any x € X and a € A, let us define a series [[.%/ N0 in KXY by

(LT, u) = 5 (a)

for each u € X*. It is easy to verify that [&/]"? = [[ﬁf}gx’u)]], where ﬁféx’”) =

(AR,(SR,Qg,Tg’”)) is the final variant of <& with the final weight vector Tg’”)

defined by Tg"“)(eu) = (a), for every u € X*. Also, for everya € A, x € X and
u € X* we have that

(T, 1) = (@) = oux(a) = ([ 19, ux),

and hence, the series [« ]| is the right derivate of the series [[#/]] @) with
respect to x.

Lemma 3.2. Let &7 = (A,0,0,7) be a weighted finite automaton over X and K, and
let x € X. Then the right derivative of an arbitrary series from Reci(</,0) with
respect to x is the behavior of some final variant of </R.

Proof. Let @ be anarbitrary series from Rec;(7, 0). According to the definition
of Recj(«7,0), there exists a final variant &/’ = (A,d,0,7") of &/ such that
[<']li = @, ie,

(p,u) = (L' liyu) = 0w - ',

for every u € X*. Therefore,

((px_lru) = ((P/ le) =Oux" T,/
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for every u € X*. Let us now consider the final variant Ay = (AR,0r,Oc, T3) of
2R, where TR (Ou) =15 - 7’. Then we have that

(L3 T, u) = TR(OR(Be, 1)) = TR(O) = Ty T = Oux - T = (px ™", 0),
for all u € X*, and hence, [[,;aflf]] = (px‘l. O

The following theorem determines necessary and sufficient conditions
under which the reduced Nerode automaton is finite.

Theorem 3.4. Let o/ = (A,0,0,7) be a weighted finite automaton over X and K.
Then the following conditions are equivalent:

(1)  The reduced Nerode automaton <7y is finite;

(2)  The Nerode automaton <y is finite;

(3)  The right congruence R, has finite index;

(4)  The series [[</]|"*®, for all x € X and a € A, and [[o/]|; have finite images;

(5) The series px~', for all ¢ € Recj(</,0) and x € X, and [/]]; are cdwfa-
recognizable.

Proof. (1)=(2). Let Ag ={0y,,...,0,,}, for some k € N and uy,...,u; € X". For
every u € X* we have that u = vx, for some v € X* and x € X, and 6, = Gu],, for
some je({l,...,k},s0 0, =0u =1 = nf,j = Oujx- Hence,

An\Moe} Clouy 11<j<k 1<I<m},

and therefore, |An| < km +1, i.e., || < |oR|- |1 X]|+ 1.

(2)=(1). This follows immediately by Theorem 3.2.

(1)©(3). By definition of the right congruence R, the rule 6, - [u]r,, for
each u € X", defines a bijective mapping of A onto X*/R . By this it follows
that (1)&(3) holds.

(1)=(5). According to Theorem 3.1 we have that [[</]]; = [[#&]], and hence,
[.«7]]; is cdwfa-recognizable. Also, for any series ¢ € Rec;(<7,0) and any x € X,
by Lemma 3.2 it follows that the right derivative px~! is the behavior of some
final variant of 2z, and consequently, it is cdwfa-recognizable.

(5)=(4). By the assumption (5), [#/]]; is cdwfa-recognizable, and there-
fore, it has a finite image. Further, for all 2 € A and x € X we have that
[T =[x, and [[«/]|“ € Rec;(<,0). According to (v), we ob-
tain that [/ is cdwfa-recognizable, and hence, it has a finite image.

(4)=(1).Foreachu € X*, x € X and a € A we have nj(a) = ([N 1) and
&y = ([[7]];,u). Thus, the number of different (1 +1)-tuples 9, = (nf} oo " Kt
(u € X*) is bounded by

(1)l ] a1,

xeX,acA
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which is finite by assumption. [

3.4. Algorithm for computing the reduced Nerode automaton

Now, we give the following algorithm for computing the reduced Nerode au-
tomaton.

Algorithm 3.5 (Construction of the reduced Nerode automaton <7z) The in-
put of this algorithm is a weighted finite automaton &/ = (A, 6,0, 7) over an al-
phabet X = {x1,..., x4} and K, and the output is the cdwa @& = (AR, 0r, O¢,TR)
which is i-equivalent to <.

The procedure is to construct the transition tree of oz directly from 7. It
is constructed inductively in the following way:

(A1) Therootof thetreeis 0, =(000y,,...,000x,,007),and we put Ty = {O}.

(A2) Afterthei-thstep leta tree T; have been constructed, and vertices in T;
have been labelled either ‘closed” or 'non-closed’. The meaning of these
two terms will be made clear in the sequel.

(A3) Inthenextstep we construct a tree T;.1 by enriching the tree T; as fol-
lows: for every non-closed leaf 6, = (nﬁl, e T Kt) occurring in T;, where
u € X*, and every x € X, we add a vertex 0, = (173, - Ox;, ---, 173, * Ox,,, 113; - T) and
an edge from 0, to O,y labelled by x. If, in addition, 0, is a state that
has already been constructed, then we mark 0, as closed. The procedure

terminates when all leaves are marked closed.

(A4) Simultaneously, for each non-closed leaf 8, occurring in T;, where
u € X*, we compute the value tr(6,) using the formula (3.6).

(A5) When the transition tree of & is constructed, we erase all closure
marks and glue leaves to interior vertices with the same label. The diagram
that results is the transition graph of @z.

If the semiring K is weakly locally finite, then the algorithm terminates in a
finite number of steps, for any wfa over K, and the result is a cdwfa.

On the other hand, if K is not locally finite, then the algorithm terminates
in a finite number of steps under conditions determined by Theorem 3.4.

The next example demonstrates application of the above algorithm, and
shows that the reduced Nerode automaton may be strictly smaller than the
corresponding Nerode automaton and it is not necessarily minimal.

Example 3.2. Let &7 = (A, 6,0,7) be a weighted finite automaton over the alpha-
bet X = {x} and the Boolean semiring B given by the transition graph shown
in Figure 6.1.

Then o, 6x and 7 are represented by
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Fig. 3.2 The transition graph of the wfa .27 from Example 3.2

and we have that
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Hence, for all u € X* such that |u| > 3 (where |u| is the length of the word u) we

have that

m=[111], =1

Therefore Ag = {0¢,0y,0,2,0,3}, and the transition tree and the graph of the
cdwfa ok = (AR, 0r, O¢,Tr) are shown in Figure 6.2.
Note that the series [[.#:]] = [«/]]; is given by
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X
0 0 1 1

2 (L R (D R [\ R [

Fig. 3.3 The transition tree and the graph of the automaton % of the wfa %7 given in
Figure 6.1.

Lokl w) = (Lo 1l u) =

0, if u=eor u=x,
1, otherwise,

for all u € X*. The Nerode automaton 7y of </ is shown in Figure 3.4 (left).

Clearly, @y has more states than 7z, and .27 is obtained from .2y by merging

states 0,3 and 0,4. The reduced Nerode automaton < is not minimal. The min-

imal cdwa of the series [[o&]] = [[«/v]] = [[/]]; is shown in Figure 3.4 (right). It

can be obtained from 2z by merging states 6.» and 0,3.

Fig. 3.4 The transition graph of the Nerode automaton .27y (up) of the wfa .7 given in
Figure 6.1, and the minimal cdwa (down) of the series [.2&] = [Zn] = [« 1.
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According to the proof of Theorem 3.4, if the alphabet X is a singleton, then
the Nerode automaton .« can have at most one state more than the reduced
Nerode automaton o7z, but for larger alphabets this difference in the number
of states between o7y and #; may be much greater.

Although the reduced Nerode automaton .27 is not necessarily a minimal
cdwa for the series [[.«/]];, we show that it is a minimal cdwa for some families
of series including [[.</]];.

Theorem 3.6. Let o/ = (A,0,0,7) be a weighted finite automaton over X and K.
Then the following holds:

(@) The automaton o/ is minimal among all crisp-deterministic weighted auto-
mata whose final variants recognize [[</]]; and all series [/ N@*2 where x € X
anda € A;

(b)  The automaton a#r is minimal among all crisp-deterministic weighted auto-
mata whose final variants recognize [[</1]; and all series gox‘l, where x € X and
@ € Reci(e,0).

Proof. (a) As we have already shown, [[.¢]]; is the behavior of <7, and for all

xeX and a € A, [«]]" is the behavior of dlgx’a) , which is a final variant
of k. Let &/’ = (A’,(S’,a(’), 7’) be an arbitrary cdwa such that each series

[, for x € X and a € A, as well as [«/]);, is recognized by some final
variant of &7’. Then for all x € X and a € A there exists TEx 0’ A’ — K such that
T (6@ 1)) = (L1, 1) = 5 (a),

for every u € X*, and there exists 7”7 : A” — K such that

(6" @y w) = ([T w) = w0,

for every u € X*. We may assume that </’ is accessible.

Define a mapping ¢ : A” — Ag by setting 1(a") = 0,,, where a’ € A" and
u € X* such thata’ =6 (aé, u). To show that ¢ is well-defined, consider a’ € A’
and u,v € X" such that a’ = 6" (a,u) = 6" (ay,v). Then for all x € X and a € A
we have that

13(0) = Ty o (6 @, 0)) = T}, (5" (@), 0) = 115@),

1 = T7(6" (ap, u)) = T7(6" (ay, ) = Ko,

and hence 6, = 0,. It is easy to show that 1) is surjective, and therefore
loR| < |<’].

(b) This assertion is an immediate consequence of Lemma 3.2, the assertion
(a), and the fact that for all x € X and a € A, [[&/]]7? is the right derivative
of [[«/]]“? € Rec;j(«7,0) with respecttox. [






Chapter 4

Brzozowski type determinization for fuzzy
automata

Way back in 1963 year, J. A. Brzozowski [7] invented an elegant algorithm
for determinization of nondeterministic finite automata. When its input is
a nondeterministic finite automaton, the algorithm alternates two reversion
and determinization procedures and produces a minimal deterministic finite
automaton equivalent to the starting automaton. Hence, the algorithm per-
forms both determinization and minimization. In addition, when the input
is a deterministic finite automaton, the algorithm performs its minimization
by doing just one reversion and determinization procedure. The worst-case
complexity of Brzozowski’s algorithm is exponential, seeing that there are
regular languages such that the minimal deterministic automaton of its rever-
se language is exponentially larger than the minimal deterministic automa-
ton of this language. However, Brzozowski’s algorithm frequently performs
better than this worst case would suggest and it outperforms theoretically
faster algorithms.

The purpose of this chapter is to adapt the Brzozowski’s double reversal al-
gorithm to fuzzy automata. We start from an arbitrary fuzzy automaton and
we show that performing the construction of a reverse Nerode automaton
twice we obtain a minimal crisp-deterministic fuzzy automaton equivalent to
the original fuzzy automaton. We also demonstrate by example that the fuzzy
version of the Brzozowski’s algorithm outperforms all previous methods for
determinization of fuzzy automata developed by Bélohlavek [12], Li and
Pedrycz [72], Ignjatovi¢ et al. [54], and Janci¢ et al. [61], in the sense that it not
only produces a smaller automaton than all these methods, but even when all
these methods produce infinite automata, the Brzozowski type determiniza-
tion can produce a finite one. Moreover, when the starting fuzzy automaton
is crisp-deterministic and accessible, its minimization is performed applying
just one construction of the reverse Nerode automaton

The chapter is organized as follows. In the first section we introduce the
notions of the reverse Nerode automaton and the reverse fuzzy language,
and show that the reverse Nerode automaton of a given fuzzy automaton &/

45
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recognize the reverse fuzzy language of the fuzzy language recognized by 7.
In Section 4.2. we first introduce the concept of the right fuzzy language asso-
ciated with a state of a fuzzy automaton and describe some basic properties
of right languages. After that, we construct the right language automaton
of a fuzzy automaton 27, and prove that it is isomorphic to the deriva-
tive automaton of the fuzzy language recognized by </ (Theorem 4.1), and
consequently, if all right fuzzy languages associated with states of an ac-
cessible crisp-deterministic fuzzy automaton </ are pairwise different, we
show that ./ is minimal. Then we prove that the reverse Nerode automa-
ton of any accessible crisp-deterministic fuzzy automaton </ is a minimal
crisp-deterministic fuzzy automaton equivalent to the reverse automaton of
& (Theorem 4.2).

Further, in Section 4.3. we define the concept of a Brzozowski automaton
of a fuzzy automaton &/ and prove that it is a minimal crisp-deterministic
fuzzy automaton equivalent to &7 (Theorem 4.3). Finally, we give a simple ex-
ample of a fuzzy automaton .7 for which all previously known determiniza-
tion methods produce an infinite crisp-deterministic fuzzy automaton, while
Brzozowski automaton of ¢ is finite and has only three states.

In the final section, we develop algorithm for constructing a Brzozowski
automaton of a given fuzzy automaton . It is important to note that the
same determinization and minimization method, without any modifications,
can be applied to weighted automata over a commutative semiring.

4.1. Reverse Nerode automaton

Let o7 = (A,6,0,7) be a fuzzy automaton over .2 and X. The reverse fuzzy

automaton of & is a fuzzy automaton o = (A,5,6,7), where 5 =1, 7 = 0, and
6:AXXxA — Lis defined by:

5(a,x,b) = 5(b,x,a),

for all a,b € A and x € X. Roughly speaking, the reverse automaton of &/
is obtained from &/ by exchanging fuzzy sets of initial and final states and
“reversing” all the transitions.

Due to the fact that the multiplication ® is commutative, we have that
5u(a,b) = 63(b,a), for alla,b € A and u € X".

For a fuzzy language f € .#(X"), the reverse fuzzy language of f is a fuzzy
language f € #(X") defined by f(u) = f(i1), for each u € X*. As (1) = u for all

u € X*, we have that (f) = f, for each fuzzy language f.

If o7 is a fuzzy automaton over .Z and X, it is easy to see that the reverse
fuzzy automaton </ recognizes the reverse fuzzy language [</]] of the fuzzy
language [[«/]] recognized by 7, i.e., [« =[]
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Let & = (A,6,0,7) be a fuzzy automaton over X and .Z. For each u € X*
we define fuzzy sets 0y, 7, € .%(A) as follows:

ou@ = \/ o) @5 bua), Ta)=\/5buaeTb)

beA beA

for each a € A. Equivalently,
oy, =000y, T, =0,0T.

As we have mentioned before, the Nerode automaton of &/ = (A,9,0,7) is
the crisp-deterministic automaton @y = (AN, 0N, 0, Tn) Whose set of states
is Ay = {oy | u € X*}, and functions 0N : AN XX — An and 1y : Ay — L are
defined by

ON(0y,X) = Oyx, wn(oy)=0,07, 4.1)

for all u € X* and x € X. It was also shown that the Nerode automaton of a
fuzzy automaton </ over a complete residuated lattice is a crisp-deterministic
fuzzy automaton equivalent to <7, i.e., [[e/n]] = [[#]].

By the reverse Nerode automaton of </ we will mean the Nerode automaton
of the reverse fuzzy automaton & of 7. For the sake of simplicity, we
denote the reverse Nerode automaton of </ by &7 (instead of ()N). Let us
note that o7 = (Ag, 05, Te, i), Where Ay = {7, | u € X"}, and the functions
o571 Agx X — Ay and 1 : Ay — L are given by

Ox(Tu, X) = Txu, T(Tu) = Tu oo, (4.2)

forallu e X* and x € X.

4.2. Fuzzy languages associated with states

Let o7 = (A,0,0,7) be a fuzzy automaton over X and .Z.
For any state a € A, the right fuzzy language associated with a is the fuzzy
language 7, € .#(X") defined by

Ta(w) = \/ 5 @, u,b) & (D),

beA

for each u € X*. In other words, 1, is the fuzzy language recognized by a
fuzzy automaton «/” = (A, §,a,T) obtained from &/ by replacing o with the
single crisp initial state a. The left fuzzy language associated with a is the fuzzy
language 0, € #(X*) given by

aaw) = \/ o(0)®5°(b,u,0),

beA
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for each u € X*, i.e., the fuzzy language recognized by a fuzzy automaton
o/’ =(A,0,0,{a}) obtained from &7 by replacing t with the single crisp terminal
state a.

We can easily show that the following is true.

Lemma 4.1. The right fuzzy language associated with the state a of a fuzzy automa-
ton <7 is equal to the reverse of the left fuzzy language associated with the state a in

the reverse fuzzy automaton <7 .

For a crisp-deterministic fuzzy automaton ./ = (A, 6,49, 7), the right fuzzy
language associated with a state 2 in </ is given by

Ta(u) = 7(6"(a,u)), (4.3)

for each u € X*, and in particular, 7,, = [#/]], i.e., the right fuzzy language
associated with the initial state ag is the fuzzy language recognized by .«7. It
can be also easily verified that the following is true.

Lemma 4.2. Let o = (A, 6,a0,7) be a crisp-deterministic fuzzy automaton. Then
To*(au) = u_lTa/ (4.4)

forallae Aand u € X*.

If @7 = (A,0,a0,7) is a crisp-deterministic fuzzy automaton, we define an-
other crisp-deterministic fuzzy automaton .7 = (Ay,6;, T4,, 7r) as follows: the
set of states A, is the set of all right fuzzy languages associated with states
of &/, and 6, : A, x X — Ar and 7, : A, — L are given by:

Or(Ta,x) = To(ax)r Tr(Ta) = Ta(€),
for each 7, € Ar. We have the following:

Theorem 4.1. Let o/ = (A,0,a0,7) be an accessible crisp-deterministic fuzzy au-
tomaton. Then <7, is an accessible crisp-deterministic fuzzy automaton isomorphic
to the derivative automaton <75 of the fuzzy language f = [[«/]].

Proof. Define a mapping ¢: Ay — A, by

O™ f) = Torag),

for each u € X*. If u,v € X* such that u~! f = v™1 f, then according to (4.4) we
obtain that Ty (s, u) = Te*(ay0), and hence ¢p(u~'f) = (v~ f). Thus, ¢ is well-
defined. On the other hand, let u,v € X* such that ¢p(u~'f) = p(v71f), i.e.,
Ts*(agu) = To*(ag,0)- Lhen by (4.4) it follows that

1 -1 _ _ o1 _ 1
U f=U Tay = Tor(agu) = To*(ago) =0 Tag =0 f-
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Therefore, ¢ is injective. Due to the fact that <7 is accessible, it is easy to show
that ¢ is a surjective mapping.

In order to prove that ¢ is a homomorphism, consider arbitrary u € X*
and x € X. Then

¢(6f(u_1f/x)) = ¢((”x)_1f) = Ts*(ap,ux) =
= T (ag ) = Or(To+ag ) X) = Or(( ™1 £), ).

Moreover, ¢(e 7 f) = 14, and Tf(u‘lf) = 17,(¢p(u" f)). Hence, ¢ is an isomor-
phism. [

The automaton 7 will be called the right language automaton of < .
By the previous theorem we obtain the following consequence.

Corollary 4.1. Let o/ = (A, 6,a0,7) be an accessible crisp-deterministic fuzzy au-
tomaton. If all right fuzzy languages associated with states of <f are pairwise
different, then <7 is minimal.

Proof. Tt is clear that the function ¢ : A — A, defined by ¢(a) = 1, is a homo-
morphism of &/ onto 2. Therefore, if all right fuzzy languages associated
with states of &7 are pairwise different, then ¢ is an isomorphism of % onto
&y, and according to Theorem 4.1, &7 is minimal. 0O

Let us note thatif &7 = (4, 6,40, 7) is a crisp-deterministic fuzzy automaton,
then its reverse Nerode automaton is ;z{ﬁ = (Aﬁ, N Te,Tﬁ), where Ag and
057 : A X X — Ay have the same form as in the general case, whereas the
function 155 : Ay — L is given by

Tﬁ(Tu) = 7y(ao), (4.5)

for each u € X*.
Now, we are ready to prove the following

Theorem 4.2. For an arbitrary accessible crisp-deterministic fuzzy automaton o7 =
(A,0,a9,7), the reverse Nerode automaton szﬁ is a minimal crisp-deterministic fuzzy

automaton equivalent to <7 .

Proof. We have already noted that .o is a crisp-deterministic fuzzy automa-

ton equivalent to .7, so it remains to show that it is minimal. According to
Corollary 4.1, it is enough to prove that all right fuzzy languages associated
with states of @/ are pairwise different.

Let 7y, Ty € Ay, where u,v € X*, be two different states of .o Then there
is a € A such that 7,(a) # 7,(a), and since &7 is accessible, there is w € X* such

that a = 6*(ap, w). According to (4.3) we obtain that

Ty (w) = Tﬁ(é*ﬁ(Tu/w)) = Tﬁ(Twu) = Tyu(ag) = Tay (wu) =

= 1(6"(ao, wu)) = T(5(8"(a, w), u)) = (5" (a,u)) = Tu(a),
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whence 7, (w) = 7, (), and in the same way we show that 7., (w) = 7,(a). Since
Ty(a) # 14(a), we conclude that 7., (w) # 7., (w), and hence, 7;, and 1., are
different right fuzzy languages associated with states of o/%;. [

4.3. Brzozowski automaton

Let o7 be a fuzzy automaton over an alphabet X and a complete residuated
lattice .Z. The Brzozowski automaton of </, in notation =7, is a fuzzy automa-
ton obtained from . applying twice the construction of the reverse Nerode
automaton, i.e.,

4 = (@ =)y
Now we are ready to state and prove the main result of this chapter.

Theorem 4.3. Let &7 be a fuzzy automaton over an alphabet X and a complete
residuated lattice £ . The Brzozowski automaton a/g is a minimal crisp-deterministic
fuzzy automaton equivalent to 7.

Proof. This follows immediately by Theorem 4.1 of [54] and Theorem 4.2.
Namely, according to Theorem 4.1 of [54], the reverse Nerode automaton

a5 = («/) is a crisp-deterministic fuzzy automaton equivalent to 7, and its
reverse Nerode automaton (%ﬁ)ﬁ is a crisp-deterministic fuzzy automaton

equivalent to 7. Therefore, by Theorem 4.2, o7 is a minimal crisp-determin-
istic fuzzy automaton equivalent to &7. [

Finally, we give the following example.

Example 4.1. Let & = (A, ,0,7) be a fuzzy finite automaton over the alphabet
X = {x} and the Goguen (product) structure, given by the transition graph
shown in Figure 1.

x/0.5

Figure 1. The transition graph of the fuzzy automaton ./

In the matrix form, o, 6x and 7 are represented as follows:
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005 1 0
o:ﬁOO} o,=l01 0o, 7=|1].
0105 0

It easy to verify that oy = [0 0.5 1] and

aﬂ=p1&W4L

for each n € N, n > 2, which means that the Nerode automaton of &/ has
infinitely many states.

On the other hand, it is not hard to check that the reverse Nerode automa-
ton o%; and the Brzozowski automaton 7 are mutually isomorphic, and
they are represented by the graph in Figure 2.

X
00—
S

Figure 2. The transition graph of the reverse Nerode automaton %% and the Brzozowski
automaton .27 of &7

The previous example demonstrates that there is a fuzzy finite automaton
2/ whose Nerode automaton 7y is infinite, but the Brzozowski automaton
<7p is finite. Note that the determinization methods developed by Bélohldvek
[12] and Li and Pedrycz [72] always result in automata whose cardinality
is greater than or equal to the cardinality of the related Nerode automaton
(cf.[54]), and therefore, in this case these methods also give infinite automata.
On the other hand, the method developed by Janci¢ et al. [61] always results
in an automaton whose cardinality is less than or equal to the cardinality of
the related Nerode automaton, but according to Theorem 3.7 of [61], this au-
tomaton is finite if and only if the related Nerode automaton is finite. Hence,
in this case the method from [61] also gives an infinite automaton. Summing
up, we conclude that all the above mentioned methods applied to the fuzzy
finite automaton </ from the previous example produce infinite automata,
but Brzozowski automaton .27 is finite.

4.4. Algorithm for computing the Brzozowski automaton

Asit was stated in the previous chapter, Brzozowski type algorithm for fuzzy
automata is a procedure which construct a crisp-deterministic automaton .2/
from a fuzzy automaton &/ applying twice the construction of the reverse
Nerode automaton. For that reason, instead of giving an algorithm for con-
structing Brzozowski’s automaton, we give an algorithm for constructing
the reverse Nerode automaton, and in order to construct Brzozowski’s au-
tomaton of a fuzzy automaton 27, one need to apply that algorithm twice.
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Algorithm 4.4 (Construction of the reverse Nerode automaton <) The in-
put of this algorithm is a fuzzy finite automaton &/ = (A,0,0,7), and the
output is the crisp-deterministic fuzzy automaton o%; = (Ay;, oy, Te, Try)-
The procedure is to construct the transition tree of o4 directly from <7,
and during this procedure we use pointers s(-) which points vertices of the
tree under construction to the corresponding integers. The transition tree of

a5 is constructed inductively as follows:

(A1) The root of the tree is 7. = T, and we put Ty = {7.} and s(7,) = 1, and we
compute the value 15(t;) = 00 Te.

(A2) After the ith step let a tree T; have been constructed, and vertices in T;
have been labelled either ‘closed” or 'non-closed’. The meaning of these
two terms will be made clear in the sequel.

(A3) Inthe nextstep we construct a tree T;41 by enriching T; in the following
way: for any non-closed leaf 7, occuring in T;, where u € X*,and any x € X
we add a vertex Ty, = 0x o7, and an edge from 7, to T, labelled by x.
Simultaneously, we check whether 7, is a fuzzy set that has already
been constructed. If it is true, if 7y, is equal to some previously computed
Ty, we mark 7y, as closed and set 5(7x,) = 5(7y). Otherwise, we compute the
value T5;(Txy) = 0 0 Ty, and set s(Tyy) to be the next unassigned integer. The
procedure terminates when all leaves are marked closed.

(A4) When the transition tree of @4; is constructed, we erase all closure
marks and glue leaves to interior vertices with the same pointer value. The
diagram that results is the transition graph of .o4;.

This procedure does not necessarily terminates in a finite number of steps,
since the collection {7,},cx+ may be infinite. However, in cases when this
collection is finite, the procedure will terminate in a finite number of steps,
after computing all its members.

Let &7 = (A,0,0,7) be a fuzzy finite automaton with »n states and m input
letters, and suppose that the subsemiring .#*(9, 7) of the semiring (L, V,®,0,1)
generated by all membership values taken by 6 and 7 is finite and has k ele-
ments. The algorithm builds the transition tree of the reverse Nerode autom-
aton of &7, which is an m-ary tree with at most k" internal vertices that corre-
spond to states of the crisp-deterministic fuzzy automaton under construc-
tion. Computationally most demanding part of the algorithm is the one
where for any newly-constructed fuzzy set (a vertex of the tree) we check
whether it has already been computed before. The computational time of this
part, and the whole algorithm, is O(mnk?") (see the analysis of the computa-
tional time of Algorithm 5.15).

Before we perform the analysis of the computational time of the Brzozow-
ski type algorithm for fuzzy finite automata, we formally state this algorithm.

Algorithm 4.5 (Construction of the Brzozowski automaton </g) The input
of this algorithm is a fuzzy finite automaton < = (4,9,0,7), and the out-
put is the Brzozowski automaton .2/.

The procedure consists of two steps:
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(A1) Wecompute the reverse Nerode automaton </ of <7, by means of Algo-
rithm 4.5.

(A2) Then we compute the reverse Nerode automaton of the automaton .o4.
This reverse Nerode automaton of .#%; is the Brzozowski automaton 7

Let .o/ = (A, ,0,7) be a fuzzy finite automaton with  states and m input let-
ters, and suppose that the subsemiring .£*(6, 0, 7) of the semiring (L, v,®,0,1)
generated by all membership values taken by 0, 0 and 7 is finite and has k ele-
ments. As we have seen, the step (A1) of the previous algorithm produces an
automaton with at most k" states, and the computational time of this step is
O(mnk®"). The second step may start from a much larger automaton, but de-
spite this, this step produces a minimal crisp-deterministic fuzzy automaton
equivalent to &7, an automaton not greater than the Nerode automaton of <7,
which can not have more than k" states. Thus, again, the resulting transition
tree can not have more than k" internal vertices, and consequently, step (A2)
has the same computational time O(mnk?"). This means that the total com-
putational time of the Brzozowski’s double reversal algorithm for the fuzzy
automaton &7 is O(mnk*"), the same as for constructions of the Nerode and
the reverse Nerode automaton of <7

No matter that Brzozowski type algorithm has been developed here for
fuzzy automata over a complete residuated lattice, without any modification
it can be also applied to fuzzy automata over lattice-ordered monoids and to
weighted automata over commutative semirings.






Chapter 5

Simultaneous determinization and state
reduction

In addition to the determinization, practical applications of automata of-
ten require the state reduction, a procedure of converting a given automaton
into an equivalent automaton with a smaller number of states. This is a con-
sequence of the fact that determinization algorithms may lead to an expo-
nential growth in the number of states of an automaton. Due to the computa-
tional hardness of the state minimization problem for fuzzy finite automata,
as well as for nondeterministic ones [79, 64, 133]), it is not required that
this equivalent automaton is minimal, but it is necessary that it is effectively
computable.

The state reduction problem for fuzzy automata was studied from dif-
ferent aspects in [2, 26, 77, 87, 91, 93, 94, 125, 129], as well as in the books
[86,92]. All algorithms provided there were motivated by the basic idea used
in the minimization of ordinary deterministic automata, the idea of detecting
and merging indistinguishable states, which comes down to computation of
certain crisp equivalences on the set of states. A new approach to the state re-
duction was initiated in [33, 95]. First, it was shown that better reductions of
fuzzy finite automata can be achieved if fuzzy equivalences are used instead
of ordinary equivalences, and even better if fuzzy quasi-orders are used.
In addition, it was shown that the state reduction problem for fuzzy finite
automata can be reduced to the problem of finding fuzzy quasi-orders that
are solutions to a particular system of fuzzy relation equations, called the
general system. As the general system is difficult to solve, the problem was
further reduced to the search for instances of the general system and their
solutions which ensure the best possible reductions and can be efficiently
computed. Two such instances, whose solutions were called right and left
invariant, have the greatest solutions that can be computed in a polynomial
time, and two other, whose solutions were called weakly right and left in-
variant, have the greatest solutions that ensure better reductions, but their
computation requires an exponential time.

55
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The main aim of this chapter is to combine determinization and state re-
duction methods into two-in-one algorithms that simultaneously perform
determinization and state reduction. These algorithms perform better than
all previous determinization algorithms for fuzzy finite automata, developed
in [12, 72, 54, 61], in the sense that they produce smaller automata, while re-
quire the same computation time. The only exception is the Brzozowski type
determinization algorithm, presented in the previous section, which produ-
ces a minimal crisp-deterministic fuzzy automaton, but we will see that the
algorithms created here can be used within the Brzozowski type algorithm
and improve its performance.

The chapter is organized as follows. In the first section we recall definitions
of right and left invariant fuzzy relations, as well as definitons of weakly right
and left invariant fuzzy relations on a given fuzzy automaton 27. In Section
5.2., for any fuzzy finite automaton </ and a reflexive weakly right invariant
fuzzy relation ¢ on &/, we construct a crisp-deterministic fuzzy automaton
p and prove that it is equivalent to <7 (Theorem 5.1). If ¢ is a weakly right
invariant fuzzy quasi-order, we show that the same automaton 2%, would
be produced if we first perform the state reduction of «/ by means of ¢, and
then we construct the Nerode automaton of this reduced automaton (The-
orem 5.2). Furthermore, we show that automata ¢/, determined by right
invariant fuzzy quasi-orders are smaller than the Nerode automaton of <7,
and that larger right invariant fuzzy quasi-orders determine smaller crisp-
deterministic fuzzy automata. For a fuzzy finite automaton </ and a reflexive
weakly right invariant fuzzy relation ¢ on %7, we also introduce the concept
of the children automaton of <7, and prove that it is equivalent to <. In
addition, if ¢ is a right invariant fuzzy quasi-order, we prove that the chil-
dren automaton of %7, is smaller than 2%, and that larger right invariant
fuzzy quasi-orders determine smaller children automata. We also show that
weakly left invariant fuzzy quasi-orders play a completely different role in
the determinization. Namely, if they are used to reduce the number of states
prior the construction of the Nerode automaton, they will be unsuccessful
because the Nerode automaton of the reduced fuzzy automaton would be
the same as the Nerode automaton of the original one. However, we show
that weakly left invariant fuzzy quasi-orders may be successful in combi-
nation with the construction of the reverse Nerode automaton and that a
two-in-one algorithm can be provided which can improve performances of
the Brzozowski type algorithm for fuzzy finite automata. In Section 5.3. we
provide algorithms and perform the analysis of their computation time, and
In Section 5.3. give characteristic computational examples.
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5.1. Right and left invariant fuzzy relations

Let &7 = (A,6,0,7) be a fuzzy automaton. A fuzzy relation ¢ on A is called
right invariant if

@poby<Oyoq, foreachx e X (5.1)
POoTKT, (5.2)

and it is called weakly right invariant if
QOoT, < Ty, for each u € X*. (5.3)

Similarly we define the dual concepts. A fuzzy relation ¢ on A is called left
invariant if

Oxop < @pody, for eachx € X, (5.4)
oo <o, (5.5)

and it is called weakly left invariant if
ouoP <oy, for each u € X". (5.6)

It is easy to verify that every right invariant fuzzy relation is weakly right
invariant, and every left invariant fuzzy relation is weakly left invariant. Note
that if ¢ is reflexive, then ¢ satisfies (5.3) if and only if it satisfies

QoT, =1y, for each u € X%, (5.7)
and ¢ satisfies (5.6) if and only if it satisfies
ouoP =0y, for each u € X7, (5.8)

and consequently, ¢ satisfies (5.2) if and only if it satisfies p o7 =7, and it
satisfies (5.5) if and only if it satisfies 0 o ¢ = 0. Moreover, if ¢ is a fuzzy
quasi-order, then ¢ satisfies (5.1) if and only if it satisfies

podTop =500, for eachx € X, (5.9)
and ¢ satisfies (5.4) if and only if it satisfies
Qodxop=@oby, foreachx € X. (5.10)

Right and left invariant fuzzy quasi-orders and fuzzy equivalences were
introduced in [33, 116], where they were used in the state reduction of fuzzy
automata. They are closely related to forward and backward simulations
and bisimulations between fuzzy automata, which were studied in [30, 31].
Namely, a fuzzy quasi-order ¢ on a fuzzy automaton ¢ is right invariant if
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its reverse ¢! is a forward simulation of <7 into itself, and ¢ is left invariant
if ¢ is a backward simulation of < into itself.

Weakly right and left invariant fuzzy quasi-orders were introduced in
[116], and they were also used in the state reduction of fuzzy automata,
where they provide smaller automata than right invariant fuzzy quasi-
orders, but are more difficult to compute. Weakly right and left invariant
fuzzy quasi-orders and fuzzy equivalences are closely related to weak for-
ward and backward simulations and bisimulations, which were studied in
[59].

Algorithms for computing the greatest right and left invariant fuzzy quasi-
orders on a fuzzy finite automaton, as well as algorithms for computing
the greatest weakly right and left invariant ones, were provided in [116].
They are presented here in Section 5.3., together with an analysis of their
computational time.

5.2. Two-in-one: determinization and state reduction

Let &7 = (A,0,0,7) be a fuzzy automaton and ¢ a fuzzy relation on A. For
each u € X* we define a fuzzy set ¢, : A — L inductively, as follows: for the
empty word € and all # € X* and x € X we set

Pe =000,  Qux=Quodrop (5.11)

Clearly, if u = x1...x,, where x1,...,x, € X, then
Pu=00Q00x 0P0...00, 0. (5.12)

Now, set Ay = {pu | u € X"}, and define Op 1 Ap XX — Ay and Tp:Ap > Las
follows:
6([)((Purx) = Qux, T(p(%) =@uoT, (5.13)

forall u € X* and x € X. If ¢, = ¢y, for some u,v € X*, then for each x € X we
have that

6(0((Pu/x) = Qux =Py °5x0<P = §0v°5x0<P =Qox = 6q)(§0y,X),

and hence, 6, is a well-defined function. It is clear that 7, is also a well-
defined function, and consequently, </, = (Ay,0p, P:,Tp) is a well-defined
crisp-deterministic fuzzy automaton.

The main question that arises here is how to choose a fuzzy relation ¢
so that the automaton .7, is equivalent to the original automaton /. The
following theorem gives an answer to this question.
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Theorem 5.1. Let &7 = (A, 0,0,7) be a fuzzy automaton and ¢ a reflexive weakly
right invariant fuzzy relation on </. Then <y = (Ap,0p, Pe,Tp) is an accessible
crisp-deterministic fuzzy automaton equivalent to < .

Proof. According to (5.7), by induction we easily prove that
Txyxgedy = QP OOy 0@O---00y 0poT. (5.14)

for eachn € N and all xq,...,x, € X.
Now, according to (5.14), for each u = x; ...x,, where x1,...,x, € X, we have
that

[[p11(1) = T (0 (Pe, 1)) = Te(Pu) = PuoT =
=(GO(PO(leO(PO.-.O(anO(P)OT:
:oo((poéxlo(po,_,oéx”o(poT)z
=001y =000,017=[[]|(u),

and besides,
[pll(€) = Tp(pe) = peoT=00@oT =007 = [[Z]|(¢),
which means that [/, ]] = [#/]]. Therefore, </, is equivalent to /. [

In addition, the following is true.

Theorem 5.2. Let <7 = (A,6%,0%,74) be a fuzzy automaton and ¢ a weakly right
invariant fuzzy quasi-order on <. Then the automaton <7, is isomorphic to the
Nerode automaton of the afterset fuzzy automaton < [ .

Proof. For the sake of simplicity, set B=A/¢ and # = o/ /¢, ie., let B =
(B,5%,08,78) be the afterset fuzzy automaton of .« corresponding to ¢. Con-
sider the Nerode automaton %y = (By,0n,0%,7n) of Z.

First, by induction on the length of a word, we will prove that for any
u € X* the following is true:

og(u(p) =@yu(a), foreveryaeA. (5.15)

For any a € A we have that o2(ap) = 08(ap) = (62 0 9)(a) = ¢.(a), and thus,
(5.15) holds when u is the empty word. Next, suppose that (5.15) holds for
some word u € X*. By (5.12) and idempotency of ¢ it follows that ¢, 0o = ¢y,
so for each x € X and each a € A we have that

o (ap) = (oh, 0 5)(ap) = \/ 0T (b)) @ 6% (b, ap) =
beA

=\/ puv)® (@0t o g)(b,a) = (puop ool op)(a) =
beA
= (Pu©0¢ 0 9)(@) = Pux(a).
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Therefore, we conclude that (5.15) holds for every u € X*.
Now, define a function & : A, — By by &(pu) = 05, for each u € X*. For
arbitrary u,v € X* we have that
Pu=@o © (Ya€A) pu(a)=pu(a) & (YacA)ay(ap)=oyap) & oy =0y,
so & is a well-defined and injective function. Itis clear that & is also surjective,
and therefore, ¢ is a bijective function. Also, for all for all # € X* and x € X
we have that

SN(E(u), x) = 5N (05, x) = 05, = E(Pux) = EOBp(Pu, X)),
™N(E(Pw) = (o) = o8 o B = [B]I(u) =
=[I(u) = [[427(/)]](”) =@uo ™ = T(p((Pu)/

so ¢ is an isomorphism of the automaton ,Qf/(p onto the Nerode automaton
By of B=d]p. O

Remark 5.1. Note that in the previous theorem we need ¢ to be weakly
right invariant only to prove that Tn(&(pu)) = Tp(@u). Everything else can
be proved under the weaker assumpton that ¢ is a fuzzy quasi-order.

In the case when working with right invariant fuzzy quasi-orders, it is
possible to compare the size of the corresponding automata. This follows
from the following theorem.

Theorem 5.3. Let o/ = (A,0,0,7) be a fuzzy automaton and let ¢ and ¢ be right
invariant fuzzy quasi-orders on </ such that ¢ < ¢. Then the automaton <7, is a
homomorphic image of the automaton 7.

Consequently, || < |pl.

Proof. First we note that ¢ < ¢ is equivalent to @ o¢p = ¢ o @ = ¢, because ¢
and ¢ are fuzzy quasi-orders.

Define a function & : A, — Ay by E(¢u) = ¢u, for each u € X*. First we prove
that £ is well-defined. Let u,v € X* such that ¢, = ¢,. According to (5.9) and
(56.12), by induction we easily prove that ¢y = 0y 0@ and ¢y = 0y 0 P, for
every w € X*, whence

Pu=040H=040POH=Puod = Pyoh= 0,090 =0y =by.

Therefore, & is a well-defined function. It is clear that £ is a surjective func-
tion. Moreover, it is evident that 6, (£(¢u), X) = £(6¢(¢u, X)), for all u € X* and
x € X, and

To(E(Pu)) = To(Pu) = PuoT = [ lI(u) =
=[ZI(u) = [[427(/)]](”) =@uotT= T(p(@u)/

and hence, £ is a homomorphism of </, onto <, and |&| < |p|. O
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Note that when ¢ is a reflexive weakly left invariant fuzzy relation on a
fuzzy automaton <7, then .27, is just the Nerode automaton of <7, and we do
not get any new construction. Besides, the following is true.

Theorem 5.4. Let o/ = (A,6%,04,74) be a fuzzy automaton and ¢ a weakly left
invariant fuzzy quasi-order on <f. Then the Nerode automaton of the afterset fuzzy
automaton </ | @ is isomorphic to the Nerode automaton of </ .

Proof. For the sake of simplicity, set B=A/¢ and # = o/ /¢, ie., let B =
(B,5%,08,18) be the afterset fuzzy automaton of &/ corresponding to ¢.

First, by induction on the length of a word, we will prove that for any
u € X" the following is true:

O'E (ap) = af}(a), for everya € A. (5.16)

For every a € A we have that o?(ap) = (64 0 p)(a) = 04(a) = 0/ (a), so (5.16)
holds when u is the empty word. Next, suppose that (5.16) holds for some
word u € X*. According to (5.16) and our starting hypothesis that ¢ is a
weakly left invariant fuzzy quasi-order, for all x € X and a € A we obtain that

oh(ap) = (0} 0 5)(ap) = \/ ol (bp) @5 (bp,a9) = \ / o1l (1)@ (@ 0 57 0 ) b,)
beA beA

= (04 0007 0p)(@) = (0, 067 0 P)(a) = (01 0 9)(0) = (@),
what completes the proof of (5.16).

Now, define a function & : By — Ay by &(0B) =0
arbitrary u,v € X* we have that

A

., for each u € X*. For

oy =0y © (YacA)o,ap)=oyap) & (YacA) oj@) =0, & o =0,
which means that & is a well-defined and injective function. In addition, &
is surjective, and consequently, & is a bijective function. It is easy to check
that £ is a homomorphism, and therefore, £ is an isomorphism of the Nerode

automaton of % onto the Nerode automaton of o7. [

Aswe said earlier, when ¢ is a reflexive weakly left invariant fuzzy relation
on a fuzzy automaton <7, then %7, is just the Nerode automaton of ./, and
we do not get any new construction. However, we will show that weakly
left invariant fuzzy relations work well with another construction, and can
be very useful in the determinization of the reverse fuzzy automaton of .27.

Let & = (A, 6,0,7) be a fuzzy automaton and ¢ a fuzzy relation on A. For
each u € X* we define a fuzzy set " : A — L inductively, as follows: for the
empty word ¢ and all # € X* and x € X we set

Yf=yor, YPM=1odoyt (5.17)

Clearly, if u = x1...x,, where x1,...,x, € X, then
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¢”:¢oéxlo¢o,,,oéxno¢or, (5.18)

Now, set AY = {1, | u € X*}, and define 6% : A¥ x X — A¥ and ¥ : AY — L as
follows:

M x) =y, M) =ooyt, (5.19)

forall u € X* and x € X. If ¢, = 1, for some u,v € X*, then for each x € X we
have that

OV, x) =y =podroyt =yodeoy” =y =Y (Y7, x),

and hence, 6Y is a well-defined function. Clearly, ¥ is also a well-defined
function, so &Y = (AY,1¢,6¥,1Y) is a well-defined crisp-deterministic fuzzy
automaton.

Now we prove that the following is true.

Theorem 5.5. Let o7 = (A, 6,0, 7) be a fuzzy automaton and 1 a reflexive weakly left
invariant fuzzy relation on <. Then /¥ = (AY,6%,¢*¢,7¥) is an accessible crisp-
deterministic fuzzy automaton equivalent to the reverse fuzzy automaton of <.

Proof. Consider an arbitrary word u = x7...x,, where x1,...,x, € X. Using
(5.18) we obtain that

OOI]ZJO(SXHOI]ZJO"'OéxlOll):(jxﬂ_._xl,
whence it follows that
[V T(w) = 79 (6% (¥°,u)) = ¥ (") =
:oog[)ﬂ :ao(l][)oéx”og[)o_,_oéxl01][)0’[)=
:(gowoéxn0¢)0...06xl0¢)0T=0xn...x1 oT =
=og01 = [ZN(@) = [ N(w).

On the other hand,
[N(e) =¥ () =ooy =coypor =00t =[[]|(e) = [Z]I(¢).
Therefore, [«7¥]] = [[/]], i.e., &V is equivalent to /. [

The next two theorems can be proved similarly as Theorems 5.2 and 5.3,
so they proofs will be omitted.

Theorem 5.6. Let o/ = (A, 6,0,7) be a fuzzy automaton and ¢ a weakly left invari-
ant fuzzy quasi-order on </. Then the automaton <7V is isomorphic to the reverse
Nerode automaton of the afterset fuzzy automaton < [1.

Theorem 5.7. Let o/ = (A,6,0,7) be a fuzzy automaton and let ¢ and |’ be left
invariant fuzzy quasi-orders on o7 such that { <. Then the automaton /¥ is a
homomorphic image of the automaton <7¥.
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Note that the reverse Nerode automaton plays a crucial role in Brzozowski
type determinization of a fuzzy automaton. Namely, it has been proven
in [60] that when we start from a fuzzy automaton </, two consecutive
applications of the construction of a reverse Nerode automaton produce a
minimal crisp-deterministic fuzzy automaton which is equivalent to 7. We
will show here that the first of these two constructions can be replaced by
construction of the automaton «7¥, for some reflexive weakly left invariant
fuzzy relation ¢ on <.

Theorem 5.8. Let &7 = (A, 0,0,7) be a fuzzy automaton and 1 a reflexive weakly
left invariant fuzzy relation on </. Then the reverse Nerode automaton of o7V is a
minimal crisp-deterministic fuzzy automaton equivalent to <f .

Proof. As we have proved in Theorem 5.5, &% is an accessible crisp-
deterministic fuzzy automaton equivalent to .«. According to Theorem 3.5
[60], for any accessible crisp-deterministic fuzzy automaton %, the reverse
Nerode automaton of % is a minimal crisp-deterministic fuzzy automaton
equivalent to . Therefore, /¥ is a minimal crisp-deterministic fuzzy au-

tomaton equivalent to the reverse of 7, i.e., it is a minimal crisp-deterministic
fuzzy automaton equivalent to «/. [

As the automaton .«7¥ can be significantly smaller than the reverse Nerode
automaton @4 (in particular, if ¢ is the greatest left invariant fuzzy quasi-
order on &), replacing @; with o/ ¥ in the first step of Brzozowski type
procedure we could mitigate a combinatorial blow up of the number of
states that may happen in this step. In the second step, such a problem does
not exist because both constructions give the minimal crisp-deterministic
fuzzy automaton equivalent to <7.

Let o7 = (A, ,0,7) be a fuzzy automaton over an alphabet X = {x1,...,x,}
and ¢ a fuzzy relation on A. For each u € X* define an (m + 1)-tuple ¢, by

@5 = ((Puxlz'u/(Puxmr@u oT)= (@u O(le/u'/(Pu O(Sx,,,/(Pu o1),

set Afp ={p;, |ue X}, and define 6fp : Afp XX — Afp and Tfp : Afp — L as follows:

0o (@i X) =Py To(@L) = @uoT, (5.20)
for all u € X* and x € X. We have the following:

Theorem 5.9. Let 7 = (A,0,0,7) be a fuzzy automaton over an alphabet X =
{x1,...,xm} and let ¢ be a weakly right invariant fuzzy relation on A. Then /g =

(AG, 04, ¢, Tg,) is an acessible crisp-deterministic fuzzy automaton equivalent to <.

Proof. Let ¢f, = ¢f, for some u,v € X*. This means that @y, = @y, for any
i€fl,...,m}, and ¢, 07 = @yo1. Now, for an arbitrary x € X we have that
Qux = Pox, Wwhence
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Puxx; = Pux © o OP = Pyx© 53(,- O P = QPoxx;,

for each i €{1,...,m}, and also, @ux 07T = @y 0o T. Hence, ¢, = ¢5,, so
00 (@7, %) = Phx = Qo = 05,(¢5,x), and this means that 6(, is a well-defined
function. Clearly, 7, is also a well-defined function, and consequently, /7 is
an accessible crisp-deterministic automaton.

Next, for each u € X* we have that

LrgTlu) = 75,65, (95, 10) = T5(@5) = pu o T = [Nl () = [/ T(w),
and therefore, [[,cf’(g llis equivalent to /. O

In the case when ¢ is the crisp equality on A, we have that ¢, = oﬁ, for each
u € X", and 7§ is the automaton constructed in Chapter 3, where it was called
the reduced Nerode automaton of <7 . Here we will use a different terminology.
Namely, the first m elements in the (m + 1)-tuple ¢, are the children of the
vertex ¢, in the transition tree of the automaton <7, (see Algorithm 5.15),
and the m + 1st element of ¢, is the termination degree of ¢, in .27,. For this
reason, the automaton ,;af(g will be called the children automaton of <7,. In this
regard, the above mentioned automaton constructed in Chapter 3 is the
children automaton of the Nerode automaton <y of <. In the sequel, the
children automaton of .2y will be denoted by ;zflfj = (AS ,6;],02, ’Z,'ZCV).

It is important to note that in the case of Nerode and reduced Nerode
automaton we proved that the number of states of Nerode automaton is
always greater or equal to the number of states of the corresponding reduced
Nerode automaton, and that Nerode automaton is finite if and only the
corresponding reduced Nerode automaton is finite. Here we will prove that
analogous results holds true for automaton %, and children automaton &7
of .

Theorem 5.10. Let <7 = (A,6,0,7) be a fuzzy automaton over an alphabet X =
{x1,..., %} and @ a fuzzy relation on A. Then Imf(gl < | Hpl.

Proof. Let us define a mapping ¢ : A, — Ag, by

(z)((Pu) = (pfu

for every u € X*. Let u,v € X* such that ¢, = @,. It is easy to prove that for
every x € X, @ux = @y and hence

(P(@u) = (PZ = (@uxlr- c o1 Puxpr Pu © T) = ((valr' -« 1 Qoxyy s Po © T) = (P; = Qb((Pv)/

so we have that ¢ is well-defined mapping. It is clear that ¢ is surjective, and
accordingly, I,;a/(g | < ||l O

Theorem 5.11. Let o7 = (A,0,0,7) be a fuzzy automaton over an alphabet X =
{x1,...,xm} and @ a fuzzy relation on A. Then automaton </ is finite if and only if
automaton <y, is finite.
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Proof. Let Afp = {(pftl,...,(p;k}, for some k € N and uy,...,u; € X*. For every
u € X* we have that u = vx, for some v € X* and x € X, and ¢ = (p;]_, for some
jefl,....k}, so @y = Qox = (pﬁj. Hence, Afp\{(pg} - {(pu].x, [1<j<k1<I<m},
and therefore, |Ay| <km+1,i.e., || < Iﬂq‘jl X+ 1.

Proof of the fact that sz(g is finite whenever <7, is finite follows immediately
by Theorem 5.10. O

Theorem 5.12. Let o7 = (A,6,0,7) be a fuzzy automaton over an alphabet X =
{x1,...,x} and let ¢ and ¢ be right invariant fuzzy quasi-orders on A such that
@ < ¢. Then the automaton ,dqf is a homomorphic image of the automaton <75, and

consequently, I%‘jl < qugl.

Proof. Define a function & : Ag, — Afp by &(p5,) = ¢, for each u € X*. Let ¢, =

@5, for some u,v € X*, i.e., let Qux = oy, foreny x € X, and @, 0T =@, 07. As
in the proof of Theorem 5.3 we obtain that ¢, = 0, 0 @ and ¢y, = 0y 0 ¢, for
every w € X", and for any x € X we have that

Qbux:Guxogi):Guxofpoc;[):@uxogb=§0vx°¢=(7vx°§0°¢=0'vxo¢z(;bvx;
and also,

Puot=[[ll(w) = [ Nw) = [Fpll(1) = puoT=
=poot=[F(v) = [Fll(v) = oo

Therefore, ¢, = ¢S, which means that £ is a well-defined function, and clearly,
£ is surjective. Moreover, for all u € X* and x € X we have that

£ (5, 0)) = (@) = P = 05 (65,2) = 55, (E(g5), ),
and, on the other hand,

(%) = duo T = [ 11(w) = L/ (w) = [.Apli() = u 0T = 75 (5.
Hence, & is a homomorphism of 47, onto . [

Theorem 5.13. Let </ = (A,6%,04,74) be a fuzzy automaton over an alphabet
X ={x1,...,xy} and let @ be a weakly right invariant fuzzy quasi-order on 7. Then
the automaton </ is isomorphic to the automaton %y, where 2 = </ ¢ is the
afterset fuzzy automaton of &7 with respect to .

Proof. Define a function & : Af, — B by &(¢f) = oBe = (0B, s Ot

for each u € X*. As in the proof of Theorem 5.2 we obtain that o5 (ap) = ¢, (a),
for all u € X* and a € A, and by this it follows that

,08018),

Pux; = Pox; < (Va € A) Pux; (a) = (va,'(a)

& (YacA) oy, (ap) =}, (ap) & oy =0,

ux; — Oox;r
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and also,

puot =prott & [l = [Hl@) & [ZIw) =[11()

& [Z1w)=[£l) < [SNW)=[1%n]©)

& ohotP=0lo1",

forall u,v € X* and x; € X, and therefore, ¢, = ¢ if and only if ¢%° = o5*. This
means that £ is a well-defined and injective function. It is clear that £ is also
surjective, and iot can be easily verified that it is a homomorphism. Hence,
£ is an isomorphism of ,d(;; onto %’IC\] O

Theorem 5.14. Let o7 = (A,0,0,7) be a fuzzy automaton over an alphabet X =
{x1,...,xm} and let @ be a weakly right invariant fuzzy quasi-order on A. Then
the automaton </ is a homomorphic image both of </, and <7y, and consequently,
|| < || and || < |-

Proof. According to Theorems 5.2 and 5.13, ./, is isomorphic to %y, and &/
is isomorphic to %}, and by Theorem 3.4 [61], Z}, is a homomorphic image
of #n. Therefore, 7; is a homomorphic image of 7.

On the other hand, ﬁflf, is isomorphic to 77, where A is the crisp equality
on A, and by Theorem 5.12, &7 is a homomorphic image of @/y. 0

5.3. Two-in-one algorithms

Let cv, ca, ce and c_, be respectively computation times of the operations
V, A, ® and — in .Z. In particular, if .Z is linearly ordered, we can assume
that cy = cp =1, and when % is the Godel structure, we can also assume that
cg=Cc =1.

Algorithm 5.15 [Construction of the automaton .<7,] The input of this algo-
rithm are a fuzzy finite automaton </ = (A, 6,0, t) with n states, over a finite
alphabet X with m letters, and a fuzzy relation ¢ on A, and the output is the
crisp-deterministic fuzzy automaton %, = (Ag, 0¢, Pe, T¢p)-

The procedure is to construct the transition tree of <7, directly from <7, and
during this procedure we use pointers s(-) which points vertices of the tree
under construction to the corresponding integers. The transition tree of .7,
is constructed inductively as follows:

(A1) The root of the tree is ¢, = 0 o @, and we put Ty = {@.} and s(p,) =1,
and we compute the value 7y (¢;) = e 0 T.

(A2) After the ith step let a tree T; have been constructed, and vertices in T;
have been labelled either ‘closed” or 'non-closed’. The meaning of these
two terms will be made clear in the sequel.
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(A3) In the next step we construct a tree T;,1 by enriching T; in the following
way: for any non-closed leaf ¢, occuring in T;, where u € X*, and any
x € X we add a vertex @, = @, 00x 0@ and an edge from ¢, to @, la-
belled by x. Simultaneously, we check whether ¢, is a fuzzy set that has
already been constructed. If it is true, if ¢,y is equal to some previously
computed ¢,, we mark @, as closed and set s(¢ux) = 5(¢y). Otherwise, we
compute the value 7, (¢ux) = Pux 0T and set s(¢yx) tobe the next unassigned
integer. The procedure terminates when all leaves are marked closed.

(A4) When the transition tree of 2%, is constructed, we erase all closure
marks and glue leaves to interior vertices with the same pointer value. The
diagram that results is the transition graph of .<7,.

When ¢ is taken to be the crisp equality on A, Algorithm 5.15 gives the
Nerode automaton @ of .

The above described procedure does necessarily terminates in a finite
number of steps, since the collection {¢,},ex may be infinite. However, in
cases when this collection is finite, the procedure will terminate in a finite
number of steps, after computing all its members. For instance, this holds if
the subsemiring .2*(6, 0, ) of .Z* generated by all membership values taken
by 0, 0 and ¢ is finite (but not only in this case). If k denotes the number of
elements of this subsemiring, then the collection {¢,},cx* can have at most
k" different members.

The tree that is constructed by this algorithm is a full m-ary tree. At the
end of the algorithm, the tree can contain at most k" internal vertices, and ac-
cording to the well-known theorem on full m-ary trees, the total number
of vertices is at most mk" + 1. In the construction of any single vertice
we can first perform a composition of the form ¢, o 6y, and then a com-
position of the form (¢, o 6x) o @, both of which have computation time
O(n*(ce + cv)). Therefore, the computational time for all performed compo-
sitions is O(mn?k"(cg +cv)). Moreover, the tree T has at most mk" edges, and
the computation time of their forming is O(mk™).

Time-consuming part of the procedure is the check whether the just com-
puted fuzzy set is a copy of some previously computed fuzzy set. After we
have constructed the jth fuzzy set, for some j € N such that2 < j <mk"+1, we
compare it with the previously constructed fuzzy sets which correspond to
non-closed vertices, whose number is at most min{j—1,k"}. Therefore, the to-
tal number of performed checks doesnotexceed 1+2+---+ k" +(m—1)k" - k" =
Tk (K" +1) + (m —1)k*". As the computational time of any single check is O(),
the computational time for all performed checks is O(mnk®"). Summarizing
all the above we conclude that the computational time of the whole algo-
rithm is O(mnk?"), the same as the computational time of the part in which
for any newly-constructed fuzzy set we check whether it is a copy of some
previously computed fuzzy set.

Note that the number k is characteristic of the fuzzy finite automaton
</, and it is not a general characteristic of the semiring . and its finitely
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generated subsemirings. However, if we consider fuzzy automata over a
finite lattice, the we can assume that k is the number of elements of this
lattice. Moreover, if . is the Godel structure, then the set of all membership
values taken by the fuzzy relations {0.}rex and ¢, and the fuzzy set o is a
subsemiring of ., and the number of these values does not exceed mn?+n,
so we can use that number instead of k.

In a similar way we can provide the following algorithm which constructs
the automaton &7V, for some fuzzy relation 1 on A, and analyze its compu-
tation time.

Algorithm 5.16 [Construction of the automaton «/¥] The input of this algo-
rithm is a fuzzy finite automaton & = (A, §,0,7) with n states, over a finite
alphabet X with m letters, and a fuzzy relation 1) on A, and the output is the
crisp-deterministic fuzzy automaton «7¥ = (AY,8%,¢¢,t%).

The procedure is to construct the transition tree of </¥ directly from <7,
and during this procedure we use pointers s(-) which points vertices of the
tree under construction to the corresponding integers. The transition tree of
of 7Y is constructed inductively as follows:

(A1) The root of the tree is 1)* = P o7, and we put Ty = {¢*} and s(y*) =1,
and we compute the value ¥ (y¢) = g o <.

(A2) After the ith step let a tree T; have been constructed, and vertices in T;
have been labelled either ‘closed” or 'non-closed’. The meaning of these
two terms will be made clear in the sequel.

(A3) In the next step we construct a tree T;;1 by enriching T; in the following
way: for any non-closed leaf " occuring in T;, where u € X*, and each x € X
we add a vertex Y = 0 0y 0" and an edge from ¢ to 1™ labelled by
x. Simultaneously, we check whether 1™ is a fuzzy set that has already
been constructed. If it is true, if ** is equal to some previously computed
Y°, we mark ™" as closed and set s(y**) = s(y*). Otherwise, we com-
pute the value ¥ (*") = g 0 ™ and set s(**) to be the next unassigned
integer. The procedure terminates when all leaves are marked closed.

(A4) When the transition tree of .&7¥ is constructed, we erase all closure
marks and glue leaves to interior vertices with the same pointer value. The
diagram that results is the transition graph of &7¥.

When 1 is the crisp equality on A, Algorithm 5.15 produces the reverse
Nerode automaton .o of 7.

The conditions under which the above procedure terminates in a finite
number of steps and its computation time can be analyzed analogously
as in Algorithm 5.15. The only difference is that instead of the subsemi-
ring £*(6,0,¢) here we consider the subsemiring .£*(5,7,¢) of .£* gener-
ated by all membership values taken by 6, 7 and ¢.

As we have said earlier, algorithms for computing the greatest right and

left invariant fuzzy quasi-orders and the greatest weakly right and left in-
variant fuzzy quasi-orders on a fuzzy finite automaton were provided in
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[116]. Here we present these algorithms and we perform an analysis of their
computational time.

Algorithm 5.17 (Computation of the greatest right invariant fuzzy quasi-
order) The input of this algorithm is a fuzzy finite automaton < = (4, 6,0, 1)
with 7 states, over a finite alphabet X with m letters. The algorithm computes
the greatest right invariant fuzzy quasi-order ¢™ on /.

The procedure constructs the sequence of fuzzy quasi-orders {@ilren, in
the following way:

(A1) In the first step we set 1 = 7/7.
(A2) After the kth step let ¢, be the fuzzy quasi-order that has been con-
structed.
(A3) In the next step we construct the fuzzy quasi-order ¢y,1 by means of
the formula
Prer = P A [\ Ox0 )/ G0 1) | (5.21)
xeX

(A4) Simultaneously, we check whether @y,1 = @f.
(A5) When we find the smallest number s such that @1 =@s, the procedure
of constructing the sequence {y}ren terminates and @™ = ¢s.

If the subalgebra .Z(6, 7) of .Z, generated by all membership values taken by
0 and 7, satisfies DCC, the algorithm terminates in a finite number of steps.

Consider the computational time of this algorithm. In (A1) we compute
4 /74, which can be done in time O(n%c_). In (A3) we first compute all
compositions Oy o ¢y, and if these computations are performed according to
the definition of composition od fuzzy relations, their computational time is
O(mn3(cg + cv)). Then we compute @y, 1 by means of (5.21), and the compu-
tational time of this part is O(mn®(c_, +c,)). Thus, the total computational
time of (A3) is O(mn’(c_, +ca +cg +cv)). In (Ad), the computational time to
check whether @y,1 = @y is O(1?).

The hardest problem is to estimate the number of steps, in the case when
it is finite. Consider fuzzy relations @y as fuzzy matrices. After each step in
the construction of the sequence {¢lreny We check whether some entry has
changed its value, and the algorithm terminates after the first step in which
there was no change. Suppose that Z (6, 7) satisfies DCC. Then {{¢x(a,b)}ren |
(a,b) € A?} is a finite collection of finite sequences, so there exists s € N such
that the number of different elements in each of these sequences is less than
or equal to s. As the sequence {@k}ren is descending, each entry can change
its value at most s — 1 times, and the total number of changes is less than or
equal to (s —1)(n? —n) (the diagonal values must always be 1). Therefore, the
algorithm terminates after at most (s — 1)(n? — n) + 2 steps (in the first and last
step values do not change).

Summing up, we get that the total computation time for the whole algo-
rithm is O(smn>(c— +ca +cg +cv)), and hence, the algorithm is polynomial-
time.
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Let us note that the number s is characteristic of the sequence {¢y}ren, and
in general it is not characteristic of the algebra .Z(6,7). However, in some
cases the number of different elements in all descending chains in .£(6,7)
may have an upper bound s. For example, if the algebra .£(6,7) is finite,
then we can assume that s is the number of elements of this algebra. In
particular, if .Z is the Godel structure, then the only values that can be taken
by fuzzy relations {@y}xen are 1 and those taken by 6 and 7. In this case, if |
is the number of all values taken by 6 and 7, then the algorithm termina-
tes after at most j(n> —n) +2 steps, and total computation time is O(jmn®).
Since j < mn? +n?, total computation time can also be roughly expressed as
O(m*n”).

Algorithm 5.18 (Computation of the greatest left invariant fuzzy quasi-
order) The input of this algorithm is a fuzzy finite automaton </ = (4,6, 0, 1)
with 7 states, over a finite alphabet X with m letters. The algorithm computes
the greatest left invariant fuzzy quasi-order i on .

The procedure constructs the sequence of fuzzy quasi-orders {{;}ken, in
the following way:

(A1) In the first step we set 1 = 0\o.

(A2) After the kth step let ¢y be the fuzzy quasi-order that has been con-
structed.

(A3) In the next step we construct the fuzzy quasi-order 1y, by means of

the formula
Pt = P A\ W0 02\ @062)|

xeX

(A4) Simultaneously, we check whether {x,1 = ;.
(A5) When we find the smallest number s such that ;.1 =1, the procedure
of constructing the sequence {x}xen terminates and gbh =1s.

The conditions under which this procedure terminates in a finite number of
steps and its computation time can be analyzed analogously as in Algorithm
5.17.

Algorithm 5.19 (Computation of the greatest weakly right invariant fuzzy

quasi-order) The input of this algorithm is a fuzzy finite automaton < =

(A,6,0,7) with n states, over a finite alphabet X with m letters. The algorithm

computes the greatest weakly right invariant fuzzy quasi-order p** on 7.
The procedure consists of two parts:

(A1) First we compute all members of the family {t,, | u € X*}, by means of Algo-
rithm 4.5. .
(A2) Then we compute " by means of formula

(Pwri = /\ TulTu.

ueX*
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Clearly, this procedure terminates in a finite number of steps under the same
conditions as Algorithm 5.16. Under these conditions the computation time
of the part (A1) is O(mnk®"), and since it dominates over the computation
time of (A2), which is O(k"c, +n’c_,), we conclude that the computation time
of the whole algorithm is O(mnk*"), the same as for Algorithms 5.15 and 5.16.

Analogous analysis can be performed for the following algorithm that
computes the greatest weakly left invariant fuzzy quasi-order on a fuzzy
automaton.

Algorithm 5.20 (Computation of the greatest weakly right invariant fuzzy
quasi-order) The input of this algorithm is a fuzzy finite automaton &/ =
(A,6,0,7) over a finite alphabet X. The algorithm computes the greatest
weakly left invariant fuzzy quasi-order ! on 7.

The procedure consists of two parts:

(A1) First we compute all members of the family {0, | u € X*}, using Algo-
rithm 5.15.
(A2) Then we compute Y*! by means of formula

Elei = /\ ou\oy.

ueX*
Finally we construct the children automaton 7.

Algorithm 5.21 [Construction of the children automaton ;] The input
of this algorithm is a fuzzy finite automaton &/ = (4,6,0,7) with n states,
over a finite alphabet X = {x,...,x,} with m letters, and the output is the
children automaton Jz{(; = (AC,(SSP,(pf.,TED), where ¢ is the greatest weakly
right invariant fuzzy quasi-order or the greatest right invariant fuzzy quasi-
order on &/

The procedure is to construct simultaneously the transition tree of %, and
the transition graph of <7, directly from /. Except the pointer s(-) used in
Algorithm 5.15, we also use another pointer #(-) which points vertices of
the transition graph under construction to the corresponding integers. The
transition tree of 7, and the transition graph of </; are constructed in the
following way:

(A1) We compute ¢ using one of Algorithms 5.19 and 5.17, and construct
the transition tree T of .2%, using Algorithm 5.15.

(A2) To each non-closed vertex @, of the tree T we assign a vertex ¢, of a
graph G as follows: When all children ¢,y,,...,Qux, of ¢, in the tree T
are formed, we form the vertex ¢, = (Qux;, -, Puxy, Pu © T) in the graph
G. Simultaneously, we check whether ¢, is an (1 + 1)-tuple that has already
been constructed. If it is true, if ¢}, is equal to some previously computed
¢5, we mark ¢f as closed and set £(¢;,) = {(¢7). Otherwise, we put 7,(¢7,) =
@u o T and set {(¢5,) to be the next integer that has not been used as a value
for t(-).
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(A3) For each non-closed vertex ¢, of the graph G and each x € X, if ¢, is a
non-closed vertex in T such that s(p,x) = s(@y), in the graph G we add an
edge from ¢, to ¢}, labelled by x.

(A4) When the graph G is constructed, we glue closed vertices to non-closed
vertices with the same pointer value, and erase closure marks. The dia-
gram that results is the transition graph of .&/g.

According to Theorems 5.2 and 5.13, %7, is isomorphic to %y, where % =
</ | is the afterset fuzzy automaton of &/ with respect to ¢, and /7 is
isomorphic to %}, and by Theorem 3.7 [61], 4, is finite if and only if 2y is
finite. Therefore, <7 is finite if and only if <7, is finite.

Asin the analysis of Algorithm 5.15, consider the case when the subalgebra
Z(6,0,7) of Z is finite and has [ elements. As we have already seen, the
computation time of the part (A1) is O(mnl?").

When in (A2) we construct a vertex of the graph G, as an (m + 1)-tuple, all
its components have already been computed during construction of the tree
T, and all that remains to do is to point to them (or to their addresses). Hence,
the computation time of forming every single vertex of the graph G is O(m),
and since there are at most I" vertices in G, the computation time of forming
all vertices of G is O(ml"). During construction of the tree T we also found
which verticesin T are equal as fuzzy sets, and they received the same pointer
values. Therefore, when we check equality of two (11+1)-tuples in AG, we only
need to check the equality of pointer values assigned to their components,
and the computation time of such checking is O(m). As the total number of
checks performed in (A2) does not exceed 1+2+---+(I"—1) = %(l“ =D, we
have that computation time of all checks performed in (A2) is O(m/?"). Finally,
in (A3) we form at most ml" edges in the graph G, and the computation time
of this part is O(ml").

Therefore, the most expensive part of this algorithm is (Al), and the
computation time of the whole algorithm is O(mnl?"), the same as for (A1),
i.e., the same as for Algorithm 4.7.

5.4. Computational examples

In this section we provide several illustrative computational examples.

Example 5.1. Let & be a Boolean automaton over the two-element alphabet
X = {x,y} given by the transition graph shown in Fig. 5.1.

The transition tree and the transition graph of the Nerode automaton .2y
of o7, constructed by means of Algorithm 5.15, are presented in Fig. 5.2. We
see that the Nerode automaton .y has 7 states.

By means of Algorithms 5.17 and 5.19 we compute the gratest right in-
variant fuzzy quasi-order ¢ and the gratest weakly right invariant fuzzy
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Fig. 5.1 The transition graph of the fuzzy automaton & from Example 5.1.

wri

quasi-order ™" on &/, which are represented by the following Boolan ma-

trices:
. 100 ' 100
" =011}, eVt =111].
001 001

Then, using Algorithm 5.15 we construct automata .27, and % i, whose
transition trees and graphs are presented in Fig. 5.3 and 5.4, respectively. The
automaton &« . has 5 states, whereas the automaton .« .. has 3 states. Fi-
nally, using Algorithm 5.21 and the transition tree of <7 from Fig. 5.2, we
construct the children automaton 7 of @y presented in Fig. 5.4. Clearly,
) is isomorphic to & .

According to Theorem 5.3, the number of states of the automaton .7,
is less than or equal to the number of states of the Nerode automaton
</, for every fuzzy automaton /. This example shows that 7 can be
strictly smaller than <. The example also shows that the greatest weakly
right invariant fuzzy quasi-order "™ can give better results in determiniza-
tion than the greatest weakly right invariant fuzzy quasi-order ¢*.

Finally, we find that all aftersets of fuzzy quasi-orders @™ and "™ are
different, which means that ¢™ and "™ do not reduce the number of states
of the automaton <7, but despite this, they produce crisp-deterministic fuzzy
automata which are smaller than the Nerode automaton of .«7.

Example 5.2. Let &/ be a Boolean automaton over the two-element alphabet
X = {x,y} given by the transition graph shown in Fig. 5.6 a). The transi-
tion graphs of the Nerode automaton % and its children automaton <7,
constructed by means of Algorithms 5.15 and 5.21, are represented by Fig.
5.6 b) and c). Clearly, the Nerode automaton <7y has 7 states, and its children
automaton &7y, has 6 states.

On the other hand, both the greatest right invariant fuzzy quasi-order
@™ and the greatest weakly right invariant fuzzy quasi-order "™ on 7,
computed using Algorithms 5.17 and 5.19, are equal to the equality relation
on the set of states of .7, so both automata <7, and % . are isomorphic to
2. Therefore, we have that |7y | <|o/y| = Iﬁf’(pri |= Iﬂfq)wn |, which demonstrates
that construction of the children automaton, applied to the Nerode automa-
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Fig. 5.2 The transition tree (a)) and the transition graph (b)) of the Nerode automaton JZfN of the fuzzy
automaton .27 from Example 5.1.

ton of &7, can give better results in determinization of < than constructions
based on the greatest right invariant and weakly right invariant fuzzy quasi-
orders on 7.

Example 5.3. Let & be a Boolean automaton over the two-element alphabet
X = {x,y} given by the transition graph shown in Fig. 5.7 a). The Nerode
automaton <y and the children automaton o/, are represented by graphs in
Fig. 5.7 b) and c). Moreover, using Algorithms 5.17 and 5.19 we obtain that

100
gDriz(Pwriz 111 ,
001
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a)

b)

Fig. 5.3 The transition tree (a)) and the transition graph (b)) of the automaton 427(/),; for the fuzzy automaton
& from Example 5.1.

so automata .27 i and & w+ are mutually isomorphic and are given by the
transition grapﬁ in Fig. 5.7 d), and we conclude that |427¢r1| = |427¢wri| < |yl <
L.

Thus, in contrast to the previous one, this example shows that there are
cases where determinization of a fuzzy automaton &/ by means of the great-
est right invariant and weakly right invariant fuzzy quasi-orders can give
better results than construction of the children automaton of the Nerode au-
tomaton of <.

Example 5.4. Let </ be a Boolean automaton over the two-element alpha-
bet X = {x,y} given by the transition graph shown in Fig. 5.8 a). When we
compute @™ and ¢“' we obtain that both of them are equal to the equality
relation on the set of states of ./, and therefore, both automata <7 ,i and
i are isomorphic to the Nerode automaton .7y, which is represented by
the transition graph in Fig. 5.8 b). Moreover, we obtain that the children au-
tomaton &7 of @/ is also isomorphic to the Nerode automaton <7y. Hence,
in this case none of the methods discussed in this paper does not give an
automaton with smaller number of states than the Nerode automaton . It
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| | | | | | | |
’ (:5)

b)

Fig. 5.4 The transition tree (a)) and the transition graph (b)) of the automaton ,Q/q)wri for the fuzzy automaton
& from Example 5.1.

should be noted that the Nerode automaton 27y is not minimal, the mini-
mal deterministic automaton equivalent to .y is represented by the graph
shown in Fig. 5.8 c).

Example 5.5. Let & be a Boolean automaton over the two-element alphabet
X = {x,y} given by the transition graph shown in Fig. 5.9 a). The transition
graph of the Nerode automaton < of &/ is given in Fig. 5.9 b). Using
Algorithms 5.17 and 5.19 we obtain that

11000
11000
=" =100100|,
00010
00101

and we can easily show that &7 is isomorphic to the Nerode automaton

a/. Note that @™ has 4 different aftersets, which means that the afterset
fuzzy automaton of &/ with respect to @™ has 4 states. Therefore, although
@ reduces the number of states of <7, it does not give an automaton with
smaller number of states than the Nerode automaton ..

Example 5.6. Let & be an automaton over the one-element alphabet X = {x}
and the Goguen (product) structure given by the transition graph shown in
Fig. 5.10 a).
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Fig. 5.5 Construction of the transition graph of the children automaton 42715 from the transition tree of the
Nerode automaton JZfN from Fig. 5.2.

It is easy to check that 0, =[100], 0, =[00.51], and o,» =[0 1 0.5"71],
for each n € IN, n > 2. Therefore, the Nerode automaton of . has infinitely
many states.

On the other hand, using Algorithms 5.17 and 5.19 we obtain that

~ [oos
(Pn:qowrl:ll 1 ,
10 1

and we construct the automaton <7, which is shown in Fig. 5.10 b).

Therefore, although the Nerode automaton of <7 is inifinite, using the
greatest right invariant fuzzy quasi-order on &/ we obtain a finite crisp-
deterministic fuzzy automaton which is equivalent to <.



78 5 Simultaneous determini%aytion and state reduction

Fig. 5.6 Transition graphs of the fuzzy automaton o from Example 5.2 (a)), its Nerode automaton Dy
(b)), and the children automaton JZ{I\j ).
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a)

Fig. 5.7 Transition graphs of the fuzzy automaton o from Example 5.3 (a)), its Nerode automaton Gy
(b)), the children automaton 527[\7 of JZ{N (c)), and the automaton ﬁfq)ri = %Wn- (d)).



80 5 Simultaneous determinization and state reduction
X,y

c)

Fig. 5.8 Transition graphs of the fuzzy automaton o from Example 5.4 (a)), its Nerode automaton Gy
(b)), and the minimal crisp-deterministic fuzzy automaton equivalent to JZ{N ().
x

Fig. 5.9 The transition graph of the fuzzy automaton from Example 5.5 (a)), and its Nerode automaton Dy
(b))
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a) x/0.5 b)

x/1

Fig. 5.10 Transition graphs of the fuzzy automaton o from Example 5.6 (a)), and the automaton ,ﬁyq i
(b))






Chapter 6

Determinization by means of the degree of
language inclusion

Recall that canonization is referred to as such determinization method that
alwaysresultsin a minimal deterministic automaton equivalent to the autom-
aton which is determinized. In Chapter 4 we have presented one canonization
method for fuzzy automata, the Brzozowski type determinization. The main
objective of this chapter is to provide another canonization method for fuzzy
automata over a complete residuated lattice, the so-called determinization by
means of the degree of language inclusion. Although the first step in this can-
onization procedureis substantially the same as the first step in the Brzozow-
ski type procedure (it can be understood as the construction of the reverse
Nerode automaton), these two procedures are different. If the basic opera-
tions in the underlying complete residuated lattice can be computed in con-
stant time, the determinization by means of the degree of language inclusion
has the same computational time as all other determinization algorithms con-
sidered in this thesis, including the Brzozowski type determinization.

The chapter is organized as follows. In the first section we generalize the
concept of the right language associated with a state of a fuzzy automaton
introducing the concept of the right language associated with a fuzzy set of
states, and define the concept of the degree of language inclusion for these
fuzzy languages. In Section 6.2., for a given fuzzy automaton <7, we construct
an automaton 7, and prove that it is a minimal crisp-deterministic fuzzy au-
tomaton equivalent to <7 (Theorems 6.2 and 6.3). Finally, in Section 6.3. we
provide an algorithm which constructs the automaton %7, analyze its com-
putational time, and give a computational example that demonstrates the
application of the algorithm.

Note that the algorithm presented in this chapter generalizes the so-called
determinization using closures provided by van Glabbeek and Ploeger in
[120, 121] for ordinary nondeterministic automata.

83
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6.1. The degree of language inclusion

In this section we introduce the concept of a right fuzzy languages associated
with fuzzy subsets of the set of states of a given fuzzy automaton, as well as
the concept of the degree of language inclusion for two such fuzzy languages.

Let o/ = (A, 6,0,7) be a fuzzy automaton over an alphabet Xand a complete
residuated lattice .Z. Recall that the right fuzzy language associated with a
state a € A is a fuzzy language 7, € % (X") defined by:

Ta(u) = v 5*(a,u,b)®T(b),

beA

forall u € X, i.e., 7, is the fuzzy language recognized by a fuzzy automaton
o, = (A,6,a,7) obtained from 7 by replacing ¢ with the single crisp initial
state a. Analogously, we can define the right fuzzy language associated with a
fuzzy set u € #(A) as a fuzzy language 7, € #(X") given by

w,w)="\/ @5 @uberb)=pom,
a,beA

forall u € X*. In other words, 7, is a fuzzy language recognized by a fuzzy au-
tomaton <7, = (4,6, 4, 7) obtained from .« by replacing o with y, and clearly,
7o = [[#]].

Recall that the degree of inclusion I(u,v) of two fuzzy sets u,v € #(A), in
that order, is defined as follows

)= /\ @) - via).

acA

In other words, I(u,v) is a measure of "how much p is contained in v ”.

For a fuzzy automaton & = (4, 6,0,7) and fuzzy sets i, v € #(A), the degree
of inclusion of fuzzy languages 7, and 7, is called the degree of language inclu-
sion of 7, and 7, and denoted by L(u,v), i.e.,

L(u,v)= /\ Tu(1) = Ty (u).

ueX*

In particular, if y is a crisp singleton, i.e., u = {a}, for some a € A, then we write
L(a,v) instead of L(p,v), i.e.,

Lav)= N\ taw) - 7 ()

ueX*

(and similarly if v is a crisp singleton).
The main objective of this chapter is to show that the degree of language
inclusion plays a very important role in the determinization of fuzzy finite
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automata, and that the determinization method based on it always results
in a minimal crisp-deterministic fuzzy automaton equivalent to the original
fuzzy automaton.

6.2. The automaton constructed by means of the degree of
language inclusion

Let & = (A,0,0,7) be a fuzzy automaton over an alphabet X and a com-
plete residuated lattice .. For each u € X* we define a fuzzy setd, : A — L
inductively, as follows: for the empty word ¢ and all u € X* and x € X we set

de(a) = L(a,0) = /\ To(1) = 01Ty, (6.1)
veEX*
and
dux(a) = L(a,d, 0 6x) = /\ To(a) = dy 06501y, (6.2)
veX*
foralla e A.

The following theorem is the most important result of this chapter.

Theorem 6.1. Let o7 = (A,0,0,7) be a fuzzy automaton over an alphabet X and a
complete residuated lattice £. Then

dy 0Ty = 0y 0 Ty, (6.3)

forall u,we X*.

Proof. By induction on the length of the word u we will prove that (6.3) is true
for every w € X".
For the empty word ¢ we have that

de(@) =\ (@) = 0070 < Tu(@) > 001y
veX*

holds for all a € A and w € X*. Then we have

deoty=\/de(@)®10(@) < \/ (T0(8) > 00 7) @ Tu(a) <0 0 Ty,
aeA aeA

because (p — q) ®p < g holds for all p,q € L. Therefore, we have
deoTy <00Ty, (6.4)

for all w € X*, and hence we need to prove that d. o 7, > 0 0 74, holds for all
w € X*. According to the fact that — is isotone in the second argument and
p — (q®p) > q we have that
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d:@) = \ @ = oo =\ (w@— (\/ o) (b))

veX* veX* beX*

> /\ Tp(a) = (0(a) ® To(a)) > o(a),

veX*

forallae A, so

deoTy = \/ de(a) @ Ty(a) > \/ 0(a) ® T(a) = 0 0 Ty. (6.5)

acA acA

From (6.4) and (6.5) we have that
deoTy =00Ty,

for all w € X*. Therefore, (6.3) holds for u = ¢ and every w € X*.

Suppose that (6.3) is true for every word u of length /, for some I € N, and
every w € X*, and consider an arbitrary x € X.

Then we have that

dux(a) = /\ Tp(a) = dy 06y 0Ty < Ty(a) — dy 0 Oy 0 Ty,

veX*

foralla € A and w € X*, and hence

dyxo Ty = \/ dux(a) ® To(a) < \/(Tw(ﬂ) — dy 00y 0Ty) ®Tep(a) < dy 06y 0Ty,
acA acA

because (p — q)®p < g, for all p,q € L. Therefore, we have
Auux © Ty < dyy 063 0 Tey = Ay © Tay = 0y © Ty = O © Ty, (6.6)

for all w € X*, so we only need to show that d, o 7 > 0, 0 .
According to the fact that the operation — is isotonic in the second argu-
ment and p — (§®p) > g, we have that

(@) = /\ T(@) > duodioto= [\ (te(@) = (\/ (du05:)(B) @ To(b))

veX* veX* beX*
> /\ To(a) = ((du 0 6x)(a) ® To(a)) Z (du 0 6x)(a),
veX*

forallae A, so

dixo Ty = \/ dixl@) @ T0(@) > \ /(A0 5:)(@) & 7o)

acA acA

=dy0dx 0Ty =0y 0Txw =040 Txw = Oux © Tep-

From (6.6) and (6.2.) we have
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dy 0Ty =040 Ty,
forallwe X*. O

According to previous theorem we have

de@)= [\ Tol@) > oot

veX*

and

dux(a) = /\ (@) > dy 00y 0Ty = /\ To(@) = Oyx © Ty

veX* veX*

forallae A, u € X* and x € X, and hence

du@)= /\ To(@) > ou0Ty 6.7)

veX*

holds for all u € X*.
Now, we set Ay = {d,, | u € X*}, and we define functions 6;: A; X X — Ay
and 7;: A; — Lby

04(du,x) = dyx, t4(dy) =dyorm,

foralld, € Ajand x € X.
We have the following:

Theorem 6.2. Let o7 = (A,0,0,7) be a fuzzy automaton over an alphabet X and a
complete residuated lattice £. Then o7y = (A4,04,d¢,74) is an accessible crisp-deter-
ministic fuzzy automaton, and it is equivalent to o7, i.e. [[;]] = [[#]].

Proof. Letu,v € X" such that d, = d,. Then for every x € X we have that

dyx = /\ Tw(a) = dy 06y 0Ty = /\ Tw(a) = dy 0 6x 0 Ty = doy,

weX* weX*

and hence, 0; is a well-defined mapping. It is clear that 7; is also a well-
defined mapping. Therefore, we have that «7; = (A4, 04,de, 74) is an accessible
crisp-deterministic fuzzy automaton. According to the definition of the fuzzy
language recognized by a fuzzy automaton, the definition of the fuzzy lan-
guage recognized by a crisp-deterministic fuzzy automaton and Theorem
6.1 we have:

[Tl(1t) = 7a(S(de,u)) = Ta(d) = dy o 7 = 0, 07 = [ T|(u),

for every u € X*, and we have proved that .7; is equivalent to /. [J

Theorem 6.3. Let o7 = (A,0,0,7) be a fuzzy automaton over an alphabet X and a
complete residuated lattice Z. Then, <7y is a minimal crisp-deterministic fuzzy au-
tomaton equivalent to <f .
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Proof. Set[[</]] = f. Asithasbeen stated in Section 2.3., the derivative autom-
aton &/ of f is a minimal crisp-deterministic fuzzy automaton recognizing f,
i.e., a minimal crisp-deterministic fuzzy automaton equivalent to </ There-
fore, in order to show that the automaton <7; = (A4,04,d¢,74) is @ minimal
crisp-deterministic fuzzy automaton equivalent to %/ it is enough to prove
that there exists a surjective mapping from «7; to <.

Let ¢ : Ay —» Ay be a mapping defined by ¢(fu™') = d,. By (6.7), given
u,v € X*, such that fu~! = fo~!, we have

0uo T = [/ N(uw) = [/ Nu ™ (w) = fu™ ' (w) =
= fot(w) = [#To" (w) = [#T(vw) = 05 0 Tw,

for every w € X*. Thereby,

dy(a) = /\ Tw(@) = 0, 0Ty = /\ Tw(a) = 0y 0Ty = dy(a)

weX* weX*

for every a € A. Accordingly, ¢ is a well defined mapping. It is easy to see
that ¢ is surjective. Thus, the automaton %7 is a minimal crisp-deterministic
fuzzy automaton equivalent to «/. [

6.3. Algorithm and a computational example

Note that in order to compute the members of the family of fuzzy sets {d,}yex:,
using formulas (6.1) and (6.2), we first need to compute all members of the
family {7,},ex+, what is nothing but the construction of the reverse Nerode
automaton of the fuzzy automaton which we want to determinize. Therefore,
the first step in the construction of the automaton 7 for a fuzzy automaton
&/ is the construction of the reverse Nerode automaton of 7.

We provide the following algorithm.

Algorithm 6.4 (Construction of the automaton <7;) The input of this algo-
rithm is a fuzzy finite automaton 7 = (4, §,0,7) with n states, over a finite
alphabet X with m letters and a complete residuated lattice .2, and the output
is the crisp-deterministic automaton <7; = (Ay,04,de, T4)-

The procedure is to construct the transition tree of 27; directly from <, and
during this procedure we use pointers s(-) which points vertices of the tree
under construction to the corresponding integers. The transition tree of 7 is
constructed inductively as follows:

(Al) Firstwecompute all members of the family {7, },ex:, by means of Algo-
rithm 4.5.

(A2) The root of the tree is d¢, computed using formula (6.1), and we put
To = {d.}.
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(A3) After the ith step let a tree T; have been constructed, and vertices in
T; have been labelled either ‘closed” or 'non-closed’. The meaning of these
two terms will be made clear in the sequel.

(A4) Inthenextstep weconstructa tree T;,1 by enriching T; in the following
way: for any non-closed leaf d,, occuring in T;, where u € X*, and each x € X
we add a vertex d,x computed using formula (6.2), and an edge from d,, to
dyx labelled by x. Simultaneously, we check whether d,, is a fuzzy set that
has already been constructed. If it is true, if d,,, is equal to some previously
computed dy, we mark d,;, as closed and set s(d,.x) = s(d,). Otherwise, we
compute the value 74(d,) = dy, o T and set s(d,x) to be the next unassigned
integer. The procedure terminates when all leaves are marked closed.

(A5) When the transition tree of .«7; is constructed, we erase all closure
marks and glue leaves to interior vertices with the same pointer value. The
diagram that results is the transition graph of .«7.

Let .o/ = (A, ,0,7) be a fuzzy finite automaton with  states and m input let-
ters, and suppose that the subsemiring .£*(6, 0, 7) of the semiring (L, v,®,0,1)
generated by all membership values taken by 6, o and 7 is finite and has k ele-
ments. As we have seen, the step (A1) produces an automaton with at most k"
states, and the computational time of this step is O(mnk®"). Subsequent steps
produce the transition tree of a minimal crisp-deterministic fuzzy automaton
equivalent to .7, which can not be larger than the Nerode automaton .y of
7. As the Nerode automaton <7y can not have more than k" states, the result-
ing transition tree for .7; can not have more than k" internal vertices, and the
total number of vertices does not exceed mk" + 1. In contrast to other algo-
rithms presented in this thesis, where the most time-demanding part is the
check whether the just computed fuzzy set is a copy of some previously
computed fuzzy set, here most of the time is spent on computing the fuzzy
sets d,, u € X*. Namely, we can write (6.1) as

de@)= /\ wa - oo, (6.8)
y.eAﬁ
forallae A, and (6.2) as
dis(@) = [\ (@) > duopix, (69)
‘LJEAN

foralla€ A, u € X*and x € X, where i, denotes the x-child of ¢ in the transition
tree of the reverse Nerode automaton ,cf/ﬁ of & (if u = 7,, for some v € X*, then
Ux = Txv). The computation of any single d, o u, (and, similarly, of o o 1) takes
O(n(cg +cv)) time, and therefore, the computation of the whole collection of
values {d, o iy} e Ay takes O(nk" (cg +cv)) time, since |Ag| <k". When all values
dy o Uy are stored, then the computation of 4,1 (a) requires time O(k" (c_ +cx)),
and the computation of d,,, requires time O(nk"(c, +cx)). Hence, the compu-
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tation of any single vertice of the transition tree of the automaton <7; requires
time O(nk™(cg + cv +c— +¢,)), and since there are at most mn* + 1 vertices to be
computed, the computation of all verices requires O(mnk>"(cg +cy +c— +cp))
time. As for the other algorithms considered in this thesis, the check whether
the just computed fuzzy set is a copy of some previously computed fuzzy set
is performed in time O(mnk®"). Therefore, the whole algorithm runs in time
O(mnk®*(cg + ¢y + ¢ +cn)), and if the operations in .# can be computed in
constant time, then this algorithm has the computational time O(mnk®"), the
same as other determinization algorithms presented here.

Now we give a computational example that demonstrates the application
of Algorithm 6.4.

Example 6.1. Let o7 = (A, 6,0,7) be a fuzzy automaton over the alphabet X = {x}
and the Boolean lattice B given by the transition graph shown in Figure 6.1.
Then o, 6y and 7 are represented as follows:

Fig. 6.1 The transition graph of the fuzzy automaton .2/

010 0
a=[100], o,=l001|, 7z=]1].
101 1

Fuzzy sets 1, : A — L computed using the Algorithm 4.5 are given by

0 1
e =11], T,=|1],
1 1

where ¢ € X* denotes an empty word and u € X*. Hence, fuzzy sets d,, € .7 (A)
are given by:
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d(a0) = (te(ao) = ([1 00]-|1{)) A (ra(a0) > ([1 0 0]-

EEEE= Ry ieyy
===
Il
o

1
1
o

do(a1) = (re(a) - ([100]- 1 )) A (r2(a) = ([1 00]-
N
1
1

do(a2) = (re(@) = ([10 0] [1])) A(xla2) = ([1 0 0]-|1{)) =0
thatis,
dg—[IOO]
Next, for u = x we have:
101 0] [0] 101 0] [1]
dy(a0) = (Te(ag) = ([100]-[001}-|1 w(ag) = (|100[-]001]-[1]))=1
w0 =(cd00) = ([100]-100 1| 1) estan = [1 00} 0011 )
101 0] [0] 101 0] [1]
dy(a1) = (te(@) = ([100]-[001}-]1 a) = (|100[-]001]-[1]))=1
= (edo0 = ([100100 1|1 eston = (100} 0011 )
101 0] [0] 101 0] [1]
dy(a2) = (Te(a2) = ([100]-[001}-]1 a) = (|100[-]001]-[1]))=1
o= (e = (100100 1|1 oto = (100} 0011 )
that is,
dxz[lll].
Analogously, we have that
dxx=[111].

Therefore, for every u € X* such that |u| > 1 we have
d,=[111].

Hence, A; = {d¢,d}, and the transition tree and the graph of the automaton
oy = (Ag,04,de,74) are shown in Figure 6.2.

Further, let us consider the Nerode automaton .« and the reduced Nerode
automaton @7; of &7 It is easy to verify that

0.=[100], or=[010], oeo=[001], os=[101],

and
Ou = [1 1 1],

for all u € X* such that |u| > 4. Therefore,
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X
(@)
X
(4)

Fig. 6.2 The transition tree and the graph of the automaton .%7; of the fuzzy automaton
&/ given in Figure 6.1.

98=([010],0) exz([001],1) 9x2=[101],1),
and
O, = ([1 1 1],1),

for all u € X* such that |u| > 3. According to this, the Nerode automaton

</ has 5 states, i.e. Ay = {0¢,0x,0,2,0,3,0,4}, whereas the reduced Nerode
automaton has 4 states.



Appendix A
C codes

Computing the Nerode, reduced Nerode and Brzozowski’s
automaton

The aim of Apendix A is to present a C implementation of some of the
algorithms developed in this dissertation. Namely, the input of the first pro-
gram presented here, called “Brzozwski.cs”, is the data describing a given
fuzzy (weighted) automaton, such as number of states of automaton, size
of alphabet, initial weight vector, final weight vector and weighted transi-
tion matrix, and the output is the data regarding the corresponding Nerode
automaton or Brzozowski’s automaton, depending on what we choose. The
input of the second program, called “ReducedNerode.cs”, is the data de-
scribing a given fuzzy (weighted) automaton, while the output represents
the data regarding the appropriate reduced Nerode automaton. In other
words, the second program is an implementation of Algorithm 3.5.

93
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Brzozowski.c

A C codes

#ifdef MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#endif

#include <stdio.h> /* required for file operations */
#include <dos.h> /* for delay */

#include <string.h>

#include <stdlib.h>

struct node {
int* sigmau;
int letter;
int label;
struct node *equalWith;
struct node *firstchild;
struct node *nextsibling;
}i

typedef struct node *tree;

struct nodequeue {
struct node * treenode;
struct nodequeue *next;

i
typedef struct nodequeue * queue;

/****** INPUT DATA ************/

int n; /* number of states */

int m; /* number of input letters */

int *sigma; /* input vector */

int *tau; /* output vector */

int ***deltaArray; /* Transition matrices */
/******* END INPUT DATA ***************/

tree root = NULL;
queue q = NULL;

/******* QUTPUT DATA ************/
int noOut;

int moOut;

int *sigmaOut;

int *tauOut;

int ***deltaArrayOut;

/******* END OUTPUT DATA ********/

queue addToQueue (queue g, tree p) {
struct nodequeue * temp;
queue t = g;
temp = (queue) malloc(sizeof (struct nodequeue));
temp->treenode = p;
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Brzozowski.c
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temp->next = NULL;
if (g == NULL) {
g = temp;
} else {
while (t->next)
t = t->next;
t->next = temp;
}
return g;

}

tree deleteFromQueue (queue *q) {
queue gtmp;
tree tmp;
if (*g==NULL)
return NULL;
tmp = (*q)->treenode;
qtmp = (*q);
(*q) = (*qg)->next;
free (gtmp) ;
return tmp;

int * multiplication(int * sigma,
int * result;
int 1,3;

int ** delta){

result = (int *)calloc(n,sizeof (int));

for (1=0;i<n;i++) {
result[i]=0;
for (J=0;3j<n;j++) {
result[i] = resul
}
}
return result;

}

tli] || (sigmalj]

void addToTree (tree parent, tree child) {
tree tmp;
if (parent->firstchild == NULL)

parent->firstchild = child;

else{

tmp = parent->firstchild;

while (tmp->nextsibling)

tmp = tmp->nextsibling;
tmp->nextsibling = child;

}

void equalToTreeNode (tree tnode) {
queue gtmp;

&& deltaljl[i]);
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tree currentNode, tmpNode;
int equal,i;

equal = 1;
for (i=0;i<n; i++) {
equal = equal && (tnode->sigmau[i] == root->sigmaulil]);
}
if (equal) {
tnode->equalWith = root;
return;

}

gtmp = NULL;

gtmp = addToQueue (gtmp, root) ;
while (gtmp) {

currentNode = deleteFromQueue (&gtmp) ;
equal = 1;
for (1i=0;i<n; i++) {
equal = equal && (tnode->sigmau[i] == currentNode-
>sigmaulil]);
}
if (equal) {
tnode->equalWith = currentNode;
return;

}
if (currentNode->firstchild) {
gtmp = addToQueue (gtmp, currentNode->firstchild) ;
tmpNode = currentNode->firstchild->nextsibling;
while (tmpNode) {
gtmp = addToQueue (gtmp, tmpNode) ;
tmpNode = tmpNode->nextsibling;

}

int scalarProduct (int *v1, int *v2, int n) {
int i, result;
result = 0;
for (i=0;i<n; i++)
result = result || (v1[i] * v2[i]);
return result;

}

void loadFromFile (char * inputFile) {
char 1ine[80];
char * part;
int i,3,k;
FILE * exampleFile;
/* open the file for reading */
exampleFile = fopen (inputFile, "r");

/* reading the first line from file - n m */
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exampleFile)
1]

fgets(line, 80,
line[ strlen(line) -
/* parsing n and m */
part strtok(line, "
n atoi (part) ;
part strtok (NULL, "
m atoi (part) ;

")

")

/* parsing sigma */
sigma
fgets(line, 80,
line[ strlen(line) -
part strtok(line,"
i=0;

while (part != NULL) {
sigma[i++]

part

1]

/* parsing tau */
tau
fgets(line, 80,
line[ strlen(line) -
part strtok(line, "

i=0;
while (part != NULL) {

taul[i++]
part

deltaArray

for (i=0; i<m; i++) {
deltaArray[i]
for (k=0; k<n; k++)

deltaArray[i] [k]

")

strtok (NULL, "

strtok (NULL, "

7

"O';

(int *)calloc(n,sizeof (int));
exampleFile) ;

"\O0';

atoi (part) ;

")

(int *)calloc(n,sizeof (int));
exampleFile) ;

1]
")

"\0';

atoi (part) ;

")

(int ***)calloc (m,sizeof (int**));

(int **)calloc(n,sizeof (int*));

(int*)calloc (n,sizeof (int));

for (k=0;k<n;k++) {

fgets(line,
strlen (line)
strtok(line,"

line[
part
j=0;

while (part

deltaArray[i] [k] [J++]

part

}

printf ("Parsed numbers:
for (i=0;i<n;i++)

n

80, exampleFile);
- 11 "\O';

")

!= NULL) {

")

atoi (part);

strtok (NULL, "

=3%d, m $d\n",n,m) ;

printf("sd ",sigmalil]);
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printf ("\n");
for (i=0;i<n;i++)

printf ("%d ",tauli]);
printf ("\n");

printf("\n****‘k**‘k**‘k******** DELTA *‘k**‘k**‘k****‘k**‘k\n");
for (i=0;i<m;i++) {
printf ("\n*FrEkaAkk Ak xAkxAkx MATRIX NO. %d
***'k**'k****‘k*‘k**‘k*\n",i);
for (3=0;j<n;j++) {
for (k=0; k<n; k++)
printf("sd ",deltaArray[i] [§][k]);
printf ("\n");

}

fclose (exampleFile) ;

void print (tree t){

int i;

printf(Vl\n************** TREE NODE: %lu ***********\n"’t);

printf("\n************** FIRST CHILD: %1lu ***********\n",t—
>firstchild);

printf("\n***‘k*k‘k*k**‘k** NEXT SIBILING: %lu ‘k****‘k‘k****\n",t_
>nextsibling) ;

printf(ll\n************** EQUAL To: %lu ***********\n",t_
>equalWith) ;

printf ("LETTER: %d\n",t->letter);

printf ("LABEL: %d\n",t->label);

printf("*‘k'k****‘k*‘k**‘k**** SIGMAU **'k**********\n");

for (i=0;i<n;i++) {

printf ("%d ",t->sigmauli]);

}

printf ("\n");
}

void computeNerodAutomaton () {

int i,73,k;
tree treenode,newTreeNode, tmp;
root = (tree) malloc(sizeof (struct node));

//constructing the treee

root->sigmau = (int*) calloc(n,sizeof (int));
for (i=0;i<n;i++)

root->sigmaul[i] = sigmali];
root->letter = -1;

root->equalWith = NULL;
root->nextsibling = NULL;
root->firstchild = NULL;
root->label = 0;
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g = addToQueue (g, root) ;
nOut = 1;
while (q) {
treenode = deleteFromQueue (&q) ;
for (i=0;i<m;i++) {
newTreeNode = (tree)malloc(sizeof (struct node));
newTreeNode->equalWith = NULL;
newTreeNode->firstchild = NULL;
newTreeNode->nextsibling = NULL;
newTreeNode->letter = 1i;
newTreeNode->sigmau = multiplication (treenode-
>sigmau,deltaArray([i]);
equalToTreeNode (newTreeNode) ;
addToTree (treenode, newTreeNode) ;
if (newTreeNode->equalWith == NULL) {
nOut++;
newTreeNode->label = nOut-1;
g = addToQueue (g, newTreeNode) ;
} else {
newTreeNode->label = newTreeNode->equalWith-

>label;
}
}
}
mOut = m;
tauOut = (int *)calloc (nOut,sizeof (int));
sigmaOut = (int *)calloc (nOut,sizeof (int));
deltaArrayOut = (int ***)calloc (m,sizeof (int**));

//constructing output delata array
for (i=0; i<m;i++) {

deltaArrayOut[i] = (int **)calloc (nOut,sizeof (int*));
for (k=0; k<nOut; k++)
deltaArrayOut[i] [k] = (int*)calloc(nOut,sizeof (int));

for (k=0; k<nOut; k++)
for (j=0;j<nOut; j++)
deltaArrayOut[i] (k] [J] = O;
}

//walk through the tree

q = NULL;
g = addToQueue (g, root) ;
while (q) {

treenode = deleteFromQueue (&q) ;
print (treenode) ;
if (treenode->equalWith == NULL) {
tauOut [treenode->1label] = scalarProduct (treenode-
>sigmau, tau,n) ;
}
if (treenode->firstchild) {
g = addToQueue (q, treenode->firstchild);
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tmp = treenode->firstchild->nextsibling;
//pupulating output delta array
deltaArrayOut [treenode->firstchild->letter] [treenode-
>label] [treenode->firstchild->label] = 1;
while (tmp) {
deltaArrayOut [tmp->letter] [treenode->label] [tmp-
>label] = 1;
g = addToQueue (q, tmp);
tmp = tmp->nextsibling;

}

//populating sigma array
sigmaOut[0]=1;
for (i=1;i<nOut;i++)
sigmaOut[i] = 0;
}

void reverseAutomation (int *sigma, int *tau, int n, int ***deltas, int

m) {
int i,3,k, tmp;
//exchanging sigma and tay arrays
for (i=0;i<n; i++) {
tmp = sigmal[i];
sigmali] = taul[i];
taul[i] = tmp;
}
for (k=0; k<m; k++) {
for (i=0;i<n;i++) {
for (j=i+1;j<n;j++) {
tmp = deltas[k][1i][]];
deltas[k][1][]j] = deltas[k][J]I[i];
deltas[k] [j][i] = tmp;

}

void outputDataToInputData () {
int i,3,k;

free(sigma);
free(tau);
sigma = (int *)calloc (nOut,sizeof (int));
tau = (int *)calloc (nOut,sizeof (int));
for (1=0; i<nOut; i++) {

sigmali] = sigmaOut[i];

taul[i] = tauOutl[i];
}

free (sigmaOut) ;
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free (taulut) ;
//free delta input array

for (1i=0;i<m; i++)
for (3=0;j<n; j++)
free (deltaArray[i] [J]):
for (i=0;i<m;i++)
free (deltaArrayl[il]);
free(deltaArray);

deltaArray = (int ***)calloc (mOut,sizeof (int**));
for (1=0; i<mOut; i++) {
deltaArray[i] = (int **)calloc(nOut,sizeof (int*));

for (k=0; k<nOut; k++)

deltaArray[i] [k] = (int*)calloc (nOut,sizeof (int));

}

for (1=0; i<mOut; i++)
for (§=0; j<nOut; j++)
for (k=0; k<nOut; k++)

deltaArray[i][j][k] = deltaArrayOut[i][]j]I[k];

//free delta output array

for (1=0; i<mOut; i++)
for (j=0; j<nOut; j++)
free(deltaArrayOut[i][]j]);
for (1=0; i<mOut; i++)
free (deltaArrayOut([i]);
free (deltaArrayOut);

n nOut;
m = mOut;

}

void writeOutputFile (char *outputFileName) {

int i,7,k;
FILE *g;
g = fopen (outputFileName, "w") ;
fprintf (g, "%d %d\n",nOut,mOut) ;
//write sigma array
for (i=0; i<nOut-1;i++)

fprintf(g,"%d ",sigmaOut([i]);
fprintf (g, "%d\n", sigmaOut [nOut-11]) ;
//write tau array
for (1=0; i<nOut-1;i++)

fprintf(g,"%d ", tauOut([i]);
fprintf (g, "%d\n", tauOut [nOut-1]) ;

for (1i=0; i<mOut; i++) {
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for (3=0; j<nOut; j++) {
for (k=0; k<nOut-1; k++) {
fprintf(g,"%d ",deltaArrayOut[i] [J][k]);
}
fprintf (g, "%d\n",deltaArrayOut[i] [J] [nOut-11);
}
}
fclose(qg);
}

void main () {
int c;
char* inputFile = "primer2.txt";
char* outputFile;
loadFromFile (inputFile) ;

printf ("\nChoose an option:\n");

printf ("1. Compute Nerodov automation\n");
printf ("2. Compute Brzozovski automation\n");
printf ("3. Compute Reduced Nerode Automation\n");

scanf ("sd", &c) ;
switch(c) {

case 1:
computeNerodAutomaton () ;
outputFile = (char *) calloc(100,sizeof (char));
strcpy (outputFile, "result nerodov - ");
strcat (outputFile, inputFile) ;
break;
case 2:

reverseAutomation (sigma, tau,n,deltaArray,m);
computeNerodAutomaton () ;
outputDataToInputData () ;
reverseAutomation (sigma, tau,n,deltaArray,m);
computeNerodAutomaton () ;

outputFile = (char *) calloc(100,sizeof (char));
strcpy (outputFile, "result brzozovski - ");
strcat (outputFile, inputFile) ;
break;

case 3:
break;

}
//write result
writeOutputFile (outputFile) ;
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#ifdef MSC VER
#define _CRT_SECURE_NO_WARNINGS
#endif

#include <stdio.h> /* required for file operations */
#include <dos.h> /* for delay */

#include <string.h>

#include <stdlib.h>

struct node {
int** etau;
int kapa;
int letter;
int label;
struct node *equalWith;
struct node *firstchild;
struct node *nextsibling;

Vi
typedef struct node *tree;

struct nodequeue {
struct node * treenode;
struct nodequeue *next;

}i
typedef struct nodequeue * queue;

/‘k***** INPUT DATA ************/

int n; /* number of states */

int m; /* number of input letters */

int *sigma; /* input vector */

int *tau; /* output vector */

int ***deltaArray; /* Transition matrices */
/******* END INPUT DATA ***************/

tree root = NULL;
queue g = NULL;

/******* OUTPUT DATA ************/
int nOut;

int mOut;

int *sigmaOut;

int *tauOut;

int ***deltaArrayOut;

/******* END OUTPUT DATA ********/

queue addToQueue (queue g, tree p) {
struct nodequeue * temp;
queue t = qg;
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}

temp = (queue) malloc (sizeof (struct nodequeue));
temp->treenode = p;
temp->next = NULL;
if (g == NULL) {

q = temp;
} else {

while (t->next)

t = t->next;

t->next = temp;

}

return qg;

tree deleteFromQueue (queue *q) {

int *

}

queue gtmp;
tree tmp;
if (*g==NULL)

return NULL;
tmp = (*q)->treenode;
gtmp = (*q);
(*q) = (*q)->next;
free (gtmp) ;
return tmp;

multiplication(int * sigma, int ** delta) {
int * result;
int 1i,3;
result = (int *)calloc(n,sizeof (int));
for (1=0;i<n;i++) {
result[i]=0;
for (3=0;3j<n;j++) {

result[i] = result[i] || (sigmal[]j] && deltal[j]l[i]);

}
}

return result;

void addToTree (tree parent, tree child) {

tree tmp;
if (parent->firstchild == NULL)
parent->firstchild = child;
else(
tmp = parent->firstchild;
while (tmp->nextsibling)
tmp = tmp->nextsibling;
tmp->nextsibling = child;
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void equalToTreeNode (tree tnode) {
queue gtmp;
tree currentNode, tmpNode;
int equal,i,j;
equal = 1;
equal = equal && (tnode->kapa == root->kapa);
for (3=0;Jj<m;j++) {
for (i=0;i<n;i++) {

equal = equal && (tnode->etaul[j][i] == root-
>etaulj][i]);
}
}
if (equal) {
tnode->equalWith = root;
return;

}
gtmp = NULL;
gtmp = addToQueue (gtmp, root) ;

while (gtmp) {
currentNode = deleteFromQueue (&gtmp) ;
equal = 1;
equal = equal && (tnode->kapa == currentNode->kapa) ;

for (j=0;j<m;j++) {
for (i=0;i<n; i++) {
equal = equal && (tnode->etaul[j][i] ==
currentNode->etaulj] [i]);
}
}
if (equal) {
tnode->equalWith = currentNode;
return;
}
if (currentNode->firstchild) {
gtmp = addToQueue (gtmp, currentNode->firstchild) ;
tmpNode = currentNode->firstchild->nextsibling;
while (tmpNode) {
gtmp = addToQueue (gtmp, tmpNode) ;
tmpNode = tmpNode->nextsibling;

}

int scalarProduct (int *vl1, int *v2, int n) {
int i, result;

result = 0;
for (1=0;i<n; i++)
result = result || (v1[i] * v2[i]);

return result;
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void loadFromFile (char * inputFile) {
char 1ine[80];
char * part;
int i,3,k;
FILE * exampleFile;
/* open the file for reading */

exampleFile = fopen (inputFile, "r");
/* reading the first line from file - n m */
fgets(line, 80, exampleFile);
line[ strlen(line) - 1 ] = '\0';
/* parsing n and m */
part = strtok(line," ");
n = atoi (part);
part = strtok(NULL," ");

m = atoil (part);

/* parsing sigma */

sigma = (int *)calloc(n,sizeof (int));
fgets(line, 80, exampleFile);
line[ strlen(line) - 1 ] = '\0';
part = strtok(line," ");
i=0;
while (part != NULL) {
sigmal[i++] = atoi (part);
part = strtok(NULL," ");

/* parsing tau */
tau = (int *)calloc(n,sizeof (int));
fgets(line, 80, exampleFile);
line[ strlen(line) - 1 ] = '\0';
part = strtok(line," ");
i=0;
while (part != NULL) {
taul[i++] = atoi(part);
part = strtok(NULL," ");

deltaArray = (int ***)calloc(m,sizeof (int**));

for (1=0;i<m; i++) {

deltaArray[i] = (int **)calloc(n,sizeof (int*));
for (k=0; k<n; k++)
deltaArray[i] [k] = (int*)calloc(n,sizeof (int));

for (k=0;k<n;k++) {
fgets(line, 80, exampleFile);

line[ strlen(line) - 1 ] = '\0';
part = strtok(line," ");
=0

while (part != NULL) {
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deltaArray[i] [k] [J++] = atoil (part);
part = strtok(NULL," ");

}

printf ("Parsed numbers: n = %d, m = %d\n",n,m);
for (i=0;i<n;i++)
printf("sd ",sigmalil]);
printf ("\n");
for (1=0;i<n; i++)
printf("%d ", taulil);
printf ("\n");

printf(ll\n******************* DELTA ****************\n");
for (i=0;i<m;i++) {
printf(ll\n**************** MATRIX NO' %d
******************\n",i);
for (3=0;j<n;j++) {
for (k=0; k<n; k++)
printf("sd ",deltaArray[i]l [j][k]);
printf ("\n");

}

fclose (exampleFile) ;
}

void print (tree t) {
int i,73;
printf("\n‘k*‘k****‘k‘k*‘k*** TREE NODE: %lu ***‘k**‘k****\n",t);
printf("\n************** FIRST CHILD: %lu ***********\n",t_
>firstchild);
printf("\n************** NEXT SIBILING: %1u ***********\l’l",t—
>nextsibling) ;
printf("\n***‘k**‘k*‘k***** EQUAL TO: %lu **‘k**‘k****‘k\n",t_
>equalWith) ;
printf ("LETTER: %d\n",t->letter);
printf ("LABEL: %d\n",t->label);
printf ("KAPA: %d\n",t->kapa);
printf(VI***************** ETAU ‘k‘k‘k*‘k**‘k‘k*‘k**\n");
for (i=0;i<m; i++) {
for (3=0;3<n;j++) {
printf ("%d ",t->etaulil [j]);
}
printf ("\n");
}
printf ("\n");
}

void computeReducedNerodAutomaton () {
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int i,3,k;
tree treenode,newTreeNode, tmp;

root = (tree) malloc(sizeof (struct node));

//constructing the treee

root->kapa = scalarProduct (sigma, tau,n);

root->etau = (int **)calloc(m,sizeof (int*));
for (i=0;i<m; i++) {
root->etau[i] = multiplication(sigma,deltaArray([i]):;
}
root->letter = -1;

root->equalWith = NULL;
root->nextsibling = NULL;
root->firstchild = NULL;
root->label = 0;
g = addToQueue (g, root) ;
nOut = 1;
while (q) {
treenode = deleteFromQueue (&q) ;
for (i=0;i<m;i++) {

newTreeNode = (tree)malloc (sizeof (struct node));
newTreeNode->equalWith = NULL;

newTreeNode->firstchild =

newTreeNode->nextsibling =

newTreeNode->letter = 1i;

newTreeNode->kapa = scalarProduct (treenode-

>etauli],tau,n);

NULL;
NULL;

newTreeNode->etau = (int **)calloc(m,sizeof (int*));

for (k=0; k<m; k++) {
newTreeNode->etaul[k]
>etau[i],deltaArrayl[k]);
}

= multiplication (treenode-

equalToTreeNode (newTreeNode) ;
addToTree (treenode, newTreeNode) ;

if (newTreeNode->equalWith == NULL) {
nOut++;
newTreeNode->label = nOut-1;

g = addToQueue (g, newTreeNode) ;

} else {
newTreeNode->label = newTreeNode->equalWith-
>label;
}
}

}
mOut = m;
tauOut = (int *)calloc (nOut,sizeof (int));
sigmaOut = (int *)calloc(nOut,sizeof (int));
deltaArrayOut = (int ***)calloc (m,sizeof (int**));

//constructing output delata array
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for (i=0;i<m; i++) {

deltaArrayOut[i] = (int **)calloc(nOut,sizeof (int*));
for (k=0; k<nOut; k++)
deltaArrayOut[i] [k] = (int*)calloc(nOut,sizeof (int));

for (k=0; k<nOut; k++)
for (j=0;j<nOut; j++)
deltaArrayOut[i] [k][J] = O;
}

//walk through the tree

q = NULL;
g = addToQueue (g, root) ;
while (q) {

treenode = deleteFromQueue (&q) ;
print (treenode) ;
if (treenode->equalWith == NULL) {
tauOut [treenode->label] = treenode->kapa;
}
if (treenode->firstchild) {
g = addToQueue (q, treenode->firstchild);
tmp = treenode->firstchild->nextsibling;
//pupulating output delta array
deltaArrayOut [treenode->firstchild->letter] [treenode-
>label] [treenode->firstchild->label] = 1;
while (tmp) {
deltaArrayOut [tmp->letter] [treenode->label] [tmp-
>label] = 1;
g = addToQueue (g, tmp);
tmp = tmp->nextsibling;

}

//populating sigma array
sigmaOut [0]=1;
for (i=1;i<nOut; i++)
sigmaOut[i] = O;
}

void reverseAutomation (int *sigma, int *tau, int n, int ***deltas, int
m) {
int i,3,k, tmp;
//exchanging sigma and tay arrays
for (i=0;i<n; i++) {
tmp = sigmal[i];
sigmali] = tauli];
taul[i] = tmp;
}
for (k=0; k<m; k++) {
for (i=0;i<n;i++) {
for (j=i+1;j<n;j++) {
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tmp = deltas(k][i]([j];
deltas[k][1][]j] = deltas[k][j]I[i];
deltas[k] [Jj][i] = tmp;

}

void outputDataToInputData () {
int i,3,k;

free(sigma) ;
free(tau);
sigma = (int *)calloc (nOut,sizeof (int));
tau = (int *)calloc(nOut,sizeof (int));
for (i=0;i<nOut;i++) {
sigmali] = sigmaOut[i];
tau[i] = tauOut[i];
}
free (sigmaOut) ;
free (taulOut) ;

//free delta input array

for (1=0;i<m; i++)
for (3=0;j<n; j++)
free(deltaArray[i]l[J]);
for (1=0; i<m; i++)
free (deltaArrayl(i]);
free(deltaArray) ;

deltaArray = (int ***)calloc (mOut,sizeof (int**));
for (1=0; i<mOut; i++) {
deltaArray[i] = (int **)calloc (nOut,sizeof (int*));
for (k=0; k<nOut; k++)
deltaArray[i] [k] = (int*)calloc (nOut,sizeof (int));
}

for (i=0; i<mOut; i++)
for (§=0; j<nOut; j++)
for (k=0; k<nOut; k++)
deltaArray[i] [j] [k] = deltaArrayOut[i][j][k];

//free delta output array

for (1i=0; i<mOut; i++)
for (3=0; j<nOut; j++)
free(deltaArrayOut[i][]j]);
for (1=0; i<mOut; i++)
free (deltaArrayOut([i]);
free (deltaArrayOut);
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}

n = nOut;
m = mOut;

void writeOutputFile (char *outputFileName) {

}

int i,7,k;
FILE *g;
g = fopen (outputFileName, "w") ;
fprintf (g, "%d %d\n",nOut,mOut) ;
//write sigma array
for (i=0; i<nOut-1;i++)

fprintf(g,"%d ",sigmaOut([i]);
fprintf (g, "%d\n", sigmaOut [nOut-11]) ;
//write tau array
for (i=0; i<nOut-1;i++)

fprintf(g,"%d ", tauOut([i]);
fprintf (g, "%d\n", tauOut [nOut-1]) ;

for (1i=0; i<mOut; i++) {
for (3=0; j<nOut; j++) {
for (k=0; k<nOut-1; k++) {
fprintf(g,"%d ",deltaArrayOut[i] [J][k]);
}
fprintf (g, "%d\n",deltaArrayOut[i] [J] [nOut-11);
}
}
fclose(g);

void main () {

char* inputFile = "primerl.txt";
char* outputFile;
loadFromFile (inputFile) ;

computeReducedNerodAutomaton () ;

outputFile = (char *) calloc(100,sizeof (char));
strcpy (outputFile, "result reduced nerode - ");
strcat (outputFile, inputFile);

//write result

writeOutputFile (outputFile);






Appendix B
Algoritmi za determinizaciju tezinskih i fazi
automata

Determinizacija nedeterministi¢kih kona¢nih automata predstavlja jedan
od najvaZnijih problema u teoriji automata. To je proces transformacije nede-
terministickog automata u njemu jezicki ekvivalentan deterministicki au-
tomat. Determinizacija ima vaznu ulogu u mnogim oblastima ra¢unarskih
nauka kao Sto konstrukcija prevodilaca, procesiranje teksta, procesiranje
prirodnih jezika, verifikacija i testiranje sistema i sli¢no, ali i u oblastima
izvan racunarstva, kao $to je molekularna biologija.

Postoji veliki broj algoritama za determinizaciju nedeterministickih au-
tomata. Standardni algoritam za determinizaciju nedeterministickih au-
tomata je, takozvana, podskup konstrukcija. Ovaj algoritam prevodi dati
nedeterministicki automat sa n stanja u jezicki ekvivalentan deterministicki
automat sa najvie 2" stanja. Primenom podskup konstrukcije, u najgorem
slu¢aju, dobijamo deterministi¢ki automat ¢iji je broj stanja eksponencijalno
veli od broja stanja polaznog nedeterministickog automata. Ipak, ovaj deter-
minizacioni algoritam je poznat po svojim dobrim performansama u praksi.
U skorije vreme, razvijeno je nekoliko algoritama baziranih na podkup kon-
strukciji, koji su memorijski efikasniji i koji kao rezultat daju automat sa
manjim brojem stanja od onog dobijenog koris¢enjem podskup konstrukcije.
Jedan od najpoznatijih algoritama za determinizaciju nedeterministi¢kih au-
tomata je algoritam Brzozowskog. Ovaj algoritam proizvodi minimalni de-
terministicki automat ekvivalentan originalnom automatu. I pored toga stoje
unajgorem slucaju kompleksnost ovog algoritma eksponencijalna, pokazalo
se da se u mnogim prakti¢nim primerima on izvrSava znatno brZe nego sto
se, na osnovu njegove kompleksnosti ocekuje.

Tezinski i fazi automati su klasi¢ni nedeterministicki automati kod kojih
prelazi, inicijalna i zavr$na stanja uzimaju vrednosti iz odredjenih struk-
tura. Kod teZinskih automata ove vrednosti, koje se najcesce se uzimaju iz
poluprstena se nazivaju tezine, dok se kod fazi automata one nazivaju is-
tinitosne vrednosti i uzimaju se iz odredjenih uredjenih, (naj¢es¢e mreZno
uredjenih) struktura. Ove vrednosti mogu da se koriste za modeliranje
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verovatnoce uspesnog izvrSenja prelaza ili koli¢ine energije potrebne za
uspesno izvrsenje prelaza. Pod determinizacijom teinskih (fazi) kona¢nih
automata podrazumevamo postupak njihovog prevodjenja u ekvivalentan
deterministicki teZinski (fazi) automat. Ovu vrstu determinizacije prvi su
proucavali Belohlavek, za konac¢ne fazi automate nad kompletnim mreama
i Lii Pedrycz, za kona¢ne fazi automate nad mreno uredjenim monoidima i
dali su postupak za determinizaciju fazi automata koji predstavlja uoptenje
podskup konstrukcije. Jo jedan algoritam, koji takodje predstavlja uoptenje
podskup konstrukcije (Nerodov automat) dali su Ignjatovi¢, Ciri¢ i Bog-
danovi¢. Nedavno, mnogi autori su se bavili prouc¢avanjem tezinskih au-
tomata kod kojih su teZine uzete iz nekih opstijih struktura, nazvanih jaki
bimonoidi, koji mogu biti definisani kao poluprsteni kod kojih ne mora da
vai zakon distributivnosti. M. Droste, T. Stuber i H. Vogler su, nedavno
poceli proucavanje kona¢nih teinskih automata nad proizvoljnim jakim bi-
monoidima i M. Droste, H. Vogler, M. Ciri¢ i J. Ignjatovi¢ su razvili metode i
algoritme za determinizaciju ovih automata. Zbog odsustva distributivnosti,
postoje tri razlic¢ite definicije ponaSanja teZinskih automata nad jakim bi-
monoidima: run semantika, inicijalna algebarska semantika i tranziciona
semantika. Nerodov automat je takodje konstruisan za teZinski automat nad
jakim bimonoidom i dokazano je da je on ekvivalentan polaznom tezinskom
automatu u odnosu na inicijalnu algebarsku semantiku.

Glavni zadatak predlozene doktorske disertacije bio bi razvijanje novih
metoda i algoritama za determinizaciju tezinskih i fazi automata, od ko-
jih neki predstavljaju metode za kanonizaciju tj. istovremeno vre i deter-
minizaciju i minimizaciju polaznih automata.

U prvoj glavi bili bi uvedeni osnovni pojmovi iz teorije mreZa, sa posebnim
osvrtom na reziduirane mreze, koje sluze kao struktura istinitosnih vrednosti
pri izucavanju fazi skupova. Dalje, bili bi uvedeni osnovni pojmovi teorije
fazi skupova i fazi relacija, a zatim bi bili definisani osnovni pojmovi teorije
poluprstena, pojam jakih bimonoida, vektora i matrica nad poluprstenima i
formalnih stepenih redova.

U drugoj glavi bili bi predstavljeni glavni pojmovi i rezultati teorije
tezinskih i fazi automata i jezika. U skladu sa tim bile bi razmatrane tri
vrste ponasanja tezinskih automata nad jakim bimonoidima: ran sematika,
inicijalna algebarska semantika i tranziciona semantika. Zatim bi bili posma-
trani deterministicki teZinski, odnosno fazi automati. Dalje, bili bi razmatrani
faktor teZinski odnosno fazi automati u odnosu na relaciju kongruencije na
skupu stanja datog automata.

U glavi tri bio bi dat algoritam za determinizaciju teinskih automata nad
jakim bimonoidima koji generiSe deterministicki tezinski automat ekviva-
lentan originalnom automatu. Bilo bi dokazano da je kardinalnost dobijenog
automata uvek manja ilijednaka od kardinalnosti odgovarajuceg Nerodovog
automata, a osim toga, pokazalo bi se da ovako generisan automat moe biti
dobijen i redukcijom Nerodovog automata u odnosu na odgovarajuc¢u kon-
gruenciju. Zbog toga ¢e on biti nazvan redukovani Nerodov automat. Ovde
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bi bili dati potrebni i dovoljni uslovi pri kojima je redukovani Nerodov au-
tomat konacan.

U glavi ¢etiri bio bi razvijen metod za determinizaciju tezinskih automata
nad komutativnim poluprstenima, koji predstavlja uopstenje algoritma Br-
zozowskog za determinizaciju klasi¢nih nedeterministickih automata. Ovaj
metod bi se zasnivao na sukcesivnoj primeni dve jednostavne operacije:
reverzije i konstrukcije Nerodeovog automata. Kao rezultat ovaj algoritam
bi davao minimalni deterministi¢ki tezinski automat ekvivalentan polaznom
automatu.

U petoj glavi panja bi bila posve¢ena metodama za determinizaciju fazi
automatima nad kompletnim reziduiranim mreama, koje istovremeno vrse
i redukciju automata. Ta¢nije, bila bi predstavljeni algoritmi koji simultano
izvrsavaju determinizaciju i redukciju polaznih fazi automata.

U Sestoj glavi takodje bi bio razmatran metod za determinizaciju fazi
automata nad kompletnim reziduiranim mreama, takozvana determinizacija
pomocu stepena inkluzije. Ova determinizacija predstavlja istovremeno i
determinizacioni i minimizacioni algoritam.

U nastavku navodimo glavne rezultate predlozene doktorske disertacije.

1. Uvodni pojmovi i rezultati

Jaki bimonoid je struktura (K, +,-,0,1) koja zadovoljava sledece: (K, +,0) je
monoid sa neutralnim elementom 0, (K, -, 1) je monoid sa neutralnim elemen-
tom 1, operacija + je komutativna i 0 je multiplikativna nula, tj., k-0=0=0-k
za svako k € K. Za jaki bimonoid K kaZemo da je desno distributivan, ako
zadovoljava (a+b)-c=a-c+b-c, za svako a,b,c € K, a kaZzemo da je K levo
distributivan, akoa-(b+c)=a-b+a-czasvakoa,b,c € K.

Poluprsten je struktura (S,+,-,0,1) takva da vazi: (S,+,0) je komutativan
monoid, (S,-,1) je monoid, distributivni zakoni vaze za sve a,b,c€ Si0-a =
a-0 =0 za svako a € S. Drugim re¢ima, poluprsten je jaki bimonoid koji je
desno i levo distributivan. Za poluprsten S kaZemo da je komutativan ako
a-b="b-azasvakoa,b € S. Poluprsten S je lokalno konacan ako je svaki njegov
konacno generisan podpoluprsten konacan. Na osnovu ovoga imamo da je
poluprsten (S, +,-,0,1) lokalno konacan akko su oba monoida (S, +,0)i(S,,1)
lokalno kona¢na.

Vektor nad nepraznim skupom A sa vrednostima u S je preslikavanje
v:A — S. Matrica nad A i B sa vrenostima u S je takodje preslikavanje
p:AxXB— S, 1., toje proizvoljan vektor nad A X B sa vrednostima u S.

Zaneprazne skupove A, Band Cimatrice uj : AXB — Sand yp : BXxC— S,
proizvod @ - je matrica nad A i C definisana sa

(t1-p2)(a,0) = ) (@, b)- pa(bc), (B.1)
beB

zasvea€AiceC. Dalje,akosuvi:A— S, u:AXB— Sivy:B— S, proizvodi
vy-pip-vy suvektori nad B i A, respektivno, definisani sa



116 B Algoritmi za determinizaciju teZinskih i fazi automata

1@ = ) i@ p@b), (@v)@=) p@b) vab), (B2

aceA beB

za sve a € Aib € B. Proizvod dva vektora vy i v, nad A je element skupa S
dat sa:

ViV = v v1(a) ®v2(a). (B.3)

acA
Formalni stepeni red nad X i K (skréeno red), je proizvoljno preslikavanje
@ : X* — K. Umesto ¢(u) piSemo (¢, u) za svako u € X*.Skup svih redova nad
X 1K se oznacava sa K{X*)).
Reziduirana mreZa je algebra .¥ = (L,A,V,®,—,0,1) takva da

(L1) (L,A,V,0,1) je mreza sa najmanjim elementom 0 i najveéim 1,
(L2) (L,®,1)je komutativni monoid sa jedinicom 1,
(L3) ®1i— formiraju adjungovani par , tj. zadovoljavaju svojstvo adjung-
cije: zasve x,Y,z€ L,
XQY<z © Xx<Y—>2z. (B.4)

Ako je osim toga (L, A, V,0,1) kompletna mreza, tada £ nazivamo kompletna
reziduirana mreZa .

Operacija ® (zvana multiplikacija) i — (zvana reziduum) namenjene su za
modeliranje konjunkcije i implikacije odgovarajuéih logi¢ih ra¢una, i supre-
mum (/) i infimum (A) namenjeni su za modeliranje ekstenzionalnog i
univerzalnog kvantifikatora, respektivno. Operacija <> definisana sa

xey=x-yAY-—x), (B.5)

naziva se bireziduum (ili biimplikacija), i koristi se za modeliranje ekvivalencije
istinitosnih vrednosti.

Fazi podskup skupa A nad £, ili samo fazi podskup od A, je svako preslika-
vanje iz A u L. Jednakost fazi poskupova f i g definiSe se obi¢no kao jednakost
preslikavanja, tj. f = g ako i samo ako f(x) = g(x), za svako x € A. Inkluzija
f < g takodje se definiSe kao jednakost preslikavanja: f < g ako i samo ako
f(x) < g(x), za svako x € A. Zajedno sa ovim parcijalnim uredjenjem skup L*
svih fazi podskupova od A formira kompletnu reziduiranu mrezu, u kojoj
su presek A fi i unija V¢ fi proizvoljne familije { fi};e; fazi podskupova od
A preslikavanja iz A u L definisana sa

[Aﬂ]m: N\ fi), [Vﬂ](x) =\/ i,

iel i€l iel iel

i proizvod f ® g je fazi poskup definisan sa: f ® g(x) = f(x) ® g(x), za svako
x €A.

Fazi relacija izmedju skupova A i B je svako preslikavanje iz A X B u L, tj.
svaki fazi podskup od A X B, i jednakost, inkluzija (uredjenje), unija i presek
fazi relacija definisani su kao u slu¢aju fazi skupova. Skup svih fazi relacija
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izmedju A i B oznati¢emo sa L*B. Specijalno, fazi relacija na skupu A je
svaka funkcija iz A X A u L, tj fazi poskup od A x A. Skup svih fazi relacija na
Abiée oznaten sa L4, Inverz fazi relacija @ € LA*P je fazi relacija a~! € LB*4
definisana sa a~1(b,a) = a(a,b), za svako a € A i b € B. Krisp relacija je fazi
relacija koja uzima vrednosti samo u skupu {0,1}, i ako je « krisp relacija iz
A u B, tada izrazi "a(a,b) = 1”1 ”(a,b) € @” imaju isto znalenje.

Za neprazne skupove A, B i C, i fazi relaciju a € L8 i g € LBXC, njihova
kompozicija a0 f € L**C je fazi relacija definisana sa

(@op)(a,0)=\/ a@b)epb,c), (B.6)

beB

zasveacAiceC. Za felt, ae P igel®, kompozicije foaeL? i
aog € L4 su fazi skupovi definisani

(foa)=\/ f@ea@b), (aog)@=\/a@hogb),  B7)

acA beB

zasvakoa € Aib € B. Konagno, kompozicija fazi skupova f,g € L4 je element
fog €L (skalar) definisan sa

fog=\/ f@®ga). (B.8)

acA

Fazi relacija ¢ na skupu A naziva se refleksivna, ako ¢(a,a) = 1, simetricna,
ako @(a,b) = p(b,a), i transitivna, ako @(a,b)® p(b,c) < p(a,c), za sve a,b,c € A.
Refleksivna i tranzitivnafazi relacija naziva se fazi kvazi uredjenje. Simetri¢no
fazi kvazi uredjenje je fazi ekivalencija. Za kvazi uredjenje ¢ na A i element
a € A, p-afterset od aje fazi skup ap € LA definisan sa ap(b) = ¢(a,b), i p-foreset
od a je fazi skup @a € L4 definisan sa pa(b) = ¢(b,a), za sve b € A. Ako je ¢
fazi ekvivalencija, tada se g-afterset od a poklapa sa @-foresetom od a, i naziva
se fazi klasa ekvivalencije od a.

2. TeZzinski i fazi automati

Neka je K jaki bimonoid i X (konacan) alfabet. TeZinski automat nad X i
K je ¢etvorka o7 = (A,6,0,7), pri ¢emu je A konacan neprazan skup, skup
stanja, 6 : AX X X A — K je tezinska funkcija prelaza, o : A — K inicijalni vektor
it:A — Kzavr$ni vektor. Za svako x € X definiSemo teZinsku matricu prelaza
(odnosno teZinsku relaciju prelaza) 6x : AX A — K sa 6x(a,b) = 6(a,x,b), za sve
a,b € A. Ako je &/ konacan tezinski automat, onda |<7| = |A|, tj., |%/| oznacava
broj stanja automata 7.

Zbog odsustva distributivnosti u K, ponasanje tezinskog automata moze
biti definisano na viSe razli¢itih nacina. Konkretno, razlikujemo inicijalnu
algebarsku semantiku,ran semantiku i tranzicionu semantiku.
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Inicijalna algebarska semantika: Za svako u € X* definiSemo vektor o, : A — K
induktivno, na slede¢i na¢in: o, = 0, i za sve u € X" i x € X stavljamo o,y =
0y - Ox. OcCigledno, ako je u = x1x3--- x4, onda

0y =(...((0-0x;) *0x,) ...) - Ox,,. (B.9)
Red [[#]]; u K{X*)) definisan sa
([ Nisu) = 0u-T=((..((0-0xy) - Oxy) - -..) - Ox,) - T . (B.10)

za svako u = x1x---x, € X*, se naziva i-ponasanje automata <.

Tranziciona semantika: Za svako u € X* definiSemo vektor 6, : AXA —» K
induktivno, na slede¢i nacin: é; je jedini¢na matrica, i za svakou € X*ix € X
stavljamo O,y = 0y - 0x. Drugim re¢ima, ako je u = x1x7---x, € X", onda

Ou = (... ((0x; - Ox,) * Ox3) - ...) - Ox- (B.11)
Red [[#]]; u K{X*)) definisan sa
(L1l u)=(0-0u) T (B.12)

za svako u € X", se naziva t-ponasanje automata 7.
Ran semantika: Red [[«7]], u K{X*)) definisan sa

(Lo 1l u) = Z (a0) - Ox; (a0, 1) - Ox(A1,82) - .. .- O, (Ap-1,0n) - T(@n) -
(a1 ..., )EATF1
(B.13)
za svako u = x1x---x, € X*, se naziva r-ponasanje automata <7 .

Neka je s € {i,t,r}. Red ¢ € K(X*)) se naziva s-raspoznatljiv ako postoji
konacan tezinski automat </ nad X i K tako da [[#/]]s = ¢. KaZemo da su dva
tezinska automata &/ and &’ nad X i K s-ekvivalentni ako [[«/]]s = [« ]ls.

U nastavku, .Z ¢e biti kompletna reziduirana mreza i X ¢ée biti (konacan)
alfabet. Fazi automat nad £ i X , ili samo fazi automat, je uredjena Cetvorka
o/ =(A,0,0,7), gde je: A neprazan skup (skup stanja automata) , 6 : AXXXA —
L je fazi poskup od AxXxA (fazi tranziciona funkcija), o : A — L je fazi
podskup od A (fazi skup inicijalnih stanja), a 7 : A — L je fazi podskup od A
(fazi skup zavrsnih stanja). Vrednost 0(a, x,b) mozemo interpretirati kao stepen
do koga ulazno slovo x € X uzrokuje prelaz iz stanja a € A u stanje b € A,
dok vrednosti 0(a) i 7(a) mozemo interpretirati kao stepen do kog a pripada
skupu inicijalnih odnosno zavrsnih stanja. Iz metodoloskih razloga ¢emo
dozvoliti da skup stanja A bude beskonac¢an. Fazi automa ¢iji je skup stanja
konacan naziva se konacan fazi automat.

Reverzni fazi automat automata &7 = (A, 0,0, 7) je definisan kao fazi automat

o =(A,$,5,7) &ija je fazi tranziciona funkcija prelaza data sa:

S(ar,x,a2) = 8(az,x,m1) zasvea,ap €A, x€X,
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a fazi inicijalna i zavr$na stanjasué =7ti7 =o0.

Fazi automat &/ = (A,(SA,GA,TA) i’ = (A',éA,,GA,,TA,) su izomorfni ako
postoji bijekcija ¢ : A — A’ takva da 64(a,b) = 6?’ (p(a),p(b)), zasveabe Ai
x € X, i takodje, oA(a) =¥ (P(a)) i ™) =4 (¢(a)), za svakoa € A.

Fazi jezik u X* nad .Z, ili samo fazi jezik, je svaki podskup skupa X", ;.
svaka funkcija iz X" u L. Fazi jezik raspoznat fazi automatom o/ = (A,6,0,7), u
oznaci [[#/]], je fazi jezik .#(X*) definisan sa

[ 1) = 0" ot

[[d]](U)ZGAOCSfl Oész-no(SA oTA,

Xn

(B.14)

zasve U =X1Xz...xX, € XT, gdeje x1,x2,...,x, € X.

Fazi automati &/ i & su jezicki ekvivalentni, ili samo ekvivalentni, ako je
[[«]] = [Z]l.

Zadatifazijezik @: X* — Live X*,definifemov ¢ : X* - Lipo 1 : X* > L
sa v p(u) = p(vu) i o~ (1) = p(uv) za u € X*. Fazi jezik v~ !¢ naziva se levi
derivat, a fazi jezik pv~! desni derivat od ¢ u odnosu na v.

Kardinalnost fazi automata </ = (A,64,04,14), u oznaci |<7|, se definise
kao kardinalnost skupa stanja automata .. Fazi automat </ je minimalni fazi
automat jezika f € 7 (X*) ako raspoznaje jezik f i |«/| < |/’|, za svaki automat
</’ koji raspoznaje f. Minimalni fazi automat koji raspoznaje dati fazi jezik
f ne mora obavezno biti jedinstven do na izomorfizam. Ovo takodje vaziiu
slu¢aju nedeterministi¢kih automata.

Neka je &/ = (A,0,0,7) fazi automat nad X i .Z, respektivno teZinski au-
tomat nad X i K. Fazi (tezinska) funkcija prelaza ¢ je deterministicka ako za
svaki x € X i svako a € A postoje a’ € A takvi da 6x(a,a") =1,1 6x(a,b) =0, za
svako b € A\ {a’}. Za fazi skup inicijalnih stanja (teZinska inicijalna funkcija)
o kaZzemo da je deterministicka ako postoji agp € A takvo da o(ag) =11i0(a) =0
za svako a € A\ {ap}. Ako su oba o i 6 deterministicke, tada sa &/ naziva
deterministicki fazi (teZzinski) automat (krace: dfa, respektivno dta).

3. Redukovani Nerodov automat

U ovoj sekciji, ukoliko nije naglaseno drugacije, K ¢e biti jak bimonoid, i
alfabet ¢e biti X = {x1,x»,...,x,,}, za neko n € IN.

Neka je &7 = (A,6,0,7) konacan tezinski automat nad X i K. Postavimo
AN ={oy | u € X*},1definis$imo 6y : ANX X > Ayitn: Ay — Ksa

ON(Ow,X)=0ux 1 TN(OW) =0u-T, (B.15)

za svako u € X" i x € X. Tada je o = (AN, 0N, 0¢,TN) krisp-deterministicki
tezinski automat nad X i K, koji se naziva Nerodov automat od automata <7, i
g/ je i-ekvivalentan sa &7, j. [[on]] = [[«/]I;.

Neka je &7 = (A,0,0,7) tezinski automat nad X i K. Za svaku re¢ u € X* i
svako slovo x € X definisimo vektor 17;, : A — K sa
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15 = Oux, (B.16)
tj., My = 0u - 0x. Osim toga, za svaku re¢ u € X* definiSemo skalar «x, € K sa
Ky =0y-T. (B.17)
Dalje, za svaku re¢ u € X* definiSemo feZinsku tranzicionu (n+1)-torku 6,, sa
Ou = (Mo 1" 1) (B.18)

Naredna lema pokazuje da teZinska tranziciona (1 +1)-torka 6,y mozZe biti
izra¢unata iz 6,, za proizvoljnou € X*ix € X.

Lema 2.1. Neka je o/ = (A,0,0,7) konacan teZinski automat nad X i K. Tada za sve
u € X* i x € X vaZi sledece:

Oux = (173, Oxy oo oy * Oy 1y~ T)- (B.19)

Sada, postavimo Agr = {0, | u € X*}, i definiSimo 6g : AR XX — Ar i tr:
Agr — K sa
OrR(0,,%) = Oyx 1 TR(64) =Ky, (B.20)

zasvakoue X*ixe X.
Tada vazi sledece.

Teorema 2.1. Neka je o/ = (A,0,0,7) konacan teZinski automat nad X i K. Tada
je @R = (AR,0OR,0¢,TR) deterministicki tezZinski automat nad X i K, i o/g je i-
ekvivalentan sa o7, tj. [[oR]] = [[</]l;.

Primetimo da za svaku re¢ u € X* tezinska tranziciona (n + 1)-torka
Ou = (1!, .-, ", %) MoZe biti posmatrana kao uredjeni par &ija je prva kom-
ponenta n-torka (nﬁl,...,r]ﬁ”), a druga komponenta je «,. S druge strane, n-
torka (1}, ..., ;") moZe biti identifikovana kao X x A-matrica 1, nad K defin-
isana sa

nu(x,a) = m(a), (B.21)
zasvex € Xia € A, jer za proizvoljno u,v € X* vaZzi
=1 © (VxeX)VacA)n(x,a)=1n,(x,a) &
& (YxeX)(YaeA) i@ =i &
o (VxeX)ni=n © M, ") =5 7).

Odatle, 6, moze biti razmatran kao par (1, «y).
Na osnovu (B.16) i (B.21), zasve u € X*, x € Xia € A imamo

u(¥,8) = 01(@) = (04 0:)(a) = Y, 0u(b) - 6x(b,a). (B.22)
beA
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Specijalno, uslucaju kadaje </ nedeteministicki (Bulov) automat, n, moZzemo
prirodno interpretirati kao: 1, je skup svih izlaznih tranzicija iz skupa stanja
ou. U ovom slucaju, za razliku od podskup konstrukcije, gde se radi sa
skupom stanja, konstrukcija «/; radi sa skupom tranzicija.

Teorema 2.2. Neka je of = (A,0,0,7) konacan teZinski automat nad X i K. Tada je
| oZR| < | o).

Automat .2/r moZze biti dobijen redukcijom Nerodovog automata .y pomo¢u
odgovarajuée kongruencije. Zbog toga ¢emo @i zvati redukovani Nerodov
automat od <7 .

Neka je &7 = (A,6,0,7) konacan tezinski automat nad X i K. Za svaki
v : A — K, tezinski konacan automat (A,6,0,7’) se naziva zavrsna varijanta
od <7, i sa Rec;(#/,0) ozna¢imo familiju svih redova u K{(X*)) koji su i-
ponasanja neke zavrsne varijante od «7. Za svakia € A, red [[#]] @) 1 K(X*Y)
je definisan sa

(N, u) = 04 (a),

za svako u € X*.
Dalje, za svaki konacan tezinski automat o7 = (A,0,0,7) nad X i K, i svaki
x€XiaeA,definisimo red [« ] u K(X*)) sa

(LT, u) = 5 (a)

za svako u € X*. Lako je pokazati da je [/ 1) = [[déx'“)]], gde je ,cf/’lgx'“) =
(AR,(SR,Qg,Tg’a)) zavr$na varijanta od @/ sa kona¢nim tezinskim vektorom

Tg'u) definisanim sa Tg’u)(eu) =1(a), za svako u € X*. Takodje, za svakoa € A,
x€Xiue X imamo da

(LT, u) = nji(a) = 0ur(@) = ([FT, ux),

istoga, red [« [ 0> je desni derivat reda [« 11 4 odnosu na x.
Sledeca teorema daje potrebne i dovoljne uslove pod kojima je redukovani
Nerodov automat konacan.

Teorema 2.3. Neka je of = (A,0,0,7) konacan teZinski automat nad X i K. Sledeci
uslovi su ekvivalentni:

(1) Automat ofr je konacan;

(2) Nerodov automat <y je konacan;

(8)  Desna kongruencija Ry, definisana sa (u,v) € Ryy & 0, =0, u,ve X" ima
konacan indeks;

(4)  Redovi [/, zasvexe Xiae€A,i[[«]; imaju konacne slike;

(5) Redovi (px‘l, za sve @ € Reci(#/,0) i x € X, i [[«/]|; su dtka-raspoznatljivi.

Sada, dajemo algoritam za ra¢unanje redukovanog Nerodovog automata.
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Algoritam 2.1. (Konstrukcija automata «/z) Ulaz algoritma je konacan te-
zinski automat o/ = (A,6,0,7) nad X = {xy,...,x,} 1 K, i izlaz je deterministicki
tezinski automat o7& = (AR, Or, O¢,Tr) koji je i-ekvivalentan sa 7.

Procedura se sastoji u konstrukciji grafa (stabla) prelaza od <7; direktno iz
grafa prelaza od /. Stablo se konstruiSe induktivno na sledeci nacin:

(A1) Koren stablaje 0, = (000y,,...,000y,,007), istavljamo Ty = {O}.

(A2) Nakon i-tog koraka drvo T; je konstruisano, i ¢vorovi T; su oznaceni
sa ‘zatvoren’ ili 'ne-zatvoren’. Znacenje ova dva pojma biée objasnjeno u
nastavku.

(A3) Uslede¢em koraku konstruiSemo stablo T;,1 obogacivanjem stablo T;
na sledeéi nacdin: za svaki ne zatvoren list 6,, = (nil e T, ) kOji se javlja
u T;, gde je u € X*, i za svako x € X dodajemo ¢vor Oux = (173, - Oxy s os 113 -
Ox,, ;- T) 1 granu iz 0, u 0, oznalenu sa x. Ako je, u nastavku, 0,,, stanje
koje je ve¢ konstruisano, tada markiramo 8, kao zatvoreno. Procedura se
zavr$ava kada su svi listovi markirani kao zatvoreni.

(A4) Simultano, za svaki ne zatvoren list 0, koji se pojavljuje u T;, gde je
u € X*, ratunamo vrednost 7r(0,) pomocu formule (B.20).

(A5) Kadajestablo prelaza </ konstruisano, briSemo sve znake zatvorenja
i lepimo listove za unutrasnje ¢vorove sa istom oznakom. Dijagram koji
se dobija je graf prelaza od 2.

Ako je poluprsten K slabo lokalno konacan, tada se algoritam zavrSava u
kona¢nom broju koraka, za svaki tezinski kona¢an automat nad K, i rezultat
je deterministicki konacan tezinski automat.

S druge strane, ako K nije lokalno konacan, tada se algoritam zavrSava u
kona¢nom broju koraka pod uslovima odredjenim Teoremom 2.3..

4. Determinizacija tipa Brzozowskog

Neka je o7 = (A,0,0,7) fazi automat nad X i .£. Reverzni Nerodov automat
od <7 je Nerodov automat reverznog fazi automata .« od 7. Jednostavnosti
radi, oznaci¢emo reverzni Nerodov automat od .« sa @4; (umesto sa (A)N).
Primetimo da je </ = (A, 0, Te, Txy), gde je Ag = {tu | u € X7}, i funkcija
o5t Ag X X — Ay ity : Ay — Lsu date sa

5ﬁ(7:u/x) = Txu, Tﬁ(Tu) =Ty00, (B.23)

zasveue X ixeX.
Za svako stanje a € A, desni fazi jezik povezan sa stanjem a je fazijezik t, € LX'
definisan sa
Ta(ut) = \/ 5*(a,u,b) @ (b),

beA
za svako u € X*. Drugim recima, 1, je fazi jezik raspoznat fazi automatom
o/’ = (A,0d,a,7) dobijen iz &/ zamenom ¢ sa jednim krisp inicijalnim stanjem
a. Levi fazi jezik povezan sa stanjem a je fazijezik o, € LX" dat sa
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o) = \/ o(b)®5'(b,u,0),

beA

za svako u € X", tj. fazi jezik raspoznat fazi automatom <’ = (4,0,0,{a})
dobijen iz &7 zamenom 7 sa deterministi¢kim zavr$nim stanjem a.

Lema 2.2. Desni fazi jezik povezan sa stanjem a fazi automata </ je jednak reverzu
levog fazi jezika povezanog sa stanjem a u reverznom fazi automatu <f .

Za deterministi¢ki fazi automat o/ = (4, 9,49, ), desni fazi jezik povezan
sa stanjem 2 u & je dat sa

Ta(u) = (5" (a,u)), (B.24)

zasve u € X*,ispecijalno, 7,, = [[/]], tj. desni fazi jezik povezan sa inicijalnim
stanjem ag je fazi jezik respoznat sa «/. Lako se moZe pokazati da vazi i
sledece:

Lema 2.3. Neka je o7 = (A, 0,a0,7) deterministicki fazi automat. Tada
Tsau) = U ' Ta, (B.25)
zasvea€Aiue X",

Akoje o7 =(A,0,a0,7) deterministi¢ki fazi automat, definiSemo drugi de-
terministicki fazi automat .24 = (A;, 6,74y, 7r) na sledeéi nacin: skup stanja A,
je skup svih desnih jezika povezanih sa stanjima iz <7, 1 6, : A, x X — A, i
T, : Ay, — L su dati sa:

0r(Ta, X) = To(a,x), Tr(Ta) = Ta(e),
za sve 7, € A,. Imamo sledece:

Teorema 2.4. Neka je o7 = (A, ,a0,7) dostiZan deterministicki fazi automat. Tnda
je <t dostiZan deterministicki fazi automat izomorfan derivatnom automatu </ fazi
jezika f =[[#]].

Automat <7 se zove automat desnog jezika od < .
Iz predhodne teoreme dobijamo slede¢u posledicu.

Lema 2.4. Neka je o7 = (A,0,a9,7) dostiZan deterministicki fazi automat. Ako su
svi desni fazi jezici povezani sa stanjima od </ medjusobno razliciti, tada je o
minimalan.

Primetimo da ako je &/ = (A,0,a9,7) krisp deterministi¢ki fazi automat,
tada je njegov reverzni Nerodov automat szﬁ = (Aﬁ, 0% Tes Tﬁ), gde je Ay
i 6y Ay X X — Ay ima istu formu kao u opstem slucaju, dok je funkcija
Ay — L data sa

T (Tu) = Tu(ao), (B.26)



124 B Algoritmi za determinizaciju teZinskih i fazi automata

zasveu € X*.

Teorema 2.5. Za svaki dostiZan deterministicki fazi automat o = (A,0,a9,7),
reverzni Nerodov automat <5 je minimalan deterministicki fazi automat ekovi-

valentan sa o .

Neka je &7 fazi automat nad alfabetom X i kompletnom reziduiranom
mrezom .. Automat Brzozowskog od </, u oznaci 7, je deterministicki fazi
automat dobijen iz </ kada se dva puta primeni konstrukcija reverznog
Nerodovog automata, tj.,

= (gl = (D)
U nastavku predstavljamo glavni rezultat ovog odeljka.

Teorema 2.6. Neka je of fazi automat nad alfabetom X i kompletnom reziduiranom
mreZom £ . Automat Brzozowskog /g je minimalan deterministicki fazi automat
ekvivalentan sa of .

Kao $to je reCeno, algoritam Brzozowski tipa za fazi automate je proce-
dura koja konstruiSe deterministi¢ki fazi automat <73 iz fazi automata <7 tako
§to se dva puta primeni konstrukcija reverznog Nerodovog automata. Zbog
toga, umesto algoritma za konstrukciju automat Brzozowskog, mi dajemo al-
goritam za konstrukciju reverznog Nerodovog automata, i da bi konstruisali
automat Brzozowskog fazi automata <7, potrebno je da dva puta primenimo
ovaj algoritam.

Algoritam 2.2. (Konstrukcija reverznog Nerodovog automata /) Ulaz al-
goritmajekonacanfaziautomat.o/ = (4, o4,64,14),iizlaz je krisp-deterministic¢
fazi automat o7 = (A, Oy, Te, TRp)-

Graf prelaza od @74 je konstruisan induktivno na slede¢i nacin:

(Al) Koren stabla je 7, = ™, i stavljamo Ty = {1} i s(t¢) = 1, i ratunamo
Tﬁ(’c{) =1, 004

(A2) Nakon itog koraka neka je stablo T; konstruisano, i ¢vorovi u T;
su oznaceni sa ‘zatvoren’ ili ‘ne-zatvoren’. Znacenje ovih pojmova bice
objasnjeno u nastavku.

(A3) U slede¢em koraku konstruisemo stablo T, obogacivanjem stabla T;
na sledeci nacin: za svaki ne zatvoren list 7, koji sejavljau T;, gdeje u € X*,
iza svaki x € X dodajemo ¢vor Ty, = 6? o1, igranuiz T, u Ty, 0znaéenu
sa x. Simultano, proveravamo da li je 7y, fazi skup koji je ve¢ kon-
struisan. Ako jeste, tj. Ty, je jdenako nekom predhodno izra¢unatom 7,
oznafavamo Ty, sa zatvoren i postavljamo s(7,) = s(7y). Inale, ratunamo
vrednost T (Txu) = Tau © g4 postavljamo s(7x,) za neoznacen ceo broj. Pro-
cedura se zavrSava kada su svi listovi oznaceni sa zatvoren.
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A4) Kada je stablo prelaza @4 konstruisano, briSemo briSemo sve znake
J P N
zatvorenja i lepimo listove za unutrasnje ¢vorove sa istom oznakom. Di-
jagram koji se dobija je graf prelaza od .o74;.

5. Simultana determinizacija i redukcija

Neka je o7 = (A,aA,(SA,TA) fazi automat. Fazi relacija ¢ na A se naziva
desno invarijantna ako

podl<Logp, zasvakox € X, (B.27)
pott <4, (B.28)

i naziva se slabo desno invarijantna ako
poth <1l za svako u € X*. (B.29)

Sli¢no definiSemo dualne koncepte. Fazi relacija ¢ na A je levo invariantna
ako

@o 6?, zasve x € X, (B.30)
4, (B.31)

i @ je slabo levo invariantna ako
A A *
0, °0Q <0y, zasveueX. (B.32)

Neka je o7 = (A,aA,(SA,TA) fazi automat i ¢ fazi relacija na A. Za svako
u € X* definiSemo fazi skup ¢, : A — L induktivno, na sledeéi nacin: za
nepraznu rec ¢ i sve u € X* i x € X postavljamo

pe=0%0p, Qu=puodiop (B.33)
Jasno, akoje u = x;...x,, gdeje x1,...,x, € X, tada

pu=0"0podl opo..o8f op. (B.34)
Sada postavljamo Ay = {¢, | u € X*},idefiniSemo 6y : Ap XX = ApiTy: Ap —

L kao §to sledi:
5@((Pu/x) = Qux, T(p(%) =@yuo° TAr (B.35)

zasveu € X" ix € X. Ako ¢, = ¢, zaneke u,v € X*, tada za sve x € X imamo
da vazi

6(0((Pu/x) = Qux = Py 00y oY =@y 0 Oy OP = QPyx = 6q)(§0v/x)/
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i stoga je 0, dobro defininsana funkcija. Jasno je da je 7, takodje dobro
definisana funkcija, i kao posledica toga, %, = (Ap, ¢«,0p, T) dobro definisan
deterministicki fazi automat.

Glavni problem sa kojim se ovde sre¢emo jeste da se nadje fazi relacija ¢
takva da je automat 2%, ekvivalentan sa originalnim automat 7.

Teorema 2.7. Neka je o = (A,04,6%,14) fazi automat i ¢ refleksivna slabo desno
invariantna fazi relacija na </. Tada je <y = (Ap,Pe,0¢,Tp) dostizan determin-
isticki fazi automat ekvivalentan sa </ .

Teorema 2.8. Nekaje </ = (A,0%,6%,74) fazi automat i ¢ slabo desno invariantno
fazi kvazi-uredjenje na 7. Tada je automat <7, izomorfan Nerodovom automatu
afterset fazi automata < [ .

U slucaju kada se radi sa desno invariantnim fazi kvazi uredjenjima,
moguce je uporediti veli¢inu odgovaraju¢ih automata.

Teorema 2.9. Neka je o/ = (A,GA,(SA,TA) fazi automat i @ i ¢ desno invariantna
fazi kvazi-uredjenja na < takva da ¢ < ¢. Tada je automat <7y homomorfna slika
automata <y i || < ||

Primetimo da kad je ¢ refleksivno slabo levo invariantno fazi kvazi ured-
jenje na fazi automotu <7, tada je <7, Nerodov automat od .27, i ne dobijamo
nikakvu novu konstrukciju. Osim toga, vazi sledece.

Teorema 2.10. Neka je o = (A,0%,064,14) fazi automat i ¢ slabo levo invariantno
fazi kvazi uredjenje na <7 . Tada je Nerodov automat afterset fazi automata < [ je
izomorfan Nerodovom automatu od <7 .

Pokazacemo da slabo levo invariantna fazi relacija moze biti veoma ko-
risna u drugoj konstrukciji, i moZe da se koristi u determinizaciji reverznog
fazi automata od &7

Neka je o = (A,04,64,74) fazi automat i ¢ fazi relacija na A. Za svako
u € X* definiSemo fazi skup ¢* : A — L induktivno, na sledeéi nacin: za
praznu re¢ ¢ i sve u € X" i x € X postavljamo

l]l){' _ ¢OTA, l]l)xu — ll)oéf o l]l)u (B.36)
Jasno, akoje u = x;...x,, gdeje x1,...,x, € X, tada
Qbungoé?logbo,,,oé‘ﬁ‘noz’bo’[ﬁ‘. (B.37)

Sada stavljamo AY = {¢, | u € X*}, i definiS§emo 6¥ : A¥ x X > AV itV : AY > L
na slededi nadin:

) =y9™, @) =0y, (B.38)
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zasveu € X*ix € X. Akoje ¢, = ¢y, zaneke u,v € X*, tada za sve x € X imamo
daje

8 (9", X) = Y = post oyt = pool oy’ =yt = ¥(y",x),

istoga, 6% je dobro definisana funkcija. Jasno, 7V je dobro definisana funkcija,
paje ¥ = (A¥,¢*¢,6%,7%) dobro definisan deterministicki fazi automat.

Teorema 2.11. Nekaje o = (A,04,64,14) fazi automat i  slabo levo invariantno
fazi relacija o . Tada je o7V = (AY,9¢,6Y,1¥) dostizan deterministicki fazi automat
ekvivalentan reverznom fazi automat od < .

Teorema 2.12. Neka je o7 = (A,0%,6%,74) fazi automat i slabo levo invariantno
fazi kvazi uredjenje na <7. Tada je automat <7V izomorfan reverznom Nerodovom
automatu od afterset fazi automata < [1.

Teorema 2.13. Neka je o = (A,0%,6%,14) fazi automat i i ' levo invariantna
fazi kvazi uredjenja na <f takva da <’ Tada je automat /¥ homomorfna slika
automata /¥,

Primetimo dae reverzni Nerodov automat igra vaznu ulogu u deter-
minizaciji Brzozowski tipa za fazi automate. Naime, pokazano je u [60] da
kada se podje od fazi automata <7, i dva puta uzastopno primeni konstruk-
cija reverznog Nerodovog automata proizvodi minimalni deterministicki
fazi automat koji je ekvivalentan sa /. Pokazac¢emo da prva od ove dve
konstrukcije moZe biti zamenjena konstrukcijom automata «/¥, za neku re-
fleksivnu slabo levo invariantnu fazi relaciju 1) na .

Teorema 2.14. Neka je o = (A,0%,6%,14) fazi automat i  refleksivna slabo levo
invariantna fazi relacija na </. Tada je reverzni Nerodov automat od o7V minimal
deterministicki fazi automat ekvivalentan sa </ .

Kako automat /¥ moZe biti zna¢ajno manji od reverznog Nerodovog
automata «%; zamenom «%; sa <% u prvom koraku procedura tipa Brzo-
zowskog moZemo smanjiti porast broja stanja koji se moze javiti u tom
koraku. U drugom koraku, takav problem ne postoji jer konstrukcija datog
minimalnog deterministickog fazi automata ekvivalentnog sa /.

Nekaje o/ = (A,aA,(SA,TA) fazi automat nad alfabetom X = {xy,...,x,}i ¢
fazi relacija na A. Za svako u € X* definisemo (m + 1)-torku ¢, sa
P = (Puxyse o P Pu 0T = (P 0 ‘5?1/--'r(Pu ° ‘5?,,,/(Pu ot?),
postavljamo A, = {¢, | u € X*}, i definiSemo 6(, : A[, XX — Ag i 7, : A, = L

na sledeéi nacin:

5 (@5 %) = @l To(@l) = puot?, (B.39)

zasveue X'ixeX.
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Teorema 2.15. Neka je o/ = (A,04,6%,7%) fazi automat nad alfabetom X =
{x1,...,%m} i@ slabo desno invariantna fazirelacijana A. Tnda je ,dqf = (Ag),gog, fp, 7:;))
dostizan deterministicki fazi automat ekvivalentan sa <7 .

U slu¢aju kada je ¢ obi¢na jednakost na A, imamo ¢, = 04, za svako
u € X%, i 47§ je automat konstruisan u [61], redukovani Nerodov automaton od
/. Ovde ¢emo koristiti drugu terminiologiju. Naime, prvih m elemenata
u (m +1)-torci ¢, su deca ¢vora ¢, u grafu prelaza automata <7, i m + 1-i
element od ¢, odredjuje stepen od ¢, u . Zbog toga ¢e automat .&7; biti
nazvan children automat od .27,

Teorema 2.16. Neka je </ = (A,04,6%,7%) fazi automat nad alfabetom X =
{x1,...,xm} i neka su @ i ¢ desno invariantna fazi kvazi uredjenja na A takva
da ¢ < ¢. Tada je automat <f { homomorfna slika automata <7, i kao posledica toga,

¢
l7gl < |gl.

Teorema 2.17. Neka je o = (A,GA,(SA,TA) fazi automat nad X = {x1,...,xm} i
neka je ¢ slabo desno invariantno fazi kvazi uredjenje na </. Tada je automat </
izomorfan automatu J5,, gde je % = <f | afterset fazi automat od </ u odnosu na

®.

Teorema 2.18. Neka je <7 = (A,0%,64,74) fazi automat nad X = {x1,...,xp} i
neka je ¢ slabo desno invariantno fazi kvazi uredjenje na A. Tada je automat <7,

homomorfna slika automata oba automata <y, i <y, i stoga vaZi, Iszf’(gl < |l i
|| < |-

Algoritam 2.3. (Konstrukcija automata </,) Ulaz algoritma je fazi konacan
automat &7 = (A,04,6%,14) sa n stanja, nad kona¢nim alfabetom X sa m
slova, i fazi relacija ¢ na A, i izlaz je deterministicki fazi automat .7, =
(Ap, Pe,0¢,Tp).

Graf prelaza od %7, je konstruisan induktivno na slede¢i nacin:

(A1) Koren stabla je ¢, = 0% 0 ¢, i stavljamo Ty = {¢,} i s(¢) = 1, ratunamo
Tp(@e) = e 0T,

(A2) Nakon itog koraka neka je stablo T; konstruisano, i ¢vorovi u T; su
oznaceni sa ‘zatvoren’ ili ‘ne-zatvoren’. Znacenje ovih pojmova bice
objasnjeno u nastavku.

(A3) U slede¢em koraku konstruiSsemo stablo T;,; obogaéivanjem stabla T;
nasledeéinacin: za svakine zatvoren list ¢, koji sejavljau T;, gdejeu € X, i
zasvakix € X dodajemo ¢vor @y = @, 0 6? o@igranuiz @, u,x oznacenu
sa x. Simultano, proveravamo da li je ¢, fazi skup koji je ve¢ konstru-
isan. Ako jeste, tj. ,ako je ¢y je jednako nekom predhodno izra¢unatom
@, 0zZnadimo @, kao zatvorenistavljamo s(¢ux) = s(¢,). Inace, ratunamo
vrednost To(Qux) = Qux © i stavljamo s(¢yx) za neoznacen ceo broj. Pro-
cedura se zavrSava kada su svi listovi oznaceni kao zatvoreni.



B Algoritmi za determinizaciju teZinskih i fazi automata 129

A4) Kada je stablo prelaza 7, konstruisano, briSemo brisemo sve znake
J P ¢
zatvorenja i lepimo listove za unutrasnje ¢vorove sa istom oznakom. Di-
jagram koji se dobija je graf prelaza od .7,.

Algoritam 2.4. (Konstrukcija automata o/ ¥) Ulaz algoritma je fazi konacan
automat &/ = (A,aA,(SA,TA) sa n stanja, nad kona¢nim alfabetom X sa m
slova, i fazi relacija 1 na A4, i izlaz je deterministi¢ki fazi automat &7V =
(AY, ¢, 6%, 7).

Graf prelaza od «7¥ je konstruisan induktivno na sledeéi nadin:

(A1) Koren stabla je ¢ = ¢ o4, i stavljamo Ty = {¢¢} i s(¢¢) = 1, i ratunamo
vrednost ¥ (1¢) = 0% o ¢,

(A2) Nakon itog koraka neka je stablo T; konstruisano, i ¢vororvi u T;
su oznaceni sa ‘zatvoren’ ili ‘ne-zatvoren’. Znacenje ovih pojmova bice
objasnjeno u nastavku.

(A3) U slede¢em koraku konstruiS$emo stablo T;,; obogaéivanjem stabla T;
na slede¢i nacin: za svaki ne zatvoren list " u T;, gde je u € X, i za svaki
x € X dodajemo &vor ™ = 064 o i granu iz P* u P** oznalenu sa x.
Istovremeno, proveravamo da li je ™ fazi skup koji je ve¢ konstru-
isan. Akojeste, tj. ,akoje ** jejednako nekom predhodno izra¢unatom ¢?,
oznacavamo ™" sa zatvoren i stavljamo s(i*") = s(”). Inace, ra¢unamo
vrednost ¥ (") = 04 0 ™ i stavljamo s(y**) za neoznaden ceo broj. Pro-
cedura se zavrsava kada su svi listovi oznaceni sa zatvoren.

(A4) Kada je stablo prelaza &/ ¥ konstruisano, brisemo briemo sve znake
zatvorenja i lepimo listove za unutrasnje ¢vorove sa istom oznakom. Di-
jagram koji se dobija je graf prelaza od «7¥.

U nastavku predstavljamo algoritme za ra¢unanje najveéeg desno i slabo
desno invariantnog kvazi uredjenja.

Algoritam 2.5. (Izracunavanje najveceg desno invarijantnog fazi kvazi-
uredjenja) Ulaz algoritma je konacan fazi automat o/ = (A,GA,(SA,TA) san
stanja, nad alfabetom X sa m slova. Algoritam ra¢una najveceg desno invari-
antno kvazi uredjenje ¢ na 7.

Procedura predstavlja racunanje sekvence {@}xen, na slede¢i nadin:

(A1) U prvom koraku stavljamo ¢; = 4 /74.
(A2) Nakon ktog koraka fazi kvazi uredjenje ¢y je konstruisano.
(A3) U narednom koraku konstruiSemo @y,1 pomocu formule

Pre1 = P A [\ (65 0 ) /(05 0 i) | (B.40)
xeX

(A4) Simultano, proveravamo da li je ¢r1 = @k
(A5) Kada nadjemo najmanyji s takav da je ¢s+1 = @5, procedura az konstruk-
ciju sekvence {@k}ren se zavrSavai @™ = @s.

Ovaj algoritam se izvrsava u polinomijalnom vremenu.
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Algoritam 2.6. (Izracunavanje najveéegslabo desno invariantnog fazikvazi-
uredjenja) Ulaz algoritma je konacan fazi automat </ = (4,04,6%,74) sa n
stanja, nad kona¢nim alfabetom X sa m slova. Algoritam rac¢una najvece
slabo desno invariantno kvazi uredjenje """ na 7.

Procedura je sacinjena od slede¢ih koraka:

(A1) Prvo ra¢unamo {T{} | ue X"}, pomocu Algoritma 2.4..
(A2) Zatim ra¢unamo ™" pomocu formule

wri _ A A
(P _/\Tu/'ru'

ueX*

Algoritam 2.7. (Konstrukcija children automata ;) Ulaz algoritma je

konacan fazi automat .o#' = (4, 4,64, 1) san stanja, nad kona¢nim alfabetom
X ={x1,...,xn} samslova,iizlazje children automat ,;27(;5 = (AL, 95, (Sfp, Tfp), gde
je @ najvece slabo desno invariantno fazi kvazi-uredjenje ili najvece desno
invariantno fazi kvazi-uredjenje <.

Graf prelaza <7, i graf prelaza <7 su konstruisani na slede¢i nacin:

(A1) Racunamo ¢ pomocu Algoritma 2.6. i 2.5., i konstruiS$emo T od <7,
pomocu Algoritma 2.3..

(A2) Za svaki nezatvoren ¢vor ¢, stabla T oznatavamo ¢vor ¢y, grafa G na
slede¢i nacin: Kada su sva deca @uy,,...,Qux, od @, u stablu T formi-
rana, formiramo ¢vor @ = (Pux, - -, Puxy, Pu © ™) u grafu G. Simultano,
proveravamo da li je ¢, (m + 1)-torka koja je ve¢ konstruisana. Ako jeste
tj. ako je ¢}, jednak nekom predhodno izra¢unatom ¢¢, oznacavamo ¢, sa
zatvoren i stavljamo £(¢y;,) = H(¢5). Inace, stavljamo 7¢,(¢y) = pu o i H(ef)
postavljamo da bude slede¢i ceo broj koji nije koris¢en kao vrednost za
t().

(A3) Za svaki nezatvoren ¢vor ¢y, grafa G i svaki x € X, ako je ¢, nezatvoren
¢vor u T takav da je s(¢ux) = 5(¢y), u graf G dodajemo granu iz ¢, u ¢5
oznacenu sa X.

(A4) Kada je graf G konstruisan, konstruisan, briSemo briSemo sve znake
zatvorenja i lepimo listove za unutrasnje ¢vorove sa istom oznakom. Di-
jagram koji se dobija je graf prelaza od #7.

6. Determinizacija pomoc¢u stepena jezicke inkluzije

Neka je & =(A,0,X,0,7) fazi automat nad kompletnom reziduiranom
mrezom .7 . Jezik stanja a € A fazi automata 7 je fazijezik 7, € #(X") definisan
sa:

() = \/ 5 (@,u,b)@1(b),

beA

za sve u € X", ili ekvivalentno fazi jezik raspoznat fazi automatom <7’ =
(A,a,X,0,7) dobijenim iz </ kada se postavi da a bude krisp inicijalno stanje.
Analogno, definiSemo jezik fazi skupa p € 7 (A) od < kao fazijezik 7, € #(X*)
dat sa
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tu(w) = \/ @)@ 5 @u,b)e1(b),
a,beA

zasveu € X", tj. fazijezik raspoznat fazi automatom <7, = (4, u, X, 6, 7) dobijen
iz o/ kada se u postavi za fazi skup inicijanih stanja. Jasno, [[#/]] = 7., j. jezik
fazi skupao od & je ekvivalentan jeziku raspoznatom sa /.

Stepen inkluzije dva fazi skupa p,v € % (A) je uveden ne slede¢i nacin

() = )\ w(@) - v(@).
aeA

Sliéno, za dat fazi automat o7, stanja a,b € A i fazi skupove u,v € F#(A),
definiSemo stepen jezicke inkluzije od aibu o/ sa:

Lab)= N taw) - ty(w),

ueX*

stepen jezicke inkluzijeod ai pu o/ sa
Lap)= /\ ta(w) > tu(u),

ueX*

i stepen jezicke inkluzije od pivu & sa
Ly = [\ 1) = ().

ueXx*

Neka je &7 = (A,0,X,0,7) fazi automat nad kompletnom reziduiranom
mrezom .Z. DefiniSemo fazi skupove d, € #(A), u € X* na slede¢i nadin:
Neka je e € X" prazna re¢, u € X" i x € X, tada imamo:

d.(a) = L(a,0) = /\ To(a) > 60Ty, (B.41)
veX*
i
dix(a) = L(a,dyoby) = \ To(a) > dudro oy, (B.42)
veX*

zasvea € A. Ozna¢imo Ay = {d, | u € X*}.

Teorema 2.19. Neka je o7 = (A,0,X,6,7) fazi automat nad kompletnom reziduira-
nom mrezZom . Tada
dy 0Ty =0y 0Ty, (B.43)

za sve u,w € X*.

Prema predhodnoj teoremi imamo
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de(@) = |\ To(@) > 50T,

veX*

dux(a) = /\ (@) > dy 00y 01y = /\ To(@) = Oyx © Ty

veX* veX*

zasveu € X*ix € X, iodatle

dy(a) = /\ To(a) = 04 0 Ty (B.44)

veX*

vazi za sve u € X*. Sada definiSemo 6, : Ay XX > Ayity:A; — Lsa
Oa(dy,x) = dyx, t4(d,)=dyor,

zasved, € AjixeX.

Teorema 2.20. Neka je o7 = (A,0,X,0,7) fazi automat nad . Tnda je automat
g = (Ag,04,de,74) deterministicki fazi automat,i ekvivalentan je sa <7, tj. [ 4]l =

[« 11.

Teorema 2.21. Neka je of = (A,0,X,0,7) fazi automat nad L. Tada je <y =
(Ag,04,d¢,74) minimalan deterministicki fazi automat ekvivalentan sa < .

U nastavku dajemo algoritam za konstrukciju &7 datog fazi automata
o =(A,0,0,7).

Algoritam 2.8. (Konstrukcija automata <7;) Ulaz algoritma je fazi automat
o/ =(A,0,0,7) nad X iL, aizlaz kdka @7 = (A,d¢,04,74) koji je minimalan
dkfa ekvivalentan sa 7.

Graf prelaza od 7 se konstrui$e induktivno na sledec¢i nacin:

(A1) Racunamo sve 7,, u € X* pomocu Algoritma 2.6..

(A2) Koren stabla je d,, izratunat pomocu formule (B.41), i stavljamo Sg =
{de}.

(A3) Nakon itog koraka neka je stablo S; konstruisano, i ¢vororvi u T;
su oznaceni sa ‘zatvoren’ ili ‘ne-zatvoren’. Znacenje ovih pojmova bice
objasnjeno u nastavku.

(A4) U slede¢em koraku konstruisemo stablo S;,1 obogaéivanjem stabla S;
na slede¢i nacin: za svaki ne zatvoren list d, u S;, , gde je u € X*, i za svaki
x € X dodajemo &vor d,, izra¢unat formulom (B.42). Nakon tog stavljamo
granu iz d, u dyy i 0zna¢avamo je sa x. U slucaju da je d,x stanje koje je
vel bilo konstruisano oznatavamo d,,y sa zatvoren. Procedura se zavr$ava
kada su svi listovi oznaceni sa zatvoren.

(A5) Simultano, za svaki ne zatvoren list d,, u S;, gde je u € X*, ratunamo
vrednost 74(d,) =d, o,
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(A6) Kadaje stablo prelaza .27; konstruisano, briSemo sve znake zatvorenja
i lepimo listove za unutrasnje ¢vorove sa istom oznakom. Dijagram koji
se dobija je graf prelaza od 7.
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Mpwunor 1.

N3JABA O AYTOPCTBY

M3jaBroyjem fa je JoKTopcka gucepTauuja, noJ HacnoBOM

ANTTOPUTMMU 3A AETEPMUHU3ALNIY TEXXUHCKUX U PA3U AYTOMATE

e pesynTaT COMCTBEHOr UCTPaXMBaykor paaa,

e [Oa npepnoxeHa guceptauuvja, HW Yy LEnUHW, HW Yy AEnoBuMa,
Huje Ouna npegnoxeHa 3a p[Jobujawe OMNO  KOje Aunnome,
npema CTYAMjCKMM  nporpamMumma  ApYrux BUCOKOLLIKOTCKUX
ycTaHoBa,

* [a cy pe3ynTaTMKOPEKTHO HaBeaEeHU U

* [a Hucam Kpwwuo/na ayTopcka npaBa, HATM 3noynotpebuo/na
WHTEeNeKTyanHy CBOjUHY Apyrnx nuua.

Y Huwy,

Aytop guceptauunje: 3opaHa JaH4uh

MNotnuc pokTopaHaa:




Mpwunor 2.

M3JABA O NCTOBETHOCTW WUTAMIMAHE W ENEKTPOHCKE
BEP3WJE OOKTOPCKE ANCEPTALUWJE

Vve n npesnme aytopa: 3opaHa JaH4uh

Cryanjckun nporpam: MHdpopMaTumka
HacnoB paga: ANrOPUTMM 3A AETEPMUHU3ALLMIY TEMHCKUX U ®A3N AYTOMATE

MeHTop: JeneHa MrubsatToBuh

M3jaBrbyjeM pOa je wTamnaHa Bep3uja Moje [JOKTopcke
aucepTtaumnje UCTOBETHa eNEeKTPOHCKOj Bep3uju, Kojy cam npepao/na
3a yHowewe y [OummtanHm peno3autopujym YHuBepauTeTa y
Huwy.

[o3BorbaBam pga ce obGjaBe MOjU FNMYHM nogauu, Koju cy y
Be3an ca p[pobujarmem akagemcKkor 3Bawa [AOKTOpa Hayka, Kao LWTo Ccy
uMe 1 npesnmMe, roaMHa W Mecto pohjewa v gatym opbpaHe paga, u
TO y Karanory Bubnuoteke, [OurntanHom peno3uvTopujymy YHu
Bep3uteta y Huwy, kao u y nybnukaumvjama YHuBep3uteTta y Huwwy.

Y Huwy,

AyTop ancepTtaumje:

3opaHa Januuh

[Notnuc pokTopaHaa:




Mpwunor 3.

M3JABA O KOPUNLUREHY

OBnawhyjem YHuBep3anteTcky 6ubnmnoteky ,Hukona Tecna“ ga,
y OurutanHu penosnTtopujym YHuBepsuteta y Hwuwy, yHece MoOjy
OOKTOpPCKY AucepTaumnjy, noq HacnoBOM:

AITOPUTMW 3A JETEPMUHU3ALNIY TEXNHCKUX N A3 AYTOMATA

KOja je Moje ayTopcko geno.

OucepTaumnjy ca cBuM npunosMMa npegao/na cam Yy
enekTpoHckoMm dopmaTy, NOroAHOM 3a TpajHO apXuBuUpaHe.

Mojy  OOKTOopcKky  AaucepTauujy, YHETY y  OurutanHu
penosuTtopujym YHuBep3uteta y Huwy, mMoOry KOpPUCTUTU CBU KOjuU
nowTyjy ogpenbe cagpxaHe y ogabpaHom Tuny nuueHue KpeatmsBHe
3ajeagHuye (Creative Commons), 3a KOjy cam ce ogny4duo/na.

1. AyTopcTBO

2. AyTopcTBO — HekomepuUujanHo

3. AyTopcTBO — HekomepuujanHo — 6e3 npepage

4. AyTOpCTBO — HEKOMepLuujanHo — AenuTu nog UCTUM

ycrnoBsmMMma

5. AytopctBo— 6e3 npepage

6. AyTopcTBO— [JenuTu nog UCTUM YcCrnoBuma
(Monumo ga noaByyeTe caMO jedHy of LeCT NOHyhHeHux nuueHuwu;
KpaTak onuc nuUEHLM je 'y HacTaBKy TEKCTa).

Y Huwy,

Aytop guceptauunje: 3opaHa JaH4uh

MNotnuc pokTopaHaa
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