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FINDING MINIMUM COST SPANNING TREE ON
BIDIRECTIONAL LINEAR SYSTOLIC ARRAY∗

E. I. Milovanović, M. P. Bekakos, I. Ž. Milovanović
and B. M. Randjelović

Abstract

In this paper a bidirectional linear systolic array (BLSA) that computes
minimum cost spanning tree (MCST) of a given graph is designed. We present
a synthesis procedure, based on data dependencies and space-time transfor-
mations of index space, to design BLSA with optimal number of processing
elements (PEs) for a given problem size. The execution time is minimized
for that number of PEs. Explicit mathematical formulas for systolic array
synthesis are derived. We compare performances of the BLSA with the uni-
directional linear systolic array (ULSA).

1 Introduction

A graph often contains redundancy in that there can be multiple paths between two
vertices. This redundancy may be desirable, for example to offer alternative routes
in the case of breakdown or overloading of an edge (road, connection, phone-line)
in a network. However, we often require the cheapest sub-network, that connects
the vertices of a given graph. The minimum cost spanning tree (MCST) of a
graph defines the cheapest subset of edges that keeps the graph in one connected
component. MCST problem is perhaps the simplest and certainly one of the most
central models in the field of network optimization. The problem is important both
in its practical and theoretical applications. It arises in a number of applications,
both as a stand-alone problem and as a sub-problem in more complex problem
settings. For example, telephone companies or cable-TV companies are particulary
interested in MCST, because the minimum spanning tree of a set of sites defines the
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wiring scheme that connects the sites using as little wire as possible. It is mother
of all network design problems. A less obvious application is that the minimum
spanning tree can be used to approximately solve the travelling salesman’s problem.
A convenient formal way of defining this problem is to find the shortest path that
visits each point at least once.

The problem of finding MCST can be formulated as follows. Let Γ = (V, E) be a
weighted directed or undirected graph, where V = {1, 2, ..., n} is a set of n vertices,
E is a set of edges, and D = (dij) is an n× n weight matrix, i.e. dij is the cost of
edge (i, j) ∈ E determined as

dij =





dij ,
+∞,

0,

if (i, j) ∈ E,
if (i, j) /∈ E,
if i = j,

for each i = 1, 2, ..., n and j = 1, 2, ..., n. The problem is to find a rooted spanning
tree Γ′ = (V, E′) where E′ is a subset of E such that the sum of dij for all (i, j) in
E′ is minimized. The spanning tree is defined as a graph which connects, without
any cycle, all vertices with n− 1 arcs, i.e. each vertex, except the root, has one and
only one incoming arc. Note that a minimum cost spanning tree is not necessarily
unique. There is a variety of algorithms to solve MCST problem efficiently. Czech
scientist Otakar Boruvka formulated the first efficient solution of MCST problem
as early as 1926 (see [1, 2]). Now, there are two algorithms commonly used, Prim’s
algorithm [3] and Kruskal’s algorithm [4]. In this paper we use Maggs-Plotkin
minimal spanning tree algorithm [5] which is closely related to Warshall transitive
closure [8] and Floyd shortest path algorithm [9]. It is assumed that edge costs are
unique (distinct) [5], [7].

Maggs-Plotkin algorithm for finding MCST starts from the matrix D(0) = D

and computes a series of matrices D(k) = (d(k)
ij ), k = 1, 2, ..., n, according to the

following:

Algorithm 1
for k := 1 to n do

for i := 1 to n do
for j := 1 to n do
d
(k)
ij := min{d(k−1)

ij ,max{d(k−1)
ik , d

(k−1)
kj }}

Once D(n) is obtained, it is easy to determine the tree edges, namely an edge (i, j),
(i, j) ∈ E, is added to MCST if and only if d

(n)
ij = d

(0)
ij for i = 1, 2, ..., n and

j = 1, 2, ..., n. If weights dij are in the range [0, 1] and min and max operators are
switched, than Maggs-Plotkin algorithm can be used to compute max-min transitive
closure of fuzzy similarity matrix (see, for example [6]).

Maggs and Plotkin [5] consider implementation of the proposed algorithm on
an n × n mesh-connected computer in O(n) steps. In [7] this algorithm was used
to compute MCST on a linear array with reconfigurable pipelined bus system. The
problem is solved in O(log n) time by using n3 processors. In this paper we design
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a bidirectional linear systolic array (BLSA) with two-dimensional I/O links with n
processing elements (PEs) that computes D(n) for O(2n2) steps. Here we are only
interested in finding matrix D(n). The comparison and computation of the cost
can be performed by the host computer. Our array is pure systolic in the sense
that it has only local interconnections and very simple processing elements. The
methodology used in this paper represents the modification of the procedure based
on the concept of dependence vectors to order in time and space the index points
representing the algorithm. The ordered index points are represented by nodes
in a dependence graph. This graph is then projected along defined directions to
obtain the target architecture. Our modification enables obtaining systolic array
with optimal number of PEs for a given problem size. To overcome the problem of
irregularity of the above minimal spanning tree algorithm, we partition the problem
into regular two-dimensional instances which can be computed on BLSA. The final
result is obtained by repeating the computation appropriate number of times. The
designed BLSA has optimal number of processing elements (PE) for a given problem
size and minimal execution time for that number of PEs. Obtained results will be
compared with the one obtained for the unidirectional linear systolic array (ULSA),
proposed in [10].

2 The systolic algorithm

In order to obtain an algorithm which is suitable for the synthesis of the BLSA
we partition the computations in Algorithm 1 into two-dimensional entities D(k) =
(d(k)

ij ) for some fixed k = 1, 2, . . . , n. The computation of D(k) depends only on
D(k−1) . This means that the computations of D(1), . . . , D(n) can be performed
successively, which is very important for our approach. It is enough to synthesize
the BLSA that computes D(k) for some fixed k, and then use it to compute D(n)

by repeating the computations n times. Without lost of generality, we take k = 1.
To ease the presentation we use the following notation

a(i, 0, 1) = d
(0)
i1 , b(0, j, 1) = d

(0)
1j , c(i, j, 0) = d

(0)
ij , c(i, j, 1) = d

(1)
ij , (1)

for i = 1, 2, ..., n and j = 1, 2, ..., n.
The corresponding systolic algorithm has the following form

Algorithm 2
for i := 1 to n do

for j := 1 to n do
a(i, j, 1) := a(i, j − 1, 1)
b(i, j, 1) := b(i− 1, j, 1)
c(i, j, 1) := min{c(i, j, 0),max{a(i, j, 1), b(i, j, 1)}}

The index or iteration space of Algorithm 2 is given by

Pint = {(i, j, 1)|1 ≤ i ≤ n, 1 ≤ j ≤ n}. (2)
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The data dependency vectors ~e 3
b , ~e 3

a , ~e 3
c of variables b(0, j, 1), a(i, 0, 1) and

c(i, j, 0) in Algorithm 2 are determined as ~e 3
b = [i j 1]T − [i − 1 j 1]T = [1 0 0]T ,

~e 3
a = [i j 1]T − [i j − 1 1]T = [0 1 0]T and ~e 3

c = [i j 1]T − [i j 0]T = [0 0 1]T ,
respectively. Thus, the dependency matrix of Algorithm 2 is defined by

Q =
[

~e 3
b ~e 3

a ~e 3
c

]
=




1 0 0
0 1 0
0 0 1


 . (3)

The systolic algorithm Algorithm 2 is completely defined by a pair (Pint, Q),
i.e. by directed graph G = (Pint, Q), where Pint represents a set of vertices, while
matrix Q, i.e. its column vectors, represent directions of edges between adjacent
nodes. This graph is placed in a three-dimensional orthogonal coordinate system,
generated by the vectors ~i = [1 0 0]T , ~j = [0 1 0]T and ~k = [0 0 1]T . This is also
a graph of two-dimensional systolic array, placed in the plane k = 1, suitable for
the implementation of Algorithm 2 (however, not efficiently enough). The possible
projection direction vectors that can be used to obtain 1D SAs with near-neighbor
communications are ~µ = [µ1 µ2 µ3]T , where µi ∈ {−1, 0, 1}, i = 1, 2, 3 (see [11]).
There are 33 = 27 projection direction vectors in total. The direction ~µ = [0 0 0]T

is excluded for obvious reasons. Further, the directions ~µ and −~µ give the same
projections. Thus, there are only 13 different projection direction vectors to be
considered. It is obvious that µ3 = 0, since graph G = (Pint, Q) is placed in the
plane k = 1. Therefore, projection direction vectors that map Algorithm 2 into 1D
SA are µ = [1 0 0]T , µ = [0 1 0]T , µ = [1 − 1 0]T and µ = [1 1 0]T . The directions
µ = [1 0 0]T , and µ = [0 1 0]T give orthogonal projections and the corresponding
SAs are static, meaning that one of the variables is resident in the array. By the
direction µ = [1 − 1 0]T the ULSA, considered in [10], is obtained. Thus, only the
direction µ = [1 1 0]T can be used to obtain BLSA.

By choosing suitable linear transformation T , from the set of valid transforma-
tions that correspond to µ = [1 1 0]T , the graph G = (Pint, Q) is mapped onto
BLSA so that the dependencies between the computations are supported by the
physical connections of the array. From a set of valid transformations we choose
arbitrarily (see, for example [12])

T =




~Π
−−
S


 =




1 1 1
− − −
−1 1 0

0 0 1


 . (4)

The (x, y) coordinates of the PEs in the BLSA that implements Algorithm 2
are obtained by mapping index-space Pint, defined in (2), using matrix S from (4).
The communication links between the PEs are obtained by mapping dependency
matrix Q, defined in (3), using the same matrix S. However, the obtained BLSA is
not optimal with respect to the number of PEs for a given problem size. According
to Theorem defined in [13], it can be concluded that number of PEs in this BLSA
is Ω = 2n− 1. In order to obtain SA with optimal number of PEs, i.e. Ω = n, for a
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given problem size, we have to accommodate, i.e. to reorder, the index space Pint

of Algorithm 2, to the direction µ = [1 1 0]T such that exactly n index points of the
reordered index space are placed on the lines parallel to the direction µ = [1 1 0]T .

The accommodation is possible due to the fact that row elements of matrix
C can be computed in any order. Rows can also be computed in any order. This
means the computations in Algorithm 2 can be performed at arbitrary permutation
p1, p2, . . . , pn of index variable i or j, where {1, 2, ..., n} is the basic permutation
(see [14]). This mapping strongly depends on ~µ. It is defined as

F = (H, ~q), F : Pint 7−→ P ∗int, P ∗int = {(u, v, 1)}
where H is a scalar matrix of order 3 × 3 while ~q = [q1 q2 q3]T is a vector that
ensures that accommodated space P ∗int is placed in the first octant. The space P ∗int

is obtained according to



u
v
1


 = H · ~p + ~q, ~p ∈ Pint

Since the direction µ = [1 1 0]T , has both µ1 = 1 6= 0 and µ2 = 1 6= 0,
the accommodation of Pint is possible on both index variable i and j. When the
accommodation is performed on index variable i, mapping F = (H, ~q) is of the form
(see [14])

H =
[

~µ ~j ~k
]

=




1 0 0
1 1 0
0 0 1


 , ~q =




0
−1

1


 , (5)

while when it is performed on index variable j, it is of the form

H =
[

~j ~µ ~k
]

=




1 1 0
0 1 0
0 0 1


 , ~q =



−1

0
1


 . (6)

When F is defined by (5), the accommodated space, P ∗int is obtained according
to




u
v
1


 = H · ~p + ~q =




1 0 0
1 1 0
0 0 1







i
j
1


 +




0
−1
0


 =




i
i + j − 1

1


 , (7)

for each i = 1, 2, . . . , n and j = 1, 2, . . . , n.
Similarly, when F is defined by (6) P ∗int is obtained from



u
v
w


 = H · ~p + ~q =




1 1 0
0 1 0
0 0 1







i
j
1


 +



−1
0
0


 =




i + j − 1
j
1


 . (8)

for each i = 1, 2, . . . , n and j = 1, 2, . . . , n.
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Without luck of generality, we will prove that P ∗int obtained according to (7)
is really accommodated to the direction ~µ = [1 1 0]T , i.e. that exactly n points
of P ∗int lie on the line parallel to ~µ = [1 1 0]T . Let ~p∗1 = [i + 1 i + j 1]T and
~p∗2 = [i i + j − 1 1]T be the position vectors of points from P ∗int, where i is fixed at
some constant value and j = 1, 2, . . . , n− 1. Since

~p∗2 − ~p∗1 = ~µ,

we conclude that these n points are positioned on the line parallel to ~µ. All these
points are mapped into a single point in the processor plane. Since i = 1, 2, . . . , n,
there are n such lines in total, which implies that projection of P ∗int has exactly n
points, i.e. there will be n PEs in the BLSA.

The new index-spaces P ∗int = {(u, v, 1)}, determined from (7) and (8),

P ∗int = {(i, i + j − 1, 1)|1 ≤ i ≤ n , 1 ≤ j ≤ n} (9)

and
P ∗int = {(i + j − 1, j, 1)|1 ≤ i ≤ n , 1 ≤ j ≤ n} (10)

define two new regular directed graphs, G∗ = (P ∗int, Q), where Q is given by (3).
The systolic algorithms corresponding to these graphs are equivalent to Algorithm 2
and have the following form

Algorithm 3
for i := 1 to n do

for j := 1 to n do
a(i, i + j − 1, 1) := a(i, i + j − 2, 1)
b(i, i + j − 1, 1) := b(i− 1, i + j − 1, 1)
c(i, i + j − 1, 1) := min{c(i, i + j − 1, 0),

max{a(i, i + j − 1, 1), b(i, i + j − 1, 1)}}

where b(0, j + n, 1) = b(0, j, 1), c(i, j + n, 0) = c(i, j, 0), c(i, j + n, 1) = c(i, j, 1), for
i = 1, 2, ..., n and j = 1, 2, ..., n.

Algorithm 4
for i := 1 to n do

for j := 1 to n do
a(i + j − 1, j, 1) := a(i + j − 1, j − 1, 1)
b(i + j − 1, j, 1) := b(i + j − 2, j, 1)
c(i + j − 1, j, 1) := min{c(i + j − 1, j, 0),

max{a(i + j − 1, j, 1), b(i + j − 1, j, 1)}}

where a(i + n, 0, 1) = a(i, 0, 1), c(i + n, j, 0) = c(i, j, 0), c(i + n, j, 1) = c(i, j, 1), for
i = 1, 2, ..., n and j = 1, 2, ..., n.

Since the upper bounds of index variables i and j are equivalent (1 ≤ i ≤ n
and 1 ≤ j ≤ n), the BLSAs synthesized according to Algorithm 3 and Algorithm 4
have the same space and time features. Therefore in the text that follows we will
consider only Algorithm 3.
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3 The BLSA synthesis

The BLSA that implements Algorithm 3 is obtained by mapping directed graph
G∗ = (P ∗int, Q), using space transformation matrix S defined by (4). The (x, y)-
coordinates of PEs in the BLSA are obtained according to

PE 7→
[
x

y

]
=

[
j − 1

1

]
, 1 ≤ j ≤ n. (11)

The communication links between PEs in the BLSA are implemented along the
column vectors of the matrix

∆ = S ·Q =
[
~e 2

b ~e 2
a ~e 2

c

]
=

[ −1 1 0
0 0 1

]
(12)

The space of initial computations of Algorithm 3, Pin = Pin(a)∪Pin(b)∪Pin(c),
is defined by index sets

Pin(a) = {(i, 0, 1) | 1 ≤ i ≤ n}
Pin(b) = {(0, i + j − 1, 1) | 1 ≤ i ≤ n, 1 ≤ j ≤ n}
Pin(c) = {(i, i + j − 1, 0) | 1 ≤ i ≤ n, 1 ≤ j ≤ n}.

In order to obtain correct timing of the input data items, the space Pin have to
be reordered. The reordering is performed by the timing function t(~p) = ~π · ~p + α,
for each ~p, where ~p is a position vector of the point in Pin, ~π = [1 1 1] is row-
vector of matrix T , defined in (4), and α is a constant, that provides that the first
computation is executed at the point (1, 1, 1) of the space P ∗int (see [14]). In our
case, t(~p) = u + v + w − 3, for each ~p = [u v w]T . Reordering of Pin is performed
according to the following

~p ∗ν = ~pν − (t(~pν) + 1)~e 3
ν , ν ∈ {a, b, c}. (13)

The reordered space of initial computations P ∗in = P ∗in(a) ∪ P ∗in(b) ∪ P ∗in(c), is
defined by the sets

P ∗in(a) = {(i, 1− i, 1) | 1 ≤ i ≤ n}
P ∗in(b) = {(2− i− j, i + j − 1, 1) | 1 ≤ i ≤ n, 1 ≤ j ≤ n}
P ∗in(c) = {(i, i + j − 1, 3− 2i− j) | 1 ≤ i ≤ n, 1 ≤ j ≤ n}.

(14)

The positions of input data items at the beginning of the computation on the
BLSA are obtained by mapping P ∗int, defined by (14) using matrix S from (4). How-
ever, as a pipelining-period during implementation of Algorithm 3 on the obtained
BLSA is λ = |~π · ~µ| = 2, each PE is active in every other clock cycle. Therefore
the active execution time is not as minimal as possible. In order to minimize the
execution time we will take over the method from [15], defined for the synthesis
of two-dimensional hexagonal SA for matrix product. We will slightly modify this
method to accommodate it to our problem.

First, we introduce some notations.
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1) Parameter n̄ is an integer defined as

n̄ =
{

n, if n is odd,
n + 1, if n is even.

2) Parameters r1 and r2 are determined for all pairs (i, j) as greater of the integers
from the set {0, 1}, such that the following is satisfied

−2(i− 1) + r1n̄ < 0, i = 1 ⇒ r1 = 0,
−2(i− 1)− (j − 1) + (r1 + r2)n̄ ≤ 0.

Parameter r1 is determined first.

Now we can determine an optimal data schedule at the beginning of the computation
in the BLSA that yields minimal execution time. The (x, y) positions of input data
items at the beginning of the computation are obtained from the following formulas

a(i, 0, 1) 7→
[

x
y

]
=

[
1− 2i
1

]
+ (r1 + r2)n̄

[
1
0

]
,

b(0, i + j − 1, 1) 7→
[

x
y

]
=

[
2i + 2j − 3
1

]
+ (r1 + r2)n̄

[ −1
0

]
,

c(i, i + j − 1, 0) 7→
[

x
y

]
=

[
j − 1
3− 2i− j

]
+ (r1 + r2)n̄

[
0
1

]
,

(15)

for each i = 1, 2, ..., n and j = 1, 2, ..., n.
Data schedule at the beginning of the computation on the BLSA, for the case

n = 3, is depicted in Fig.1. The structure of the PE is depicted in Fig.2. The PE
consists of two comparators (Com) and three latches labelled as L A, L B and L C.

4 Performance analysis

According to (11) is not difficult to conclude that obtained BLSA has Ω = n PEs.
This is optimal number of PEs, for a given problem size.

Assume that time needed to perform an operation of type max and min rep-
resents one time unit. Denote with tin initialization time, texe execution time,
tout output time, and ttot the total execution time of Algorithm 3 on the BLSA.
According to (15) we have that tin = n − 1, texe = n̄ and tout = n − 1. Since
ttot = tin+texe+tout, we have ttot = 2n+n̄−2. Recall that we have designed BLSA
that implements Algorithm 3, i.e. computes D(1) = (d(1)

ij ). Matrix D(n) is obtained

by computing D(1), D(2), . . . , D(n−1), D(n), such that elements of D(k) = (d(k)
ij ) are

used as inputs for computing D(k+1) = (d(k+1)
ij ), for k = 1, 2, . . . , n− 1. During the

computation the output time of k-th iteration is overlapped with the input time of
the (k + 1)-st iteration. This is illustrated in Table 1 for the case n = 3. In Table
1, the first two clock cycles represent the initialization time of the first iteration.
During the cycles 6 and 7 (11 and 12) the output and initialization time of two
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Figure 1: a) Data flow in the BLSA for the case n = 3. b) Functional property of
the PE.

successive iterations are overlapped. Having this in mind, the total time required
to compute matrix D(n), on the BLSA is Ttot = n(n + n̄ + 1).

The efficiency of the BLSA is

E =
n

n + n̄− 1
≈ 1

2
.

In Table 2 number of PEs, total execution time and the efficiency of the de-
signed BLSA and ULSA proposed in [10] for computing MCST are given. It can
be concluded that both arrays have the same number of PEs, but the execution
time of BLSA is less than that of ULSA. For small n efficiency of both arrays is the
same, i.e. 1

2 . However, for greater n the efficiency of the ULSA tends to 0.33.

5 Conclusion

A problem of computing MCST of a given graph on the bidirectional linear systolic
array was considered. Maggs-Plotkin algorithm [5] was used to compute matrix
D(n) from a cost matrix D. Once D(n) is obtained, it is easy to determine the tree
edges, namely an edge (i, j), (i, j) ∈ E, is added to MCST if and only if d

(n)
ij = dij

for i = 1, 2, ..., n and j = 1, 2, ..., n. A problem is partitioned into two-dimensional
entities. Then the BLSA that computes one entity is designed. The final result is
obtained iteratively. By the appropriate definition of data schedule an overlapping
of the output and input time of two successive iterations is achieved. The BLSA
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C
lk

P
E
1

P
E
2

P
E
3

1
0

=
m

in
(0

,m
ax

(d
(0

)
3
1

,0
))

0
=

m
in

(0
,m

ax
(0

,d
(0

)
1
1

))
2

0
=

m
in

(0
,m

ax
(d

(0
)

2
1

,0
))

0
=

m
in

(0
,m

ax
(d

(0
)

3
1

,d
(0

)
1
1

))
0

=
m

in
(0

,m
ax

(0
,d

(0
)

1
3

))
3

d
(1

)
1
1

=
m

in
(d

(0
)

1
1

,m
ax

(d
(0

)
1
1

,d
(0

)
1
1

))
d
(1

)
2
3

=
m

in
(d

(0
)

2
3

,m
ax

(d
(0

)
2
1

,d
(0

)
1
3

))
d
(1

)
3
2

=
m

in
(d

(0
)

3
2

,m
ax

(d
(0

)
3
1

,d
(0

)
1
2

))
4

d
(1

)
3
3

=
m

in
(d

(0
)

3
3

,m
ax

(d
(0

)
3
1

,d
(0

)
1
3

))
d
(1

)
1
2

=
m

in
(d

(0
)

1
2

,m
ax

(d
(0

)
1
1

,d
(0

)
1
2

))
d
(1

)
2
1

=
m

in
(d

(0
)

2
1

,m
ax

(d
(0

)
2
1

,d
(0

)
1
1

))
5

d
(1

)
2
2

=
m

in
(d

(0
)

2
2

,m
ax

(d
(0

)
2
1

,d
(0

)
1
2

))
d
(1

)
3
1

=
m

in
(d

(0
)

3
1

,m
ax

(d
(0

)
3
1

,d
(0

)
1
1

))
d
(1

)
1
3

=
m

in
(d

(0
)

1
3

,m
ax

(d
(0

)
1
1

,d
(0

)
1
3

))
6

0
=

m
in

(0
,m

ax
(d

(1
)

3
2

,d
(0

)
1
1

))
0

=
m

in
(0

,m
ax

(d
(0

)
2
1

,d
(0

)
1
3

))
0

=
m

in
(0

,m
ax

(d
(0

)
3
1

,d
(1

)
2
1

))
7

0
=

m
in

(0
,m

ax
(d

(1
)

2
2

,d
(0

)
1
3

))
0

=
m

in
(0

,m
ax

(d
(1

)
3
2

,d
(1

)
2
1

))
0

=
m

in
(0

,m
ax

(d
(0

)
2
1

,d
(1

)
2
3

))
8

d
(2

)
1
1

=
m

in
(d

(1
)

1
1

,m
ax

(d
(1

)
1
2

,d
(1

)
2
1

))
d
(2

)
2
3

=
m

in
(d

(1
)

2
3

,m
ax

(d
(1

)
2
2

,d
(1

)
2
3

))
d
(2

)
3
2

=
m

in
(d

(1
)

3
2

,m
ax

(d
(1

)
3
2

,d
(1

)
2
2

))
9

d
(2

)
3
3

=
m

in
(d

(1
)

3
3

,m
ax

(d
(1

)
3
2

,d
(1

)
2
3

))
d
(2

)
1
2

=
m

in
(d

(1
)

1
2

,m
ax

(d
(1

)
1
2

,d
(1

)
2
2

))
d
(2

)
2
1

=
m

in
(d

(1
)

2
1

,m
ax

(d
(1

)
2
2

,d
(1

)
2
1

))
10

d
(2

)
2
2

=
m

in
(d

(1
)

2
2

,m
ax

(d
(1

)
2
2

,d
(1

)
2
2

))
d
(2

)
3
1

=
m

in
(d

(1
)

3
1

,m
ax

(d
(1

)
3
2

,d
(1

)
2
1

))
d
(2

)
1
3

=
m

in
(d

(1
)

1
3

,m
ax

(d
(1

)
1
2

,d
(1

)
2
3

))
11

0
=

m
in

(0
,m

ax
(d

(2
)

3
3

,d
(1

)
2
1

))
0

=
m

in
(0

,m
ax

(d
(1

)
2
2

,d
(1

)
2
3

))
0

=
m

in
(0

,m
ax

(d
(1

)
3
2

,d
(2

)
3
1

))
12

0
=

m
in

(0
,m

ax
(d

(2
)

2
3

,d
(1

)
2
3

))
0

=
m

in
(0

,m
ax

(d
(2

)
3
3

,d
(2

)
3
1

))
0

=
m

in
(0

,m
ax

(d
(1

)
2
2

,d
(2

)
3
3

))
13

d
(3

)
1
1

=
m

in
(d

(2
)

1
1

,m
ax

(d
(2

)
1
3

,d
(2

)
3
1

))
d
(3

)
2
3

=
m

in
(d

(2
)

2
3

,m
ax

(d
(2

)
2
3

,d
(2

)
3
3

))
d
(3

)
3
2

=
m

in
(d

(2
)

3
2

,m
ax

(d
(2

)
3
3

,d
(2

)
3
2

))
14

d
(3

)
3
3

=
m

in
(d

(2
)

3
3

,m
ax

(d
(2

)
3
3

,d
(2

)
3
3

))
d
(3

)
1
2

=
m

in
(d

(2
)

1
2

,m
ax

(d
(2

)
1
3

,d
(2

)
3
2

))
d
(3

)
2
1

=
m

in
(d

(2
)

2
1

,m
ax

(d
(2

)
2
3

,d
(2

)
3
1

))
15

d
(3

)
2
2

=
m

in
(d

(2
)

2
2

,m
ax

(d
(2

)
2
3

,d
(2

)
3
2

))
d
(3

)
3
1

=
m

in
(d

(2
)

3
1

,m
ax

(d
(2

)
3
3

,d
(2

)
3
1

))
d
(3

)
1
3

=
m

in
(d

(2
)

1
3

,m
ax

(d
(2

)
1
3

,d
(2

)
3
3

))

T
ab

le
1:

C
o
m

p
u
ta

ti
o
n
s

p
er

fo
rm

ed
in

th
e

P
E

s
w

h
il
e

co
m

p
u
ti

n
g

M
C

S
T

o
f
th

e
g
ra

p
h

fo
r

n
=

3
.



Finding minimum cost spanning tree on bidirectional linear systolic array 11

Figure 2: The structure of the PE.

SA Ω Ttot E
BLSA n n(n + n̄ + 1) n

n+n̄−1

ULSA n n(3n− 2) n
3n−2

Table 2: Performances of the BLSA and ULSA

consists of n PEs, which is optimal number for a given problem size. The problem
is solved in 2n2 + n steps. The efficiency of the array is 0.5.
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[2] J. Nešetril , A few remarks on the history of MST-problem, Archivum Mathe-
maticum (Brno), 33,(1997), 15–22.

[3] R. C. Prim , The shortest connecting network and some generalizations, Bell
Syst. Tech. Journal, 36,(1957), 1389–1401.

[4] J. B. Kruskal , On the shortest spanning subtree of a graph and the travelling
salesman problem, Proc. Amer. Math. Soc, 7,(1956), 48–50.

[5] B. M. Maggs, S. A. Plotkin, Minimum-cost spanning tree as a path-finding
problem, Inform. Process. Lett., 6, (1988), 291-293.

[6] S. Kundu, An optimal O(N2) algorithm for computing the min-transitive closure
of a weighted graph, Inform. Process. Lett., 74, (2000), 215-220.

[7] K. Li, Y. Pan, M. Hamdi, Solving graph theory problems using reconfigurable
pipelined optical buses, Parallel Comput., 26, (2000), 723-735.
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vanović, I. Z. Milentijević, Transformation matrices for systolic array synthesis,
J.Electrotechn. Math., 7, (2002), 9-15.

[13] C. N. Zhang, J. H. Weston, I.-F. Yan, Determining objective funkctions in
systolic array designs, IEEE Trans. VLSI Systems, 2(3), (1994), 357-360.
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