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INCLUSION AND NEIGHBORHOOD PROPERTIES
OF A CERTAIN SUBCLASSES OF P-VALENT
FUNCTIONS WITH NEGATIVE COEFFICIENTS

R. M. El-Ashwah

Abstract

By means of Ruscheweyh derivative operator , we introduced and investi-
gated two new subclasses of p-valent analytic functions.The various results ob-
tained here for each of these function class include coefficient bounds and dis-
tortion inequalities, associated inclusion relations for the (n, #)-neighborhoods
of subclasses of analytic and multivalent functions with negative coefficients,
which are defined by means of non-homogenous differential equation.

1 Introductin
Let T),(n) denote the class of functions of the form:
f(z) =2P — Z arz®  (ax > 0;p,n € N ={1,2,...}), (1.1)
k=n+p

which are analytic and p-valent in the open unit disc U = {z : |z2| < 1}. The
modified Hadamard product (or convolution) of the function f(z) given by (1.1)
and the function g(z) € T,,(n) given by

g(z)=2"— > bz* (x> 0;p,n € N) (1.2)
k=n+p
is defined by
(fg9)(z)=2" = > abpz® = (g% f)(2). (1.3)
k=n+p
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We introduce here an extended linear derivative operator of Ruscheweyh type (see
[14]):
DrP T, — T, (T, = Tp(1)),

which is defined by the following convolution:

zP

DHPf(z) = A=y

* f(z) (> —p; f(2) € Tp), (1.4)

which in view of (1.1) (with n = 1) becomes

DHPf(z) = 2P — i ( kt+p—1 )akzk

k —
k=p+1 p

oo

= X Gt B2 IEET. a5)
k=p+1

In particular, when p = n (n € No = N U {0}), it is easy observed from (1.4) and
(1.5) that
PP f(2) ™)

- (p € Nin e Ny, (1.6)

DM (z) =
so that
D'PPf(z) = f(z) and DPf(z)=(1—p)f(z)+2f (). (L)

For a function f(z) € T,(n), we have (see [9])

(D f(2)) @ = 5(p, q)zP~7 — Z ( ktp-1 ) 5(k,q)apz""1,

k —
k=n+p p

— P4 _ S M anz®4
(p € N;q € Nosp > q), (1.8)
where
)1 (¢=0)
3(p,q) = { p(p—1) e (p—q+1) (q #0). (1.9)

Now, making use of the operator D*P f(z)(u > —p,p € N) given by (1.5), we now
introduce a new subclass T}l (n, p, A, 3) of the p-valent analytic function class T},(n)
which consist of functions f(z) € T,(n) satisfying the inequality:

‘ { Az(DHP f(2)) @Y + (1= N)2(DMHHP f(z))@FD

D ()@ + (1= N (DIerfp@ P _Q)}' =7
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(p€ N;qg € Nop; 0 <A< 1;p>max(q,—p);0< 8 <1). (1.10)

We note that:

(i) T (n,1,A, 8) = Tpu(n, A, B) (Trmak et al. [10 ]);

(ii) TO (n D, A, B1b]) = Sn(b, A, B)(b € C\{0})(Altintas et al. [ 5]);

(ili) T3 (n,p, 1, B1b]) = S(b, p, B) (b € C\{0})(Murugusundaramoorthy and Sri-
vastava [13 1.

Also in this paper we shall derive several results for functions in the subclass
Hi(n,p, \, 3;7) of the function class Tj,(n), which is defined as follows:

A function f(z) € Tj(n) is said to belong to the class H{(n,p, A, 3;7) ifw = f(z)
satisfies the following non-homogenous Cauchy-Euler differential equation :

o, d* Ty d*iw diw dig(z)

2 +2(1+7)2m+7(1+7)d - = (P—q+7)(p—q+7+1) da

. (1.11)

where g(z) € Tj(n,p, A\, 8) and v > ¢ — p,v € R.

Several other interesting subclasses of the class T),(n) were investigated recently,
for example, by Chen et al. [8], Chen [7], Srivastava and Aouf [16], Murugusun-
darmoorthy et al. [12], Altinatas [1], and Altinatas et al. ([3] and [4]), (see also
Srivastava and Owa [17]).

In this paper we investigate the geometric characteristics of the classes
Ti(n,p, A\, B8) and HI(n,p, A, 3;7) also we investigate some (n,0)-neighborhood
properties.

2 Basic properties of the class T!(n,p, A, §)

We begin by proving a necessery and sufficient condition for a function belonging
to the class T},(n) to be in the class Tj(n,p, A, 3).

Theorem 1. Let the function f(z) be defined by (1.1). Then f(z) is in the class
Ti(n,p, \, B) if and only if

i (k48 —p)[(k+p) = Ak —p)]D(k + p)é(k, q)
(k —p)!

ar < BT(p+ 1+ p)d(p, q)-
k=n+p
(2.1)

Proof. If the condition (2.1) holds true, we find from (1.1) and (2.1) that

D7 F(2) T 4 (1= WD ()0 — (p - g) [N f(2)) -

(1= A(DMH £(2)) D] | =B [MD# F(2) @ + (1= \(DH70 f(2)) @

oo

oS (k= p) [(k+ 1) = Ak =p)IT(k + p)o(k,q) 1y
(k=p)T(p+1+np) g

k=n+p

—610(p,q) — i [k + ”)(_ Ak =pIT(k+p)é(k,q) 1,

arz
—n)!
WS k=p)T(p+1+p)
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< f: (k+6—p)[(k+u)—A(’f_p)]r(k+“)5(k’Q)ak—55(1”@

)
et (k=p)T(p+1+p)
< 0 (z€0U={z:2€C and |z|=1}).

Hence , by the maximum modulus theorem, f(z) € T}(n,p, A, B).
Conversely, let f(z) € Tj(n,p, A, 3) be given by (1.1). Then, from (1.8) and
(1.10), we have

Ae(DHPf(2)) 0D 4 (1= N)o(DHH2 f(2)) (04D
ND## ()@ + (1= N(DF7(z)@
)

B § (k —p) [(k+p) = Ak —p)]I(k + w)d(k.q) 4y
|k (k=p)T(p+1+p) o <3 (2.2)
5(prq) — i [(/f+/~t)—A(/f—p)}F(k+#)5(k,Q)akzk,p

k=ntp (k=p)T(p+1+p)

Putting z = 7(0 < r < 1) on the right-hand side of (2.2), and noting the fact that
for r = 0, the resulting expression in the denominator is positive, and remains so
for all r € (0,1), the desrired inequality (2.1) follows upon letting r — 1.
Corollary 1. Let the function f(z) € Tp(n) be given by (1.1). If f(2) € Ti(n,p, A, B),
then

—(r—q)

(k—p)!BT(p+ 14 p1)d(p, q)
(k+ B —=p)[(k+p) — Mk — p)IL(k + )ik, q)

The result is sharp for the function f(z) given by

(k—p)!BT(p+ 1+ p)d(p, q) Jk
(k+ B —=p)[(k+u) — Mk — p)IT'(k + p)d(k, q)

(k>n+p;p,n€N). (2.4)

ay, < (k>n+p;p,neN). (2.3)

f2) =2 =

We next prove the following growth and distortion property for the functions
of the form (1.1) belonging to the class T)(n,p, A, 3).
Theorem 2. If a function f(z) defined by (1.1) is in the class T (n,p, A, B). Then

1f(2)] = |27 <
n!BT(p + 1+ 1)d(p, q)

n+p
AT L= T+ p+ppmipg (2.5)
and (in general),
“f(m)@l —8(p,m) 2P| <
n!BT(p+ 1+ w)d(p,q)(n+p —q)! - 0

(n+O)p+p) +n(l =NT(n+p+p)(n+p—m)!

(zeU;p,ne Nym,q € Noym < q < p;p > max(m,q, —p)).
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The results are sharp for the function f(z) given by

. n!BL(p+ 1+ p)d(p,q) ntp.

A T | (e BTy X TESTEAm T

2.7)

Proof. In view of Theorem 1, we have

(n+B)[(p+p) +nl—NT'(n+p+p)n+pq Z o

n!
k=n+p

= (k4B = p)[(k + 1) = Ak = Ik + (k. )
2 ax

= (k=)

k=n+p
< BL(p+ 1+ w)d(p,q),
which readily yields

n!BL(p+ 1+ w)d(p,q)

k%%ﬂ”*n+ﬂmp+m+nu—»wm+p+man+nm‘

Also, (2.1) yields

nl(n+p—q)!6T(p+1+p1)d(p,q)
2 M < G a) L= IEm + p 4 )

fM(2) = 6(p,m)zP~™ Z S(k,m)agz""m
k=n-+p
(p,n € N;m € No;p > m). (2.10)

Theorem 2 follows from (2.8), (2.9) and (2.10)

Finally, it is easy to see that the bounds in Theorem 2 are attained for the
function f(z) given by (2.7).
Theorem 3. Let the function f(z) defined by (1.1) be in the class T (n,p, A, B),
then

(1) f(2) is p-valently close-to- convex of order a (0 < a < p) in |z| < 71, where

r1 =inf {<pka) 0(p, a, A, 1, s k)} -, (2.11)

(i) f(2) is p-valently starlike of order o (0 < v < p) in |z| < ra, where
1
. P« k—p
=inf — 0 A ik 2.12
T2 H/i {(ka) (p7Qa 7/’[/7ﬁ7 )} ) ( )



6 R. M. El-Ashwah

(iii) f(2) is p-valently convex of order a(0 < o < p) in |z| < rs, where

1
r3—ir¢f{m9(p,q, A, i, 3; k)}k_p7 (2.13)
where
O(p, g\ i, i k) = (k+B8—p)(k+p) — Ak —p)[L'(k + p)é(k, q) (2.14)

Bk —p)T(p+1+u1)d(p,q)
(E>n+ppneN;qge Nosp>q;u>—p0<A<L0<a<p0<f<1).

Each of these results is sharp for the function f(z) given by (2.4).
Proof. It is sufficient to show that

LB b <p-a (dl<ri0<a<mpen). (2.15)
GG NN (lz] <r2:0 < < p;p € N), (2.16)
f(2)
and that
1+ZJ{(S>_P <p-—a (2 <rs0<a<ppeN), (2.17)

for a function f(z) € T(n,p, A, B), where r1,72 and r3 are defined by (2.11), (2.12)
and (2.13), repectively. The details involved are fairly straightforward and may be
omitted.

3 Properties of the class Hi(n,p, A, 3;7)

Applying the results of Section 2, which were obtained for the function f(z) of the
form (1.1) belonging to the class T){(n,p, A, 3), we now derive the corresponding
results for the function f(z) belonging to the class H{(n,p, A, ;7).

Theorem 4. If a function f(z) defined by (1.1) is in the class Hl(n,p, A, 3;7),
then

()] = 12| <

n!Bl(p+1+p)ép,g)p—qg+v)(p—g+y+1) 2"
(n+ B[P+ +nl=NTn+p+up)dn+pqn+p—q+7)

(3.1)

and (in general),
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[[£0(z)] = 8(p,m) |27~ <

nlBL(p+ 1+ w)d(p.q)(p —q+7)(p—qg+7+Dn+p—q)! |z["7P™
(n+B)p+u) +nl-=NTn+p+u)dn+pgn+p—qg+7y)(n+p—m)!

(3.2)
(z€U;p,n € N;m,q € No;m < q <p).
The results in (3.1) and (3.2) are sharp for the function f(z) given by
f(z) = 2"—
n!fl(p+1+p)dp,g)(p—qg+7)P—g+7+1) o (33)

(n+B)lp+p) +nd =N +p+p)dn+pa)(n+p—q+7)

Proof. Assume that f(z) € T,(n) is given by (1.1). Also, let function g(z) €
H{(n,p, A, 3), occuring in the non-homogenous differential equation(1.11) be of the
form:

g(z) = 2P — Z brz" (b > 0;p,n € N). (3.4)
k=n+p
Then, we readily find from (1.11) that

(p—g+7)p—-g+v+1)

= b (k>n-+p;p,neN), 3.5
R e CErEra VS

so that

o0

N arsk b P—g+yp—atr+1),
f(z) =2 > azt = > (k*qu’y)(quJr’qul)bk ko (3.6)

k=n+p k=n+p
and
A 2P| < 1"+ P—a+9—g+y+1), oy g7
IPEN= <1 3 GG Y @7

Next, since g(z) € Tg(n,p7 A, B), therefore, on using the assertion (2.8) of Theorem
2, we get the following coefficient ineqality :

n!BL(p + 1+ u)é(p,q)
(n+B)(p+u) +n(l =N +p+p)dn+p,q)

by < (k>=n+pp,neN),

(3.8)
which in conjunction with (3.6) and (3.7) yield

If @) = [2"] <

(n+B)p+u) +nl—NT(n+p+p)dn+pq) '
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— (P—g+NP—g+y+1)
2 (k—q+7)(k—q+~+1) (z€0). (3.9)

k=n+p
By noting the following summation result:

(k—Q‘FW)(k—q—F’y—f—l): (n-|—p_q_|_,y) ’ (310)

i P—q+y)p—q+v+1) (P—qg+Np—qg+7+1)

k=n+p

where v € R* = R\{-n — p,—n — p — 1,...}. The assertion (3.1) of Theorem 4
follows from (3.9) and (3.10). The assertion (3.2) of Theorem 4 can be established
by similarly applying (2.9), (3.5) and (3.10).

Theorem 5. Let the function f(z) defined by (1.1) be in the class Hl(n,p, A, B;7),
then f(z) is p-valently close-to-convex of order 6(0 < § < p) in |z| < r4, where

1

(p_(s)(k_Q‘f"Y)(k_‘I‘i"Y"'l)}k—p
kp—q+v)(p—q+v+1)

T4 :H]%f {0(]% q, )‘7 122 /87 k)

(k>n+p;p,n€ N;ge Nosp>qsu> —p;0 <A< 10<6<p;0< < 15y € RY),
(3.11)

where 0(p, q, A\, i1, B; k) is given by (2.14). The result is sharp for the function f(z)

given by (3.3).

Proof. Assume that f(z) € T,(n) is given by (1.1). Also, let the function g(z) €

T} (n, p, A, 3), occuring in the non-homogenous differential equation (1.11), be given

by (3.4). Then, it sufficient to show that

f(2)

w1 P

<p—90 (|]z2| <ry;0<0<p;peN).

Indeed, we have

f(2)

zp—1

oo b
< Z kak|2| )

k=n+p

—-p

and by using the coefficient relation (3.5) between the functions f(z) and g(z), we
get

— (p—q+Np—q+v+1) kep
kb, |z <p-09. 3.12
D e pE (312)

Since g(z) € T (n,p, A, 8), and we know from the assertion (2.1) of Theorem 1 that

i (k+ B8 =p)(k+p) = Mk —p)IT(k+ p)é(k, q)

k=n+p
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hence, (3.11) is true if

< k )(pq+7)(pq+v+1)
p=06) (k—q+7)(k—q+~y+1)

12" 77 < 0(p,q, A\, Bs k) (k> ntp;p,n € N),

(3.13)
where 0(p, g, \, i, B; k) is given by (2.14). Solving (3.12) for |z|, we obtain

(p—0)(k—gqg+y)(k—qg+~v+1)
kp—q+p—g+7+1)

which obviously proves Theorem 5.

Remark 1. We note that the result obtained by Irmak et al. [10 , Theorem 2.3] is

not correct. The correct result is given by (3.11) with p =1 and ¢ = 0.

Theorem 6. Let the function f(z) defined by (1.1) be in the class H}l(n,p, A, 3;7),
then f(z) is p-valently starlike of order 6(0 <& < p) in |z| < r5, where

|z] < {9(p,q,/\,u,ﬂ; k). } - (k>n+p;p,ne N)

(p—5)(k—q+7)(k—q4-7+1)}’“i”
(k=0)p—gq+7P—qg+v+1)

(k>n+p;p,n€ N;g€ Nosp>q; > —p;0 <A< L10<6<p;0< B <15y € RY),
(3.14)

where O(p, q, A\, 1, B; k) is given by (2.14). The result is sharp for the function f(z)

given by (3.3).

Theorem 7. Let the function f(z) defined by (1.1) be in the class Hl(n,p, A, 3;7),

then f(z) is p-valently convex of order 6(0 < § < p) in |z| < r¢, where

rs =inf {9(p,q,/\,u7ﬁ;k)-

—in o opp=0)k—q+y)(k—q+y+1) =7
v {9(p7q’A7M’ﬁ’k)'k(k—5)(p—q+v)(p—q+v+1)}

(k>n+p;p,n€ N;ge€ Nosp>qs > —p;0 <A< 10<6 <p;0< B < 15y € RY),
(3.15)

where O(p, q, A\, i1, B; k) is given by (2.14). The result is sharp for the function f(z)

given by (3.3).

Remark 2. We note that the results obtained by Irmak et al. [10, Theorems 3.3 and

3.4] are not correct. The correct results are given by (3.14) and (3.15), respectively,

with p=1 and ¢ = 0.

4 Inclusion relations involving (n, ) —neighborhood
for the class T!(n,p, A, B)

Following the works of Goodman[11], Ruscheweyh [15] and Altintas [2] (see also
[5], [6], [9], and [13]) we define the (n,#)—neighborhood of a function £(@(z) when

f € Ty(n) by

Ngm(f(q),g(q)) _
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{g €Ty(n):g(z) =2 — Z brz" and Z O(k, )k |ax — bi| < 0} . (4.0)

k=n+p k=n+p

It follows from (4.1) that , if
Wz)=2"  (peN), (4.2)

then

Nf (h) = {g €ETy(n):g(z)=2"— > bz"and > d(kqklbel <0 3.
k=n+p k=n+p
(4.3)
Next; we establish inclusion relationships for the function class T}] (n,p, A\, B) in-
volving the (n,#)—neighborhood N (h) defined by (4.3).
Theorem 8. If

_ BT (p+ 1+ w)d(p, g)n! n+p
S lprp+nl=NC(n+p+p) (n—i—ﬁ)’ (4.4)
then
T(n,p, A, B) C Ny, ,(R). (4.5)

Proof. Let f € Ti(n,p,A,3).Then , in view of the assertion (2.1) of Theorem 1,
we have

(n+B)p+p+ n(i!_ MIT(n+p+p) i 5(k, q)a

k=n+p
< BL(p+ 1+ wi(p,q) (4.6)
so that
- BL(p + 1+ w)d(p, g)n!
D e PPy e ML
On the other hand, we also find from (2.1) and (4.7) that
lpt u+ nil _nA,)]F(n totH) > (k. q)kar < BT(p+ 1+ p)d(p,q)+
: k=n+p
(p—ﬂ)[(eruﬂT-l'n)]F(nerJru) S 6k, g)ax < BU(p + 1+ 15(p.a)+
) k=n+p
(p—9) [p+u+n(l—N(n+p+p) BL(p+ 1+ 1)d(p, q)n!
P n! (n+B)p+p+nl—NTn+p+p)

=0C(p+ 1+ u)d(p,q) (Zj:g) ,
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that is

> Ok qka, < 3

L(p+1+p)dp,g)n! (n+p) _
k=n+p

4.8
p+p+nl=XNTn+p+up) \n+p (48)
Remark 3. Putting ¢ = 0 and p = 1 in Theorem 8, we obtain the following
corollary.

Corollary 2. If

_ BL(2 4 pn! n+1
9_[1+u+n(1—)\)]F(n+1+u) <n+ﬁ>’ (4.9)
then
Tﬂ(n’)‘vﬂ) - Ng(h) (410)

5 Neighborhood for the class T/“(n,p, \, 3)

In this section we determine the neighborhood for the class Tg"’(n, p, A\, 3) which
we define as follows. A function f € T)(n) is said to be in the class T)7*(n,p, , 3)
if there exist a function g € T(n,p, A, 3) such that

‘f(z)
9(2)
Theorem 9. If g € T!(n,p, A, B) and

—1'<p—0¢ (z€eU; 0<a<p). (5.1)

o =Dp—

O(n+B)lp+p+nl = NT(n+p+p)

(n+p){ln+B)p+p+nl—=NT(n+p+u)dn+p,q) —pl(p+1+ u)5(p,(q5)7;!)}’

where

6 < p(n+p) x
x {8(n+p,q) = BL(p+ 1+ w)d(p, )n)[(n+ B)p + p+n(l = NT(n+p+p) '},

then

Npp(9) € T2 (0,9, ), B). (5:4)
Proof. Suppose that f € Ngyp(g) , then we find from the definition (4.1) that
> Ok, @)k lar —bi| <6, (5.5)
k=n+p

which implies the coefficient inequality

oo

> Jak—bi| < (
Mt (n+p)d(n+p.q)

p>q,n,peN,qe Np). (5.6)
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Next, since g € T¢(n, p, A, 3), we have

Sibk< BL(p+ 1+ 1)é(p, g)n! (5.7)
herp “ (4 B)p+p+nd—-NC(n+p+p)d(n+p,q)’
so that .
—-b
f@>_4<k§;J% !
g(2) - i I
k=n+p
0

(n+p)d(n+p,q)
BT (p+ 1+ p)d(p, g)n!
(n+B)p+p+nl—NL(n+p+p)d(n+p,q)

IN

_ O(n+B)lp+p+nl—NT(n+p+p)
(n+p){ln+B8)p+p+nl—-NT(n+p+p)dn+p,q) — TP +14+ p)dlp,gn!}
S p—q,

where a given by (5.2). This implies that f € T,>*(n,p, A, 3).
Remark 4. Putting ¢ =0 and p = 1 in Theorem 9, we obtain the following corollary.
Corollary 3. If g € T,.(n, A, 3), and

O(n+ B)1 + p+n(l — N)0(n+ 1+ p)
m+D{(n+B)1+p+nl—-NTn+1+u) — 402+ u)n)}’

a=1-—

where
0< (n+ {1 - AU+ wnll(n + B)[1 + -+ AL = NID(n + 1+ )] "}
then
N(g) € TS (n, A, B).
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