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FUGLEDE AND ELEMENTARY OPERATORS
ON BANACH SPACE

A. Segres and A. Bachir

Abstract

We generalize the notion of Fuglede-Putnam’s property to general ∗−Banach
algebra in the sense of Fuglede operator and study the elementary operator
of length ≤ 2 in the context of this property

1 Introduction

Suppose A is a complex linear algebra, with identity 1: then an involution
∗ : M →M on a linear subspace M ⊆ A is a mapping which is conjugate linear
and self inverting: for each x, y ∈M and each α, β ∈ C

(αx + βy)∗ = αx∗ + βy∗; (x∗)∗ = x. (1.1)

We shall describe x ∈ A as hermitian, whenever

x ∈M and x∗ = x. (1.2)

It is easily checked that

H + iH = M; H ∩ iH = {0}. (1.3)

The canonical example, when A is a Banach algebra, comes from the numerical
range: x ∈ A is said to be hermitian provided

VA(x) = {ϕ(a) : ϕ ∈ state(A)} ⊆ R; (1.4)

here state(A) consists of the linear functionals ϕ ∈ A∗ for which ‖ϕ‖ = 1 = ϕ(1).
It is well known ([4] Lemma 5.2) that

x ∈ A hermitian ⇐⇒ ∀t ∈ R :
∥∥eitx

∥∥ = 1. (1.5)
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It is also known ([4] Lemma 5.7) that if H = HA denotes the hermitian elements
of A in the sense of (1.4) then the second part of (1.3) holds: thus if we define
the space M = H + iH as in the first part of (1.3) we can define an involution
∗ : M→M by setting

(h + ik)∗ = h− ik (h, k ∈ H). (1.6)

If ∗ : M→M⊆ A is an involution we define a ∈ A to be normal iff

a ∈M and a∗a = aa∗ ∈ A : (1.7)

note that is not necessary that a∗a ∈M. Equivalently, with respect to (1.6),

a = h + ik with h, k ∈ H and hk = kh. (1.8)

Let A = B(H) be the algebra of all bounded operators acting on a complex
separable Hilbert space H and A,B ∈ B(H), we say that the pair (A,B) satisfies
the Fuglede-Putnam’s property if ker δA,B ⊆ ker δA∗,B∗ where δA,B denotes the
generalized derivation defined on B(H) by δA,B (X) = AX −XB.

Many mathematicians have extended this property for several classes of opera-
tors. For detailed study for this property, the reader is referred to [2, 3, 6, 9, 15].

In this note we wish to discuss the ”Fuglede-Putnam property” in algebras
A = B(X ) for Banach spaces X , in particular for ”elementary operators”.

We will use the following further notations, the range of an operator T ∈ B(X )
is denoted by ran T and the commutator AB − BA is denoted by [A,B]. The set
of complex numbers is denoted by C.

2 Fuglede Operators

Suppose ∗ : M → M ⊆ A is an involution in the sense (1.1) and suppose in
particular that A = B(X ) for a Banach space X : then

Definition 2.1 We define T ∈M ⊆ B(X ) to be
Fuglede iff

ker T ⊆ ker T ∗; (2.1)

reduced iff
ker T ⊆ ker TT ∗; (2.2)

natural iff
ker TT ∗ = ker T ∗. (2.3)

These definitions come from [10], following an idea of Shulman and Turowska
[13]; in [10, Definition 6] the condition (2.3) was described by saying that T ∗ was
” ultra weakly *-orthogonal”. We remark that if X is a Hilbert space then every
operator T ∈ A satisfies (2.3). An equivalent version of (2.3) is that ker T∩ran T ∗ =
{0}. The simplest relationships between the concepts of Definition 2.1 are
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Theorem 2.2 If T ∈ A = B(X ) for a Banach space X then

T natural and reduced =⇒ T Fuglede =⇒ T reduced. (2.4)

Also
T normal =⇒ T reduced. (2.5)

Proof. If T is natural and reduced then ker T ⊆ ker TT ∗ giving (2.1). If T is
normal then ker T ∗ ⊆ ker TT ∗ = ker T ∗T, giving (2.2).

Note that the normality need not in general, imply the Fuglede property.

3 Elementary Operators

If a ∈ A we define left and right multiplication operators by setting, for each x ∈ A,

La(x) = ax; Ra(x) = xa; (3.1)

more generally if a ∈ An and b ∈ An are n-tuples the elementary operator La ◦Rb :
A → A is defined by setting, for each x ∈ A,

(La ◦Rb)(x) =
n∑

j=1

ajxbj · (3.2)

The same operator T = La ◦ Rb can be given by many different pairs of tuples a
and b: the minimum possible n is sometimes called the ”length” of the operator.
There is algebraic isomorphism between the linear space of elementary operators on
A and the tensor product A⊗A: thus if there is an involution ∗ : M→M⊆ A it
is possible to successfully define an involution on the subspace of those elementary
operators La ◦Rb for which (a, b) ∈Mn ×Mn by setting

(La ◦Rb)∗ = La∗ ◦Rb∗ , (3.3)

where we write for example (a1, a2, · · · , an)∗ = (a∗1, a
∗
2, · · · , a∗n) if a ∈ An. The most

important examples of elementary operators are the ”mixed derivation” La−Rb for
single elements a, b ∈ A and the products LaRb; Duggal [6] has looked in particular
at the operator LaRb − I.

When A = B(X ) for a Banach space X then an involution ∗ : M→M⊆ B(X )
gives rise to a dual involution ∗ : M† →M† = {x† : x ∈ M} ⊆ B(X †) defined by
setting

(x†)∗ = (x∗)†, (x ∈M). (3.4)

In this section we consider the relationship between the Fuglede property for
tuples a ∈ An, b ∈ An and La ◦ Rb ∈ B(A) : For example Duggal [7] has obtained
the result if A = B(H) for a Hilbert space H and if a, b in A are normal and c, d∗

are hyponormal, then

ac− ca = bd− db = 0 =⇒ LaRb − LcRd Fuglede. (3.5)
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Theorem 3.1 If M⊆ A ⊆ B(X ) for a Banach space X and if a, b ∈ A then

a ∈M Fuglede ⇐⇒ La ∈ B(A) Fuglede; (3.6)

b† ∈M† Fuglede ⇐⇒ Rb ∈ B(A) Fuglede; (3.7)

a ∈M Fuglede and b† ∈M† Fuglede =⇒ LaRb ∈ B(A) Fuglede. (3.8)

Proof. If x ∈ A is arbitrary then ax = 0 ⇐⇒ ∀ξ ∈ X : axξ = 0 and if a is Fuglede
it follows a∗xξ = 0 so a∗x = 0 : thus La is also Fuglede. Conversely if x ∈ X and
ϕ ∈ X† are arbitrary and if La is Fuglede, we obtain the following implication

La(ϕ⊗ x) = 0 =⇒ ϕ⊗ a∗x = (La)∗(ϕ⊗ x).

In particular ax = 0 then (3.6) holds for all ϕ ∈ X †, giving a∗x = 0 by Hahn-
Banach.

Towards (3.7), if xb = 0 then

∀ϕ ∈ X † : b†(ϕx) = ϕxb,

giving if b† is Fuglede

ϕxb∗ = (b∗)†(ϕx) = (b†)∗(ϕx) = 0

and hence by Hahn-Banach’s theorem R∗bx = xb∗ = 0. Conversely if b†ϕ = 0 ∈ X †
then for arbitrary x ∈ X we have (ϕ⊗x)b = 0 and hence if Rb is Fuglede (ϕ⊗x)b∗ =
0. Since x ∈ X is arbitrary it follows ϕb∗ = (b†)

∗
ϕ = 0.

Finally for (3.8) suppose La(xb) = (LaRb)x = 0 : if a ∈ A and La ∈ B(A)) are
Fuglede, this yields Rb(a∗x) = a∗(xb) = 0. Also if b† and Rb are Fuglede, we get
(LaRb)∗(x) = R∗b(a

∗x) = 0.

Proposition 3.2 If A,B ∈M ⊆ B (X ) with the involution defined by (1.6) then,

(i) A Fuglede ⇔ LA Fuglede

(ii) B† Fuglede ⇔ RB Fuglede

(iii) A, B† are Fuglede ⇒ MA,B Fuglede.

Proof. IfA = B(X ) where X is a Banach spacec andM = H+iH is equipped with
the involution ∗ in the sense of (1.6) then we can check easily that (M)† = H†+iH†
and the dual involution ? of ∗ is given by

∀h, k ∈ H :
(
h† + ik†

)?
= h† − ik†. (3.9)

The results follow immediately from the Theorem 3.1.
Let A be a Banach algebra with unit 1.

Theorem 3.3 ([1, 8, 11]).
For a, b ∈ A we have the following statements.
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(i) a, b hermitian elements ⇒ La, Rb hermitian operators ⇒ δa,b hermitian

(ii) a, b normal elements ⇒ La, Rb normal operators ⇒ δa,b normal

(iii) if A = B(X ); a normal ⇒ a Fuglede.

As a consequence, if a = h + ik is normal and b ∈ A, then

[a, b] = 0 ⇔ [h, b] = [k, b] = 0.

Proposition 3.4 If a, b are normal operators in B(X ) and x any element in A =
B(X ), then

M2
a,bx = 0 ⇒ Ma,bx = 0.

Proof. If a, b are hermitian operators then we can check easily that, for arbitrary
r ∈ R and all x ∈ A, ‖x‖ =

∥∥eiraxeirb
∥∥. Let

eira = 1 + ira + Ka : Ka =
∞∑

n=2

(ira)n

n!

eirb = 1 + irb + Kb : Kb =
∞∑

n=2

(irb)n

n!
.

Suppose, for hermitian a, b and x ∈ A that M2
a,bx = 0, then

anxbm = 0(m,n ≥ 2).

Hence, KaxKb = 0 and therefore, we can leave in the expansion of
∥∥eiraxeirb

∥∥ :

‖x‖ =
∥∥eirax(1 + irb) + (1 + ira)xeirb − (1 + ira)x(1 + irb)

∥∥
=

∥∥r2axb− ir (ax + xb)− x + eirax(1 + irb) + (1 + ira)xeirb
∥∥ ,

for all r > 0.
Consequently if

∥∥r2axb
∥∥ ≤

∥∥ir (ax + xb)− x + eirax(1 + irb) + (1 + ira)xeirb
∥∥

then,

‖axb‖ ≤ 1
r2

[r ‖ax + xb‖+ ‖x‖+ ‖x(1 + irb)‖+ ‖(1 + ira)x‖] (3.10)

If not, we have
∥∥r2axb

∥∥ ≤ ∥∥ir (ax + xb)− x + eirax(1 + irb) + (1 + ira)xeirb
∥∥ + ‖x‖

and

‖axb‖ ≤ 1
r2

[r ‖ax + xb‖+ 2 ‖x‖+ ‖x(1 + irb)‖+ ‖(1 + ira)x‖] . (3.11)
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From the equations (3.10) and (3.11), we conclude that axb = 0.

If a, b are normal elements with a = h1 + ik1, b = h2 + ik2. Then, by Theorems
(3.1) and (3.3), La, Rb are Fuglede operators and so it follows from a2xb2 = 0 that

a∗2xb∗2 = aa∗xb2 = a2xb∗2 = a∗2xb2 = a2xbb∗ = 0.

Hence,
(a∗ ± a)2x(b∗ ± b)2 = 0.

Using the first case, we get

(a∗ ± a)x(b∗ ± b) = 0.

This yields

h1xh2 = h1xk2 = h1xh2 = k1xh2 = k1xk2 = 0.

Therefore axb = 0.

Corollary 3.5 If a, b are normal operators in B(X ) then

ker Ma,b ∩ ran Ma,b = {0}.

Proposition 3.6 If A = B(X ) where X is a Banach space and T ∈ B(X ) is a
normal operator, then T is a natural operator.

Proof. Let X † be the dual of X and T † be the dual adjoint of T ∈ B(X ). With
respect to the involution (1.6) and its dual (3.9), we have that T † is normal. So
that T † and T are Fuglede operators and by duality we get ran T = ran T ∗. Using
[8] we get kerT ∩ ran T ∗ = {0}. Thus, kerTT ∗ = ker T ∗ which means that T is a
natural operator.

Consequently for T ∈ B(X ), we have

T normal ⇒ T Fuglede ⇒ T reduced (3.12)
T normal ⇒ T natural. (3.13)

In what follows we show that the elmentary operator LaRb induced by hermitians
elements is not necessarily a hermitian operator.

Lemma 3.7 [14], Let T be a bounded linear operator on B(H), for a Hilbert space
H. Then T is hermitian if and only if there exist two self-adjoints operators A,
B ∈ B(H) such that T = LA + δB.

Proposition 3.8 Let A,B ∈ B(H) be a self-adjoints operators. If A and B are
not scalar operators then MA,B is not hermitian operator.
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Proof. If MA,B is a hermitian operator, then by Lemma 3.7, MA,B = LAB + δR

where R is a self-adjoint operator. Hence,

∀X ∈ B(H) : AXB −ABX = XBA−BXA.

Therefore,
∀X ∈ B(H) : A(XB −BX)− (XB −BX)A = 0.

Thus,
AδB − δBA = 0.

Which means that δAδB = δI (I denotes the identity operator), by [16] it follows
that either A or B is a scalar. Contradiction to our assumptions.

Remark 3.9 Theorem 3.3, showed that the hermitian and normal properties are
preserved for LA and RB and their sum but not preserved for the product LARB

(Proposition 3.8). However, Theorem 3.1, showed that the Fuglede property is pre-
served for LA, RB, their sum and their product for an arbitrary involution.

Let A be a Banach algebra with unit e and E be the elementary operator defined
on A by E = Ma1,b1 + Ma2,b2 .

The following result generalizes Rosenblum’s Theorem [11].

Proposition 3.10 If (a1, a2), (b1, b2) are 2-tuples of commuting normal elements
in A2, then E is a Fuglede operator.

Proof. If a1xb1 = a2xb2, for x ∈ A then by induction, an
1xbm

1 = an
2xbm

2 , for all
n,m ∈ N. Hence,

exp(a1)x exp(b1) = exp(a2)x exp(b2) (3.14)

Let ai = hi + iki and bi = vi + iui, i = 1, 2 where hi, ki, vi and ui ∈ HA. Set

ci = exp(ai − a∗i ), di = exp(bi − b∗i ), i = 1, 2. (3.15)

Then,

ci = exp(2iki), di = exp(2iui) and ‖ci‖ = ‖di‖ = 1, i = 1, 2. (3.16)

By (3.14) and [a1, a2] = [b1, b2] = 0, we get

x = exp(−a1) exp(a2)x exp(b2) exp(−b1). (3.17)

From equations (3.15), (3.17), we obtain

c1c
−1
2 xd−1

2 d1 = exp(−a∗1) exp(a∗2)x exp(b∗2) exp(−b∗1)

and by (3.16),

‖exp(−a∗1) exp(a∗2)x exp(b∗2) exp(−b∗1)‖ ≤ ‖x‖ . (3.18)
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Let f be the function from C to A defined by

f(z) = exp[z(a∗2 − a∗1)]x exp[z(b∗2 − b∗1)].

Clearly f is an entire function and by (3.18) f is bounded on the whole field C. So
by Liouville’s Theorem, f is a constant function on C.
Hence, for all z ∈ C, f(z) = f(0) = x. Therefore

exp[z(a∗2 − a∗1)]x exp[z(b∗2 − b∗1)] = x, for all z ∈ C

and
exp(za∗1)x exp(zb∗1) = exp(za∗2)x exp(zb∗2), for all z ∈ C.

Thus

∞∑

n,k=0

zn+k

n!k!
(
a∗n1 xb∗k1 − a∗n2 xb∗k2

)
=

∞∑
m=0

zm

n!k!

∑

n+k=m

(
a∗n1 xb∗k1 − a∗n2 xb∗k2

)
= 0.

Finally, we get for all (n, k) ∈ N2, a∗n1 xb∗k1 = a∗n2 xb∗k2 .
In particular, for n = k = 1, x ∈ kerE∗.
The following corollary generalizes the result given by Brooke, Brush and Pear-

son [5]

Corollary 3.11 Let (a1, a2), (b1, b2) be 2-tuples of commuting hermitian elements
in A2 and λ ∈ C. If a1xb1 = λa2xb2 6= 0, for certain element x ∈ A then λ ∈ R.

In particular, for b1 = a2 and a1 = b2 = a, if ax = λxa 6= 0, then λ ∈ R.

Proof. From the previous proposition we get a1xb1 = λa2xb2 = λa2xb2. Hence(
λ− λ

)
a2xb2 = 0. Thus λ = λ.

Acknowledgement. The authors thank the anonymous referees for their help-
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