
Faculty of Sciences and Mathematics, University of Nǐs, Serbia
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GREEN’S FORMULA
AND THE HARDY-STEIN IDENTITIES

Miroslav Pavlović∗

Abstract

This is a collection of some known and some new facts on the holomor-
phic and the harmonic version of the Hardy-Stein identity as well as on their
extensions to the real and the complex ball. For example, we prove that if f
is holomorphic on the unit disk D, then

‖f‖Hp ³ |f(0)|p +

Z

D
|f(z)|p−2|f ′(z)|2(1− |z|) dA(z), (†)

where Hp is the p-Hardy space, which improves a result of Yamashita [Proc.
Amer. Math. Soc. 75 (1979), no. 1, 69–72]. An extension of (†) to the unit
ball of Cn improves results of Beatrous an Burbea [Kodai Math. J. 8 (1985),
36–51], and of Stoll [J. London Math. Soc. (2) 48 (1993), no. 1, 126–136]. We
also prove the analogous result for the harmonic Hardy spaces. The proofs
of known results are shorter and more elementary then the existing ones,
see Zhu [Spaces of holomorphic functions in the unit ball, Graduate Texts in
Mathematics, vol. 226, Springer-Verlag, New York, 2005, Ch. IV]. We correct
some constants in that book and in a paper of Jevtić and Pavlović [Publ. Inst.
Math. (Beograd) (N.S.) 64(78) (1998), 36–52].

1 Introduction

In the simplest case Green’s theorem states that if g ∈ C2(D), D = {z ∈ C : |z| < 1},
then

d

dr

1
2π

∫ 2π

0

g(reiθ) dθ =
1
2r

∫

|z|<r

∆g(z) dA(z), 0 < r < 1, (1)

or, what is the same,

1
2π

∫ 2π

0

g(reiθ) dθ = g(0) +
1
2

∫

|z|<r

∆g(z) log
r

|z| dA(z), 0 < r < 1, (2)
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where dA is the normalized Lebesgue measure on D, and ∆ is the ordinary Laplacian,

∆g(z) =
∂2g

∂x2
+

∂2g

∂y2
= 4

∂2g

∂z∂z̄
, z = x + iy.

Although the proof of (1) and (2) is short and elementary they have important
consequences in the theory of Hardy spaces. The first one was proved by Hardy
in [4]. In order to state it let H(D) denote the class of all functions holomorphic
in D and, for 0 < p < ∞, define the Hardy class Hp by

Hp = {f ∈ H(D) : ‖f‖p
def= sup

0<r<1
Mp(r, f) < ∞},

where

Mp(r, f) =
(

1
2π

∫ 2π

0

|f(reiθ)|p dθ

)1/p

.

For basic properties of Hp we refer to [3].

Theorem 1.A (0 < p < ∞). (i) If f ∈ H(D), then the function r 7→ Mp(r, f) is
of class C1 on the interval (0, 1) and

d

dr
Mp

p (r, f) =
p2

2r

∫

|z|<r

|f(z)|p−2|f ′(z)|2 dA(z), (3)

and

Mp
p (r, f) = |f(0)|p +

p2

2

∫

|z|<r

|f(z)|p−2|f ′(z)|2 log
r

|z| dA(z).

(ii) A function f ∈ H(D) belongs to Hp if and only if

Hp(f) :=
∫

D
|f(z)|p−2|f ′(z)|2 log

1
|z| dA(z) < ∞,

and we have

‖f‖p
p = |f(0)|p +

p2

2
Hp(f). (4)

The analogous fact for harmonic functions was proved by P. Stein [24]. To state
it denote by h(B) the class of all real-valued functions harmonic in D, and by hp

the harmonic Hardy class,

hp = {f ∈ H(D) : ‖f‖p
def= sup

0<r<1
Mp(r, f) < ∞}.

Theorem 1.B (1 < p < ∞). (i) If u ∈ h(D), then the function r 7→ Mp(r, u),
0 < r < 1, is of class C1 and

d

dr
Mp

p (r, f) =
p (p− 1)

2r

∫

|z|<r

|u(z)|p−2|∇u(z)|2 dA(z), (5)
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and

Mp
p (r, u) = |u(0)|p +

p(p− 1)
2

∫

|z|<r

|u(z)|p−2|∇u(z)|2 log
r

|z| dA(z). (6)

(ii) A function u ∈ h(D) belongs to hp if and only if

Sp(u) :=
∫

D
|u(z)|p−2|∇u(z)|2 log

1
|z| dA(z) < ∞,

and we have

‖u‖p
p = |u(0)|p +

p (p− 1)
2

Sp(u). (7)

The function u(x, y) = x shows that (7) is not valid for p ≤ 1.
Relations (7) and (4) are known as the Hardy-Stein identities (see [6, p. 41]).
Solving a problem of Bohr and Landau, Hardy [4] used Theorem 1.A to ex-

tend the Hadamard three circle theorem to the case of the integral means, while
P. Stein [24] used Theorems 1.A and 1.B to prove the famous theorem of M. Riesz
[23]: If f = u + iv is holomorphic in D, and if u ∈ hp, where 1 < p < ∞, then
f ∈ Hp, and

‖f‖p ≤ Cp‖u‖p (if f(0) = u(0)).

Indeed, if 1 < p ≤ 2, then the Riesz theorem follows from (4) and (7) immediately
because |∇u| = |f ′| and |f |p−2 ≤ |u|p−2. Then a duality argument proves the Riesz
theorem in the case p ≥ 2.

As another application of (7) one can give a quick proof (see [18]) of the following
sharpened variant of the Littlewood-Paley inequality [12]:

∫

D
|∇u(z)|p(1− |z|)p−1 dA(z) ≤ Cp(‖u‖p

p − |u(0)|p), p ≥ 2.

(Usually, ‖u‖p
p instead of ‖u‖p

p − |u(0)|p stands.)
For various generalizations and applications of the Hardy-Stein identity, see [29,

Section 4] and [7, 8, 9, 10, 11, 13, 14, 17, 25, 27].
The following fact is a consequence of Theorem 1.A(ii) (see [28]).

Theorem 1.C (0 < p < ∞). A function f ∈ H(D) belongs to Hp if and only if

Ĥp(f) :=
∫

D
|f(z)|p−2|f ′(z)|2(1− |z|2) dA(z) < ∞.

In the case p ≥ 2, we can state somewhat more, namely

Hp(f) ³ Ĥp(f), f ∈ Hp. † (8)

†We write A(s) ³ B(s) to indicate that there is a positive constant C independent of s such
that 1/C ≤ A(s)/B(s) ≤ C. Throughout the paper s = u or s = f . Also, we use the letter C to
denote a positive constant, independent of u and f, whose value may vary from one occurence to
another.
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This can easily be proved by using the subharmonicity of |f |p−2|f ′|2 (p ≥ 2).
However if p < 2, it is not clear whether (8) is valid or not. Furthermore, it is not
clear whether the following weaker form of (8) holds for p < 2 :

‖f‖p
p ³ |f(0)|p + Ĥp(f), f ∈ Hp.

Namely, we cannot apply the closed graph theorem because we do not know whether
the quantity on the right-hand side is a norm (or even a quasinorm).

In the case of harmonic functions the situation is even worse: it is not clear
whether the relation

‖u‖p
p ³ |u(0)|p + Ŝp(u)

holds for any p > 1 (not only for 1 < p < 2). It is surprising that nobody considered
this questions. Here we prove:

Theorem 1.1 (1 < p < ∞). A function u ∈ h(D) belongs to hp if and only if

Ŝp(u) :=
∫

D
|u(z)|p−2|∇u(z)|p(1− |z|2) dA(z) < ∞.

Moreover, we have |u(0)|p + Ŝp(u) ³ ‖u‖p
p (1 < p < 2), and Ŝp(u) ³ Sp(u) (p ≥ 2).

The analogous theorem, in a generalized form, for holomorphic functions reads
as follows.

Theorem 1.2 (0 < p < ∞). Let γ ≥ 0. A function f ∈ H(D) belongs to Hp if and
only if

Ĥp,γ(f) :=
∫

D
|f(z)|p−2|f ′(z)|p|z|γ(1− |z|2) dA(z) < ∞.

Moreover, we have |f(0)|p + Ĥp,γ(f) ³ ‖f‖p
p (0 < p < 2) and Ĥp,γ(f) ³ Hp(f)

(p ≥ 2).

The proof of Theorem 1.1 (resp. 1.2) is in Section 2 (resp. 3). An extension of
Theorem 1.1 to the case of the unit ball in Rn is in Section 4. In Section 5 we use
Theorem 1.2 prove a similar theorem in the case of several complex variables.

2 Proof of Theorem 1.1

Lemma 2.1 (1 < p < ∞). If u ∈ h(D), then

‖u‖p
p =

∫

D
|u|p dA +

p (p− 1)
4

Ŝp(u).

Proof. This is proved by multiplying (5) with r2, then using partial integration on
the left hand side and the Fubini’s theorem on the right. For the (more general)
case of M-harmonic functions, see [7, Theorem 1.7].
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Lemma 2.2. [19] If u ∈ h(D) and 0 < α, β < ∞, then there exists a constant
C = Cα,β such that

sup
|z|<1/4

|u(z)|α|∇u(z)|β ≤ C

∫

|z|<1/2

|u(z)|α|∇u(z)|β dA(z).

In the terminology of [20], the lemma says that the function |u|α|∇u|β is quasi-
nearly subharmonic. A function g ≥ 0, defined and locally integrable on D, is
quasi-nearly subharmonic if there exists a constant C such that

g(z) ≤ C

R2

∫

DR(z)

g dA

whenever DR(z) : {w : |w − z| < R} is contained in D.

Now we can prove Theorem 1.1 in the case p ≥ 2. The inequality Ŝp(u) ≤
CSp(u), is an immediate consequence of (7) and the inequality 1 − t ≤ log(1/t),
t > 0. To prove the reverse inequality we use Lemma 2.2 with α = p− 2, β = 2. It
follows that

Sp(u) =
∫

|z|<1/4

|u(z)|p−2|∇u(z)|2 log(1/|z|) dA(z)

+
∫

1/4<|z|<1

|u(z)|p−2|∇u(z)|2 log(1/|z|) dA(z)

≤ C sup
|z|<1/4

|u(z)|p−2|∇u(z)|2
∫

|z|<1/4

log(1/|z|) dA(z)

+ C

∫

1/4<|z|<1

|u(z)|p−2|∇u(z)|2(1− |z|) dA(z)

≤ C

∫

|z|<1/2

|u(z)|p−2|∇u(z)|2 dA(z) + C Ŝp(u)

≤ C Ŝp(u),

which was to be proved. (We have used Lemma 2.2 and the fact that
∫
D log(1/|z|) dA(z) <

∞.)

For the proof in the case 1 < p ≤ 2, we need another two lemmas. The first one
is due to Hardy and Littlewood [5].

Lemma 2.3. If 0 < p < ∞, then
∫

D
|u|p dA ³ |u(0)|p +

∫

D
|∇u(z)|p(1− |z|2)p dA(z), u ∈ h(D). (9)

Lemma 2.4. Let 1 < p ≤ 2, and let u ∈ h(D). If

Kp(u) :=
∫

D
|u(z)|p−2|∇u(z)|2(1− |z|2)2 dA(z) < ∞,
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then
∫
D |u|p dA < ∞, and there exists a constant C = Cp such that

∫

D
|u|p dA ≤ C(|u(0)|p + Kp(u)). (10)

Remark 2.5. The inequality |u(0)|p + Kp(u) ≤ C
∫
D |u|p dA can easily be deduced

from (6). This gives a characterization of the Bergman space

hAp = {u ∈ h(D) :
∫

D
|u|p dA < ∞}.

For similar characterizations of holomorphic Bergman spaces, see [10, 11, 21, 22].

Proof. Assume first that u 6= 0 is harmonic in a neighborhood of the closed disk.
Applying the reverse Hölder inequality with the indices p/(p− 2), p/2 we obtain

Kp(u) ≥
(∫

D
|u|p dA

)1−2/p (∫

D
|∇u(z)|p(1− |z|2)p dA(z)

)2/p

. (11)

Combining this with (9) we get

Kp(u) ≥ c(|u(0)|p + B)1−2/pB2/p,

where
B =

∫

D
|∇u(z)|p(1− |z|2)p dA

and c is a positive constant depending only on p. Now, in view of (9), it remains to
prove that B ≤ C(|u(0)|p + Kp(u)). If B ≤ |u(0)|p, then there is nothing to prove.
Let B ≥ |u(0)|p 6= 0. Then

Kp(u) ≥ c(|u(0)|p + B)
(

B

|u(0)|p + B

)2/p

≥ c(|u(0)|p + B)
( |u(0)|p
|u(0)|p + |u(0)|p

)2/p

,

which gives the desired result under the above hypothesis. If u(0) = 0, then the
result follows from (11) and (9).

If u is arbitrary, then we apply inequality (10) to the functions z 7→ u(ρz); we
get

∫

D
|u(ρz)|p dA(z) ≤ C|u(0)|p +

C

ρ2

∫

|z|<ρ

|u|p−2|∇u|2(ρ− |z|)2 dA(z),

where C is independent of ρ (and u). Now we apply Fatou’s lemma on the left hand
side and the monotone convergence theorem on the right to conclude the proof of
the lemma.
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We continue the proof of Theorem 1.1. Let 1 < p ≤ 2. As in the case p ≥ 2, the
inequality |u(0)|p +Q̂p(u) ≤ C‖u‖p

p is easy to prove. To prove the reverse inequality
we use Lemmas 2.4 and 2.1. We get

‖u‖p
p ≤

∫

D
|u|p dA + C Q̂p(u)

≤ C|u(0)|p + C Kp(u) + C Q̂p(u)

≤ C|u(0)|p + 2C Q̂p(u).

Thus the proof of Theorem 1.1 is complete.

3 Proof of Theorem 1.2

The validity of the inequality Ĥp,γ(f) ≤ CHp(f), 0 < p < ∞, follows from the
inequality tγ(1− t) ≤ log(1/t), 0 < t < 1. To prove the rest of the theorem assume
first that p ≥ 2. Then the desired result follows from the following lemma applied
to the subharmonic function h = |f |p−2|f ′|2.
Lemma 3.1. If h ≥ 0 is a function subharmonic in D, γ > 0, and α > −1, then
there is a constant C independent of h such that

∫

D

1
|z|h(z)(1− |z|)α dA(z) ≤ C

∫

D
|z|γh(z)(1− |z|)α dA(z).

Proof. It suffices to prove that
∫

|z|<ε

1
|z|h(z) dA(z) ≤ C

∫

ε/2<|z|<3ε/2

h(z) dA(z),

where ε = 1/2.
Applying the maximum principle we get

∫

|z|<ε

1
|z|h(z) dA(z) ≤ C sup

|z|=ε

h(z)

≤ C sup
|z|=ε

4
ε2

∫

|w−z|<ε/2

h(w) dA(w)

≤ C sup
|z|=ε

4
ε2

∫

ε/2<|w|<3ε/2

h(w) dA(w)

=
4C

ε2

∫

ε/2<|w|<3ε/2

h(w) dA(w),

which was to be proved.
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Consider now the case 0 < p ≤ 2. We apply (4) to the function zkf(z), where k
is a positive integer such that

kp− 2 ≥ 1 and 2k − 1 ≥ γ.

We have

‖f‖p
p =

p2

2

∫

D
|z|k(p−2)|f(z)|p−2|kzk−1f(z) + zkf ′(z)|2 log

1
|z| dA(z)

≤ p2k2

∫

D
|z|kp−2|f(z)|p log

1
|z| dA(z) + p2

∫

D
|f |p−2|f ′(z)|2|z|2k log

1
|z| dA(z)

≤ C

∫

D
|f |p dA + C

∫

D
|f(z)|p−2|f ′(z)|2|z|γ(1− |z|2) dA(z)

= C

∫

D
|f |p dA + CĤp,γ(f).

Therefore it remains to prove that
∫

D
|f |p dA ≤ C|f(0)|p + CĤp,γ(f). (12)

To prove this we use the holomorphic variant of (9) (due to Hardy and Little-
wood): ∫

D
|f |p dA ³ |f(0)|p +

∫

D
|f ′|p(1− |z|2)p dA(z). (13)

Then, as in the proof of Lemma 2.4, we first suppose that f is holomorphic on the
closed disk and apply the reverse Hölder inequality to get

Ĥp,γ(f) ≥
∫

D
|f(z)|p−2|f ′(z)|p|z|γ(1− |z|2)2 dA(z)

≥
(∫

D
|f |p dA

)(p−2)/p (∫

D
|f ′(z)|p|z|γp/2(1− |z|2)p dA(z)

)2/p

≥ c

(∫

D
|f |p dA

)(p−2)/p (∫

D
|f ′(z)|p(1− |z|2)p dA(z)

)2/p

,

where c is a small positive constant. The inequality
∫

D
|f ′(z)|p|z|γp/2(1− |z|2)p dA(z) ≥ c

∫

D
|f ′(z)|p(1− |z|2)p dA(z),

used in the last step is a consequence of Lemma 3.1 applied to the function h = |f ′|p.
Now we use (13) to prove (12) in the case where f is holomorphic on the closed disk.
Finally we apply (12) to the functions ρ 7→ f(ρz), and this completes the proof of
Theorem 1.2.



Green’s formula and the Hardy-Stein identities 143

4 The case of the real ball

In this section we fix an integer n ≥ 3 and denote by B = Bn the unit ball in Rn. Let
dV = dVn denote the normalized volume measure on B, and let dσ = dσn denote
the normalized surface measure on the sphere S = ∂Bn. For a Borel function u on
B, let

Mp(r, u) =
(∫

S
|u(ry)|p dσ(y)

)1/p

, 0 < r < 1, 0 < p ≤ ∞.

Let h(B) denote the class of all real valued functions harmonic in B. The subclass
of h(B) consisting of those u for which

‖u‖p := sup
0<r<1

Mp(r, u) < ∞

will be denoted by hp(B).
The following assertion is a special case of Green’s theorem for functions of n

variables.

Lemma 4.1. If g is a function of class C2(B), then

d

dr

∫

S
g(ry) dσ(y) =

r1−n

n

∫

|x|<r

∆g(x) dV (x) (14)

and, equivalently,
∫

S
g(ry) dσ(y) = g(0) +

∫

|x|<r

∆g(x)Gn(x, r) dV (x), (15)

Gn(x, r) =
|x|2−n − r2−n

n(n− 2)
, x ∈ B, 0 < r < 1.

Proof. Let

g#(x) =
∫

O
g(Ux) dU

(radialization of g), where dU is the Haar measure on the group, O, of all orthogonal
transformations of Rn. Then g#(x) = ϕ(|x|), where ϕ ∈ C2[0, 1). Since (∆g#)(x) =
(∆g)#(x) and

∆g#(x) = ϕ′′(|x|) +
n− 1

r
ϕ′(|x|),

we see, via the formula,
∫

|x|<r

h(x) dV (x) = n

∫ r

0

ρn−1 dρ

∫

S
h(ρy) dσ(y),

(integration in polar coordinates) that the proof of (14) reduces to the proof that

ϕ′(r) =
r1−n

n
n

∫ r

0

ρn−1
(
ϕ′′(ρ) +

n− 1
ρ

+ ϕ′(ρ)
)

dρ.
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Theorem 4.2 (1 < p < ∞). If u ∈ h(B), then the function r 7→ Mp
p (r, u) is of

class C1(0, 1) and

d

dr
Mp

p (r, u) =
p(p− 1)

n
r1−n

∫

|x|<r

|u(x)|p−2|∇u(x)|2 dV (x), (16)

Mp
p (r, u) = |u(0)|p + p(p− 1)

∫

rB
|u(x)|p−2|∇u(x)|2Gn(x, r) dV (x).

Observe that, formally,

lim
n→2

|x|2−n − r2−n

n− 2
= log

r

|x| .

Proof of Theorem 4.2. If p ≥ 2, then the function g = |u|p (u ∈ h(B)) is of class C2

and we only have to compute ∆(|u|p).
Let 1 < p ≤ 2. We take

g = g[ε] = (u2 + ε)p/2, where 0 < ε ≤ 1.

A simple calculation shows that

∆g[ε] = p(u2 + ε)p/2−2[(p− 1)u2 + ε] |∇u|2. (17)

On the other hand, by (14),

d

dr
Mp

p (r, g[ε]) =
r1−n

n

∫

|x|<r

∆g[ε](x) dV (x). (18)

Now we let ε tend to 0 and use the fact that

lim
ε→0

d

dr
Mp

p (r, g[ε]) =
d

dr
Mp

p (r, u)

(because the function (x, t) 7→ (u(x)2+t)p/2 is of class C1 on the set B×R) together
with Fatou’s lemma to find from (17) and (18) that the function |u|p−2|∇u|2 is
integrable on {x : |x| < r}. Now the inequality

∆g[ε] ≤ p2|u|p−2|∇u|2

via the dominated convergence theorem concludes the proof.

Applying the “increasing” property of Mp(·, u) (which follows from (16)) to-
gether with the monotone convergence theorem we get the following version of the
Hardy-Stein identity.

Theorem 4.3 (1 < p < ∞). A function u ∈ h(B) belongs to hp(B) if and only if

Sp(u) :=
∫

B
|u(x)|p−2|∇u(x)|2(|x|2−n − 1) dV (x) < ∞,

and

‖u‖p
p = |u(0)|p +

p(p− 1)
n(n− 2)

Sp(u).
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The following theorem is a generalization of Theorem 1.1 to several variables.

Theorem 4.4 (1 < p < ∞). A function u ∈ h(B) belongs to hp(B) if and only if

Ŝp(u) :=
∫

B
|u(x)|p−2|∇u(x)|2(1− |x|2) dV (x) < ∞,

and we have

‖u‖p
p =

∫

B
|u|p dV +

p(p− 1)
2n

Ŝp(u). (19)

Moreover Sp(u) ³ Ŝp(u), when p ≥ 2, and ‖u‖p
p ³ |u(0)|p + Ŝp(u), when 1 < p ≤ 2.

Proof. Multiplying (16) by rn, then integrating from r = 0 to 1 and using partial
integration on the left hand side and the Fubini theorem on the right we get (19).
The proof of the rest is identical to that of Theorem 1.1: We have to use the
above results together with the n-variables version of Lemma 2.2 (see [19]) and the
n-variables version of (9), i.e.

∫

B
|u|p dV ³ |u(0)|p +

∫

B
|∇u(x)|p(1− |x|)p dV (x),

see [16, 2].

5 The ball in Cn

5.1 The radial derivative

In this section we change the meaning of B and S. We denote by B = Bn (resp.
S) (n ≥ 2) the unit ball (resp. unit sphere) in Cn. As above, let dV (resp. dσ)
denote the normalized volume measure on B (resp. surface measure on S.) Let
H(B) denote the class of all functions holomorphic in B, and

Hp(B) = {f ∈ H(B) : ‖f‖p = sup
0<r<1

Mp(r, f) < ∞}.

For the basic properties of the (Hardy) space Hp(B) we refer to [29, Ch. IV]. For
f ∈ H(B) let

Rf(z) =
n∑

j=1

zj
∂f

∂zj
=

d

dr
f(rz)

∣∣∣
r=1

, z = (zj)n
1 ∈ Cn.

Using integration in polar coordinates and the formula
∫

S
h(ζ) dσ(ζ) =

∫

S

(
1
2π

∫ 2π

0

h(eiθζ) dθ

)
dσ(ζ)

(integration by slices) we get from (4) the following result due to Beatrous and
Burbea [1].
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Theorem 5.D (0 < p < ∞). A function f belongs to Hp(B) if and only if

Rp(f) :=
∫

B
|z|−2n|f(z)|p−2|Rf(z)|2 log

1
|z| dV (z) < ∞,

and the formula

‖f‖p
p = |f(0)|p +

p2

2n
Rp(f)

holds.

Using integration by slices and Theorem 1.2 we can eliminate the factor |z|−2n.

Theorem 5.1 (0 < p < ∞). A function f belongs to Hp(B) if and only if

R̂p(f) :=
∫

B
|f(z)|p−2|Rf(z)|2(1− |z|2) dV (z) < ∞

and we have Rp(f) ³ R̂p(f) (p ≥ 2), and ‖f‖p
p ³ |f(0)|p + R̂p(f) (0 < p < 2).

The proof is simple and is left to the interested reader.

Pluriharmonic functions

A real-valued function u ∈ C2(B) is said to be pluriharmonic if each of the one-
variable functions λ 7→ u(z0+λz) (|z0|+|z| < 1, λ ∈ D) is harmonic in D. Integration
by slices together with Theorem 1.B shows that the following formula holds:

‖u‖p
p = |u(0)|p +

p(p− 1)
2n

∫

B
|z|−2n|u(z)|p−2|Ru(z)|2 log

1
|z| dV (z). (20)

Here
Ru(z) =

d

dr
u(rz)

∣∣∣
r=1

.

If f ∈ H(B), then u = Re f is pluriharmonic and hence Theorem 5.D and (20)
together with the identity Rf = Ru, show that the inequality

‖f‖p
p − |f(0)|p ≤ Cp(‖u‖p

p − |u(0)|p) (1 < p ≤ 2)

holds. However this fact can be deduced from the one-variable case by integration
by slices.

5.2 The euclidean gradient

For f ∈ H(B), let Df denote the holomorphic euclidean gradient of f,

Df(z) = (∂f/∂zj)n
j=1.

In various calculations the formulas

|∇|f |2| = 2|f | |Df |, f ∈ H(B), (21)



Green’s formula and the Hardy-Stein identities 147

and
∆(|f |2) = 4|Df |2, f ∈ H(B), (22)

play an important role.
The following was proved in [1].

Theorem 5.E (0 < p < ∞). A function f ∈ H(B) belongs to Hp(B) if and only if

Ep(f) :=
∫

B
|f(z)|p−2|Df(z)|2(|z|2−2n − 1) dV (z) < ∞

and the formula

‖f‖p
p = |f(0)|p +

p2

4n(n− 1)
Ep(f) (23)

holds.

Proof. In this case the formula (15) reads:
∫

S
g(rζ) dσ(ζ) = g(0) +

∫

|z|<r

∆g(z)G2n(z, r) dV (z).

Now we take g = (|f |2 + ε)p/2, 0 < ε < 1. We have, by (21) and (22),

∆g =
p

2

(p

2
− 1

)
(|f |2 + ε)p/2−2|∇(|f |2)|2 +

p

2
(|f |2 + ε)p/2−1∆(|f |2)

= p(p− 2)(|f |2 + ε)p/2−2|f |2|Df |2 + 2p(|f |2 + ε)p/2−1|Df |2

= p(|f |2 + ε)p/2−2[(p− 2)|f |2 + 2|f |2 + 2ε]|Df |2,
whence

∆g = p(|f |2 + ε)p/2−2[p|f |2 + 2ε]|Df |2. (24)
If p ≥ 2, then the function |f |p is of class C2 and we can take ε = 0 to get

∆(|f |p) = p2|f |p−2|Df |2.
If 0 < p < 2, we proceed in a similar way as in the proof of Theorem 4.2; we

omit the details. Thus we have proved that

Mp
p (ρ, f) = |f(0)|p + p2

∫

|z|<ρ

|f(z)|p−2|Df(z)|2G2n(z, r) dV (z). (25)

Now we let ρ → 1 and apply the increasing property of Mp(·, f) on the left hand side
and the monotone convergence theorem on the right. This completes the proof.

Theorem 5.2 (0 < p < ∞). A function f ∈ H(B) belongs to Hp(B) if and only if

Êp(f) :=
∫

B
|f(z)|p−2|Df(z)|2(1− |z|2) dV (z) < ∞,

and we have Ep(f) ³ Êp(f) (p ≥ 2), and ‖f‖p
p ³ |f(0)|p + Êp(f) (0 < p < 2).

Proof. Inequality Êp(f) ≤ CEp(f) follows from the elementary inequality 1− t2 ≤
C(t2−n − 1). The reverse inequality follows from Theorem 5.1 and the inequality
|Rf(z)| ≤ |Df(z)|.
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5.3 The invariant gradient

Let Aut(B) denote the automorphism group of B, i.e. the set of all bijective holo-
morphic maps ϕ : B 7→ B. For each a ∈ B there exists a unique automorphism
ϕa ∈ Aut(B) such that ϕa(0) = a, ϕa(a) = 0, and (ϕa ◦ ϕa)(z) = z for all z ∈ B. If
f is holomorphic in B, we define the invariant gradient of f,

D̃f(z) = D(f ◦ ϕz)(0).

In the one-dimensional case we have

D̃f(z) = −(1− |z|2)f ′(z).

The quantity |D̃f | is Möbius invariant, which means that

|D̃(f ◦ ϕ)| = |(D̃f) ◦ ϕ|
for ϕ ∈ Aut(B) (see [29] and [15]).

Let dτ denote the Möbius invariant measure on B,

dτ(z) =
dV (z)

(1− |z|2)n+1
.

Theorem 5.F (0 < p < ∞). If f ∈ H(B) and 0 < r < 1, then

Mp
p (r, f) = |f(0)|p + p2

∫

|z|<r

|f(z)|p−2|D̃f(z)|2G̃(z, r) dτ(z)

= |f(0)|p +
p2

2n

∫ r

0

(1− t2)n−1

t2n−1
dt

∫

|z|<t

|f(z)|p−2|D̃f(z)|2 dτ(z),

(26)

where

G̃(z, r) =
1
2n

∫ r

|z|

(1− t2)n−1

t2n−1
dt.

Remark 5.3. This theorem is stated in [29, Ex. 4.8] with

Mp
p (r, f) = |f(0)|p +

(p

2

)2
∫

|z|<r

|f(z)|p−2|D̃f(z)|2dτ(z)
∫ r

|z|

(1− t2)n−1

t2n−1
dt,

which does not agree with (26).

For the proof we need the “invariant” Green formula:

Lemma 5.4. If g ∈ C2(B), then
∫

S
g(rζ) dσ(ζ) = g(0) +

∫

|z|<r

∆̃g(z)G̃(z, r) dτ(z), 0 < r < 1,

where ∆̃ denotes the invariant Laplacian,

∆̃g(z) = ∆(g ◦ ϕz)(0).
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Proof. See e.g. [15, Lemma 2.5].

Proof of Theorem 5.F. Now we have to compute |∆̃g|, where

g(z) = (|f |2 + ε)p/2

(see [12], where the case of M-harmonic functions was considered, or [29], [26],
[25]). We can use (24) and the definition of ∆̃ and D̃, to get

∆̃g = p(|f |2 + ε)p/2−2[p|f |2 + 2ε]|D̃f |2.

Then, to finish the proof, we proceed as in the proof of Theorems 4.2 and 5.E.

As a consequence of the above theorem we have the following result due to
Stoll [25].

Theorem 5.G (0 < p < ∞). A function f ∈ H(B) belongs to Hp(B) if and only if

Ip(f) :=
∫

B
|f(z)|p−2|D̃f(z)|2G̃(z, 1) dτ(z) < ∞,

and the formula
|f‖p = |f(0)|p + p2Ip(f) (27)

holds.

In the following theorem the singularity induced by G̃(z, 1) is eliminated.

Theorem 5.5 (0 < p < ∞). A function f ∈ H(B) belongs to Hp(B) if and only if

Îp(f) :=
∫

B
|f(z)|p−2|D̃f(z)|2(1− |z|2)−1 dV (z) < ∞.

Moreover we have Ip(f) ³ Îp(f) (p ≥ 2) and ‖f‖p
p ³ |f(0)|p + Îp(f) (0 < p < 2).

Proof. The inequality Îp(f) ≤ CIp(f) (p > 0) follows from the inequality

(1− |z|2)−1 dV (z) ≤ C G̃(z, 1) dτ(z).

In the other direction, we can use the inequality

|Rf(z)| ≤ (1− |z|2)−1|D̃f(z)|

together with Theorem 5.1.
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5.4 Some more formulas

Let f ∈ H(B) and 0 < p < ∞, n ≥ 2.
As a consequence of Theorem 5.F we have:

d

dr
Mp

p (r, f) =
p2r1−2n(1− r2)n−1

2n

∫

|z|<r

|f(z)|p−2|D̃f(z)|2 dτ(z). (28)

Multiplying (28) by r2n−2, and then integrating from 0 to 1 we get

‖f‖p
p =

∫

B
|f |p dV +

( p

2n

)2
∫

B
|f(z)|p−2|D̃f(z)|2(1− |z|2)−1 dV (z). (29)

We can rewrite (25) in the form

Mp
p (r, f) = |f(0)|p +

p2

2n

∫ r

0

t1−2n dt

∫

|z|<t

|f(z)|p−2|Df(z)|2dV (z). (30)

As a consequence we have

d

dr
Mp

p (r, f) =
p2r1−2n

2n

∫

|z|<r

|f(z)|p−2|Df(z)|2 dV (z). (31)

In the case n = 1, both (28) and (31) reduce to (3).
Multiplying (31) by r2n−2 and then integrating from r = 0 to r = 1 we get

‖f‖p
p =

∫

B
|f |p dV +

p2

4n

∫

B
|f(z)|p−2|Df(z)|2(1− |z|2) dV (z). (32)

In the case n = 1, both (29) and (32) reduce to

‖f‖p
p =

∫

D
|f |p dA +

p2

4

∫

D
|f(z)|p−2|f ′(z)|2(1− |z|2) dA(z).

Remark 5.6. Inequalities (25) and (30) can be proved by an application of (23)
to the functions z 7→ f(rz). On the other hand, (26) cannot be deduced from (27)
in such a way.

Finally, we note three formulas (see [1]) that can be deduced from the one-
variable formulas by integration by slices:

d

dr
Mp

p (r, f) =
p2

2nr

∫

|z|<r

|z|−2n|f |p−2|Rf |2 dV (z),

‖f‖p
p =

∫

B
|f |p dV +

p2

4n2

∫

B
|f(z)|p−2|Rf(z)|2|z|−2n(1− |z|2n) dV (z),

Mp
p (r, f) = |f(0)|p +

p2

2n

∫

|z|<r

|z|−2n|f(z)|p−2|Rf(z)|2 log
r

|z| dV (z).
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Remark 5.7. The identities (23), (25), (26), (27), (28), (29), (31) and (32) were
stated in [12] without proofs but with wrong constants. In his book [29], Zhu states
(27) in the form

‖f‖p
p = |f(0)|p +

p2

4
Ip(f),

see p. 127, Theorem 4.23. The misprint is on the first line of p. 128, where the
factor 4 is omitted.
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