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ON THE MODULUS OF CONTINUITY
OF HARMONIC QUASIREGULAR MAPPINGS
ON THE UNIT BALL IN Rr»

Milos Arsenovi¢ and Vesna Manojlovié

Abstract

We show that, for a class of moduli functions w(d), 0 < § < 2, the property
lo(&) — ()] < w(€ —=n]), & n € S™* implies the corresponding property
lu(z)—u(y)| < Cw(|z—y|) z,y € B", for u = P[], provided u is a quasiregular
mapping. Our class of moduli functions includes w(d) = §* (0 < a < 1), so our
result generalizes earlier results on Holder continuity (see [1]) and Lipschitz
continuity (see [2]).

1 Introduction and notations

We set, for any n > 2

Plda) = | Pa.ople)dn(©

1—|z?
where P(z,¢) = ||§||n is the Poisson kernel for B* = {z € R : |z|] < 1}, do is the
T —
normalized surface measure on S”~! and ¢ : S*~! — R” is a continuous mapping.
We are going to work with moduli functions w(d), 0 < § < 2, satisfying the

following conditions:
1° w(d) is continuous, increasing and w(0) = 0,

2° w(0)/d is a decreasing function,

5
[y < cu),
0

We say that f is w—continuous if |f(z) — f(y)| < w(|z — y|) for all z and y in

the domain of f.
We note that the following properties of w follow from the conditions 1° and 2°:
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2 w(6
o [z

s
/w P rdp < C"w(6).
0

€

2 The Main Result

Theorem 2.1 Assume ¢ : S*~! — R" is w—-continuous mapping, where w is a
modulus function satisfying properties 1° — 3°. If the harmonic extension u = Plp]
of ¢ to B™ is K—quasireqular, then u is Cw—continuous, where C' depends on n, K
and w only.

In the case of Lipschitz continuity, i.e. w(d) = L&, this was proved in [2]. If
w(d) = Lé% 0 < a < 1, then the conclusion holds without the assumption of
quasiregularity of u = P[y], see [3].

We use the same method of proof as in [2], adapted to deal with our class of
moduli functions.

Let us choose xg = r& € B, r = |xg], & € S" 7Y let T = T,,,rS" ! be the
(n — 1)-dimensional tangent plane to the sphere rS"~! at point zo. The proof is
based on the following estimate

w(6)

1D (ulr)(@o)ll < Clw,n) - =

s 5:1—‘$0‘, (*)
which is of independent interest.

Without loss of generality zq = re,, where e, = (0,0,...,0,1) € S"~1. We
have, by a simple calculation,

0 21 x; —&;
—P(x,§) = — I —n(l - |z)?) L2
o, = g O D g
Hence, for 1 < j < n and for 2y = re,, we have
0 &
7P _ 1— 2 J
62133 (1'075) n( ‘x0| )le — §|n+2

Note that this integral kernel is odd in & € S"~!. We have, using this property of
the kernel,

Ju _ &
Gonteo) = mll=leo?) [ () o

(1= laof) [ [0(6) = o(&0)) ez do(e).

Of course, since xg = re,, we have &y = e,,. Now, using
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&1 < 1€ — &ol, (1<j<mn, £eS"h
and w continuity of ¢ we get, for 1 < j <mn,

%(q}o)‘ < n(l _ ‘l‘o|2) . /S" 1 |€ _§0|w(|£ _€0|)d0'(§)

Oz; o — £["+2

In order to estimate the last integral, we split S*~! into two disjoint subsets
E={{es" ! [6—&| <1—|m|} and F ={{€S" 1 [¢—&|>1— |aol}.
Since |¢ —xo| > 1 — |z for £ € S*~! we have

1€ — &olw(|€ — Eo\)d

(B () < (=l [ =l — €da©
4
< (a2 [ palp)
o)
< o2

where § = 1 — |zp|. Here we used property 5° of the modulus function w.
On the other hand, there is a constant C, such that

1€ — &l
£ — o
and therefore, using property 4° of w, we have

<(C, for £E€F

1€ — &olw(I€ — &ol) nt2 [ w(€—&ol)da(§)
Fo|zo— &t o) < G 2/E 1€ — &o|m

< C- / p~"w(p)p"2dp

< C- é), §=1—|zol.

Combining the above estimates for integrals over ' and F' we obtain, for 1 <

J<mn,
w(9)
<Cnw) —=, d=1—|x
‘8% ‘ (n,w)- 1 ol

and this is precisely estimate (x) in direction of coordinate axis z; (1 < j < n).
However, the same estimate is true for any tangential direction, by rotational sym-
metry and () is proved.

Now, K —quasiregularity gives the estimate of the derivative of u:

w(d)

[|lu' (z)]] §KC(n,w)T, 0=1-—|z|.

Using property 3° of w and a simple argument involving integration one concludes
the proof.
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