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Abstract

Let G be a simple graph with n vertices and m edges. Let edges of G be
given an arbitrary orientation, and let Q be the vertex-edge incidence matrix
of such oriented graph. The oriented incidence energy of G is then the sum
of singular values of Q. We show that for any n ∈ N , there exists a set of n
graphs with O(n) vertices having equal oriented incidence energy.

1 Introduction

Let G = (V, E) be a finite, simple, undirected graph with vertices V = {1, 2, . . . , n}
and m = |E| edges. Let G have adjacency matrix A with eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λn. The energy of G was defined by Gutman in [1] as

E = E(G) =
n∑

i=1

|λi|, (1)

and it has a long known chemical applications; for details see the surveys [2, 3, 4].
Recently, Nikiforov [5] generalized a concept of graph energy to arbitrary matrix M
by defining the energy E(M) to be the sum of singular values of M . The singular
values of a real (not necessarily square) matrix M are the square roots of the
eigenvalues of the (square) matrix MMT , where MT denotes the transpose of M .

Let edges of G be given an arbitrary orientation producing an oriented graph−→
G , and let Q be the vertex-edge incidence matrix of

−→
G , whose (v, e) entry is equal

to +1 if the vertex v is the head of the oriented edge e, −1 if v is the tail of e,
and 0 otherwise. Then QQT = L = D − A is the Laplacian matrix of G, where
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D is the diagonal matrix of vertex degrees [6, 7]. Suppose that L has eigenvalues
µ1 ≥ µ2 ≥ · · · ≥ µn = 0. The oriented incidence energy of G is then

OIE(G) = E(Q) =
n∑

i=1

√
µi,

as observed in [8]. This invariant was introduced recently by Liu and Liu [9] under
the name the Laplacian energy-like invariant and notation LEL(G).

Due to its definition, it comes as no surprise that OIE(G) has a number of
properties analogous to E(G) [9, 10]. OIE(G) was suggested as a new molecular
descriptor in [11]: a correlating study of OIE and topological indices provided by
TOPOCLUJ software package [12], on thirteen properties of octanes, revealed that
OIE describes well the properties which are well accounted by the Wiener-based
molecular descriptors: octane number MON, entropy S, volume MV, or refraction
MR, particularly the AF parameter, but also more difficult properties like boiling
point BP, melting point MP and logP. In a second set of polycyclic aromatic hy-
drocarbons, OIE was proved to be as good as the Randić index and better than the
Wiener index in correlations to BP, MP and logP.

A graph is decomposable if it can be contructed from isolated vertices by the
operations of union and complement. The Laplacian spectrum of G1 ∪ · · · ∪ Gk

is the union of Laplacian spectra of G1,. . . , Gk, while the Laplacian spectrum of
the complement of n-vertex graph G consists of values n − µ, for each Laplacian
eigenvalue µ of G, except for a single instance of eigenvalue 0 of G. Since the
Laplacian spectrum of an isolated vertex consists of single eigenvalue 0, it is easy
to conclude that the Laplacian spectrum of every decomposable graph consists of
integers only [13, 14].

Much work on graph energy has appeared in literature, especially in the last
decade, and a good deal of it studies graphs with equal energy [15]-[24]. Two
graphs G1 and G2 of the same order, noncospectral with respect to L, are said
to be OIE-equienergetic if OIE(G1) = OIE(G2). Three pairs of connected OIE-
equienergetic graphs were presented in [25] and, based on the computer search
among small graphs, it was suggested that OIE-equienergetic graphs occur rela-
tively rarely. However, note that the graphs G802, G804 and G1202 from [25] are
all decomposable graphs. Our goal here is to show that, for any given n ∈ N ,
there exists a set of n mutually OIE-equienergetic decomposable graphs with O(n)
vertices.

Let A = {a1, . . . , ak} be a multiset of positive integers such that ai ≥ 3, i =
1, . . . , k. The graph S∗A, formed from the union of stars Sa1−1, Sa2−1, . . . , Sak−1 by

adding a vertex adjacent to all other vertices, has n =
(∑k

i=1 ai

)
− k + 1 vertices

and m = 2n− k − 2 edges. It is decomposable since it can be represented as

S∗A = K1 ∪
k⋃

i=1

K1 ∪ ai−2K1
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and its Laplacian spectrum is given by

[n, a1, . . . , ak, 2n−2k−1, 1k−1, 0],

where exponents denote multiplicities. Thus,

OIE(S∗A) =
√

n +
k∑

i=1

√
ai + (n− 2k − 1)

√
2 + k − 1. (2)

Let S be the set of of finite multisets of positive integers each of which is at least
three. Let ρ be an equivalence relation on S defined by

Aρ B ⇔ |A| = |B|,
k∑

i=1

ai =
k∑

i=1

bi and
k∑

i=1

√
ai =

k∑

i=1

√
bi.

From (2) we see that

Aρ B ⇒ OIE(S∗A) = OIE(S∗B).

Moreover, if A and B are distinct equivalent multisets, then the graphs S∗A and S∗B
are noncospectral, while they have the same order and size.

Therefore, in order to construct sets of OIE-equienergetic decomposable graphs,
we need to find nontrivial equivalence classes of ρ in S. Construction of equiva-
lence classes containing pairs of triplets is given in Section 2, while operations for
constructing large equivalence classes in S/ρ are discussed in Section 3. A few
nontrivial equivalence classes found by initial computer search are given in Table 1.

∑
i ai =

∑
i bi {a1, . . . , ak} {b1, . . . , bk}

∑
i

√
ai =

∑
i

√
bi

37 {25,6,6} {24,9,4} 5 + 2
√

6
40 {27,9,4} {25,12,3} 5 + 3

√
3

24 {12,4,4,4} {9,9,3,3} 6 + 2
√

3
42 {20,9,9,4} {16,16,5,5} 8 + 2

√
5

43 {27,4,4,4,4} {25,9,3,3,3} 8 + 3
√

3

Table 1: A few equivalence classes in S.

2 Equivalence classes containing triplets

Proposition 1. Let a, b, c, d, e, f be positive integers such that abc = def . Then

{a2c, b2c, (d + e)2f} ρ {(a + b)2c, d2f, e2f}.
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Proof. Both multisets have three elements and the sum of square roots of their
elements is equal to (a+ b)

√
c+(d+ e)

√
f . From abc = def it follows that the sum

of their elements are also equal,

(a2 + b2)c + (d2 + e2)f + 2def = (a2 + b2)c + 2abc + (d2 + e2)f,

so that these two triplets belong to the same equivalence class of ρ.
For example, the first pair of triplets in Table 1 is obtained by setting (a, b, c, d, e, f) =

(1, 1, 6, 2, 3, 1), while the second pair of triplets is obtained for (a, b, c, d, e, f) =
(2, 3, 1, 2, 1, 3). We can construct infinitely many new pairs of triplets from Propo-
sition 1 by taking distinct factorizations of positive integers into three factors a, b, c
and d, e, f . For example, 10 can be factorized in distinct ways as

10 = 2 · 5 · 1 = 1 · 1 · 10,

which gives a new pair of equivalent triplets

(4, 25, 40) and (49, 10, 10).

Previous proposition can be easily generalized:

Proposition 2. For a given k ∈ N , let ai, bi, ci, di, ei, fi be positive integers such
that

k∑

i=1

aibici =
k∑

i=1

dieifi.

Then the multisets

A = {a2
i ci, b

2
i ci, (di + ei)2fi : i = 1, . . . , k}

and
B = {(ai + bi)2ci, d

2
i fi, e

2
i fi : i = 1, . . . , k}

belong to the same equivalence class of ρ.

Proof. Both A and B have 3k elements and the sum of square roots of their
elements is equal to

∑k
i=1(ai + bi)ci +(di + ei)fi. For the sum of elements of A and

B, we have

∑

x∈A

x =
k∑

i=1

(a2
i + b2

i )ci + (d2
i + e2

i )fi + 2dieifi

=
k∑

i=1

(a2
i + b2

i )ci + (d2
i + e2

i )fi + 2aibici =
∑

y∈B

y.

This proposition has even more freedom than Proposition 1. For example, 10
can be written in distinct ways as

10 = 1 · 1 · 4 + 2 · 3 · 1 = 1 · 1 · 5 + 1 · 1 · 5,

yielding (a1, b1, c1, a2, b2, c2) = (1, 1, 4, 2, 3, 1) and (d1, e1, f1, d2, e2, f2) = (1, 1, 5, 1, 1, 5).
Proposition 2 now gives equivalent multisets

{4, 4, 20, 4, 9, 20} and {16, 5, 5, 25, 5, 5}.
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3 Operations in S/ρ

We can introduce two operations to S which agree with ρ to construct equivalence
classes with more than two multisets. First, declare scalar to be a positive integer.
Then for scalar α and multiset A ∈ S, the product αA is defined as

αA = {αa : a ∈ A}.
The second operation is the union A ] B of multisets A and B, which preserves
multiplicities of their elements: if a appears m times in A and n times in B, then
a appears m + n times in A ∪B.

Proposition 3. For any α ∈ N and A,B,C, D ∈ S,

A ρ B ⇒ αA ρ αB,

A ρ B,C ρ D ⇒ A ] C ρ B ]D.

Proof. The sum of elements in αA is α times the sum of elements in A. Similarly,
the sum of square roots of elements in αA is

√
α times the sum of square roots of

elements in A. Thus, from A ρ B it follows that αA ρ αB.
Next, we have

∑

x∈A]C

x =
∑

x∈A

x +
∑

x∈C

x =
∑

x∈B

x +
∑

x∈D

x =
∑

x∈B]D

x,

and, similarly,
∑

x∈A]C

√
x =

∑

x∈A

√
x +

∑

x∈C

√
x =

∑

x∈B

√
x +

∑

x∈D

√
x =

∑

x∈B]D

√
x.

Thus, A ] C ρ B ]D.
These two operations now provide a simple way to create arbitrarily large equiv-

alence classes. Namely, for any A ρ B, n ∈ N and α1, . . . αn ∈ N , it follows from
Proposition 3 that

α1A ] α2A ] · · · ] αn−1A ] αnA

ρ α1B ] α2A ] · · · ] αn−1A ] αnA

ρ α1B ] α2B ] · · · ] αn−1A ] αnA

ρ . . .

ρ α1B ] α2B ] · · · ] αn−1B ] αnA

ρ α1B ] α2B ] · · · ] αn−1B ] αnB.

Thus, this equivalence class contains at least n+1 multisets, each of them containing
n|A| elements.

In particular, take A = {25, 6, 6}, B = {24, 9, 4} and α1 = · · · = αn = 1. Then
for any n ∈ N , we have a set of n+1 OIE-equienergetic noncospectral decomposable
graphs

S∗A]A]···]A, S∗B]A]···]A, S∗B]B]···]A, . . . , S∗B]B]···]B ,

each of which has 34n + 1 vertices and 65n edges.
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4 Concluding remarks

Our last example shows that for any n ∈ N , there exists a set of n OIE-equienergetic
noncospectral graphs with O(n) vertices. Propositions 1, 2 and 3 provide means
to construct an abundance of further examples of OIE-equienergetic noncospectral
graphs. It should be noted, however, that all these graphs have more vertices than
what can be reached by a computer search on modern day computers, so that our
finding, in fact, should not be considered contradictory to the conclusion from [25]
that OIE-equienergetic graphs occur relatively rarely.
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