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UNICYCLIC REFLEXIVE GRAPHS WITH
SEVEN LOADED VERTICES OF THE CYCLE∗

Tamara Koledin, Zoran Radosavljević

Abstract

A simple graph is reflexive if the second largest eigenvalue of its (0, 1)−adj-
acency matrix does not exceed 2. A vertex of the cycle of unicyclic simple
graph is said to be loaded if its degree is greater than 2. In this paper we
establish that the length of the cycle of unicyclic reflexive graph with seven
loaded vertices is at most 10 and find all such graphs with the length of the
cycle 10, 9 and 8.

1 Introduction

For a graph G, having (0, 1)−adjacency matrix A = A(G), the roots of its char-
acteristic polynomial PG(λ) = det(λI − A) are defined as the eigenvalues of G,
making up its spectrum. If G is a simple graph (non-oriented and without loops or
multiple edges), A is symmetric and the eigenvalues are all real numbers, in which
case we assume their non-increasing order: λ1 ≥ λ2 ≥ ... ≥ λn. In a connected
graph λ1 > λ2 holds and the spectrum of a disconnected graph is the union of the
spectra of its components. Spectra of a graph G and an induced subgraph H of G
are related by the interlacing theorem:

Let λ1 ≥ λ2 ≥ ... ≥ λn be the eigenvalues of a graph G and µ1 ≥ µ2 ≥ ... ≥ µm

eigenvalues of its induced subgraph H. Then the inequalities λn−m+i ≤ µi ≤ λi

hold.
Thus, λ1 ≥ µ1 ≥ λ2 ≥ µ2.... Also, if G is connected, λ1 > µ1 holds.
All graphs in this paper are simple. By saying subgraph, we always mean induced

subgraph. A graph G is reflexive if λ2(G) ≤ 2. Reflexive graphs correspond to some
sets of vectors in the Lorentz space Rp,1 and have some applications in construction
and classification of reflection groups [5]. Among reflexive graphs that have been
investigated so far are trees, various classes of cacti (graphs whose all cycles are
edge-disjoint) and, recently, some specified classes of bicyclic and unicyclic graphs
(results in [4], [6], [7] and some other papers).
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According to the interlacing theorem, the property of being a reflexive graph is a
hereditary one, i. e. all subgraphs of such a graph preserve this property. Therefore
it is usual to present reflexive graphs via sets of maximal (connected) graphs.

A connected graph G is a maximal reflexive graph inside a given class C if G is
reflexive and any extension G + v by a new vertex v that belongs to C has λ2 > 2.

In this paper we deal with unicyclic reflexive graphs. We will say that a vertex v
of the cycle of such a graph is loaded if deg(v) > 2. After some necessary preliminary
results in Section 2, we prove in Section 3 that the cycle of unicyclic reflexive graph
of a length l > 10 cannot have more than 6 loaded vertices. In Section 4 we find
all maximal unicyclic reflexive graphs for l = 8, 9, 10 with 7 loaded vertices of the
cycle. These are main results of master thesis [4].

Generally, the terminology concerning theory of graph spectra in this paper
follows [2].

2 Preliminaries

We will first describe the set of connected graphs whose largest eigenvalue (the
index ) equals 2.
Lemma 1. ([10]) The index of a graph G satisfies λ1(G) ≤ 2 (λ1(G) < 2) if and
only if each component of G is a subgraph (a proper subgraph) of some of the graphs
displayed in Fig. 1, all of which have λ1 = 2.

These graphs are known as Smith graphs. The label Wn is usual for the second
one of these graphs (which than has diameter n + 1). Of course, the last Smith
graph is W1, yet sometimes it is convenient to treat it separately.

Suitable relations between the values of characteristic polynomials PG(λ) and
PH(λ) of a graph G and some of its subgraphs H are given by the following facts.
Lemma 2. ([9]) Given a graph G, let C(v) (C(uv)) denote the set of all cycles
containing a vertex v and an edge uv of G, respectively. Then

(i) PG(λ) = λPG−v(λ)−∑
u∈Adj(v) PG−v−u(λ)− 2

∑
C∈C(v) PG−V (C)(λ),

(ii) PG(λ) = PG−uv(λ)− PG−v−u(λ)− 2
∑

C∈C(uv)

PG−V (C)(λ),
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where Adj(v) denotes the set of neighbours of v, while G−V (C) is the graph obtained
from G by removing the vertices belonging to the cycle C.

Corollary 1. Let G be a graph obtained by joining a vertex v1 of a graph G1 to a
vertex v2 of a graph G2 by an edge. Let G′1(G

′
2) be the subgraph of G1(G2) obtained

by deleting the vertex v1(v2) from G1(resp. G2). Then

PG(λ) = PG1(λ)PG2(λ)− PG′1(λ)PG′2(λ).

Corollary 2. Let G be a graph with a pendant edge v1v2, v1 being of degree 1.
Then

PG(λ) = λPG1(λ)− PG2(λ),

where G1(G2) is the graph obtained from G (resp. G1) by deleting vertex v1 (resp.
v2).

It will be useful in the coming investigations to have values PG(2) of some small
graphs.

Lemma 3 [8]. Let Pn and Zn be the graphs depicted in Fig. 2. Then
1. PPn(2) = n + 2;
2. PZn(2) = 4.

Lemma 4. P ′Zn
(2) = 2(n2 + 2n + 2).

Proof. We shall apply the principal of mathematical induction. For n = 1, 2
PZ1(λ) = λ3 − 2λ ⇒ P ′Z1

(λ) = 3λ2 − 2 ⇒ P ′Z1
(2) = 10 = 2(12 + 2 · 1 + 2),

PZ2(λ) = λ4 − 3λ2 ⇒ P ′Z2
(λ) = 4λ3 − 6λ ⇒ P ′Z2

(2) = 20 = 2(22 + 2 · 2 + 2).
Suppose, now, that the statement holds for every integer n, n ≥ 3. We shall prove
that the statement then holds for the integer n + 1. Corollary 2 gives

PZn+1(λ) = λPZn(λ)− PZn−1(λ),
which implies

P ′Zn+1
(λ) = PZn(λ) + λP ′Zn

(λ)− P ′Zn−1
(λ) =

= PZn(2) + 2P ′Zn
(2)− P ′Zn−1

(2) =
= 4 + 2 · 2(n2 + 2n + 2)− 2((n− 1)2 + 2(n− 1) + 2) =
= 2(n2 + 4n + 5) = 2((n + 1)2 + 2(n + 1) + 2). ¤
In what follows the next general theorem is to play the crucial role.

Theorem RS ([8]). Let G be a graph with a cut-vertex u.
(i) If at least two components of G− u are supergraphs of Smith graphs, and if

at least one of them is a proper supergraph, then λ2(G) > 2.
(ii) If at least two components of G − u are Smith graphs, and the rest are

subgraphs of Smith graphs, then λ2(G) = 2.
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(iii) If at most one component of G−u is a Smith graph, and the rest are proper
subgraphs of Smith graphs, then λ2(G) < 2.

In a lot of cases this theorem is sufficient to answer the question whether a given
graph is reflexive or not. If it cannot give the answer, we will say that such a graph
is RS-indefinite.

If a reflexive graph is unicyclic, its cycle has a limited number of loaded vertices.
Theorem 1. ([6]) The cycle of unicyclic reflexive graph of length l > 8 cannot have
more than 7 loaded vertices.

If l = 8, there are six maximal unicyclic reflexive graphs with 8 loaded vertices,
which were found in [6].

3 The length of the cycle with seven loaded
vertices

The next bound is given by the following theorem.
Theorem 2. The cycle of unicyclic reflexive graph of length l > 10 cannot have
more than 6 loaded vertices.
Proof. Suppose l > 10 and let the cycle have (at least) 7 loaded vertices.

Case 1: Suppose there are two vertices of the cycle, u and v, whose removal
gives rise to two components such that one of them contains 4 loaded vertices of
the cycle, while the other one contains 3 loaded vertices. Suppose besides that u
or v has a non-loaded neighbour on the cycle. Then by removing e. g. u we get
a subgraph for which Theorem RS, applied to the cut-vertex v, gives λ2 > 2, since
we get two proper supergraphs of Wn.

If such a neighbour on the cycle does not exist, there must be non-loaded vertices
between the 3 loaded vertices of one component or between the 4 loaded vertices of
another one. This case gives rise to the three possibilities displayed in Fig. 3 (a),
(b) and (c). By removing vertices s and t in the cases (a) and (c) and s and u in
the case (b) we always obtain two supergraphs (at least one being proper) of Wn,
and according to Theorem RS λ2 > 2 holds.

Case 2: If the described vertices u and v do not exist, the cycle must have 7, 6
or 5 consecutive loaded vertices.

If there are 7 and if we remove the non-loaded vertex of the cycle adjacent to
the first of the seven loaded vertices, the remaining tree has λ2 > 2.

In case of 6 consecutive loaded vertices suppose that there are at least 3 consecu-
tive non-loaded vertices between the first of the 6 loaded vertices and the remaining
seventh loaded vertex (Fig. 3(d)). Then by removing the indicated vertices s and t
we get a proper supergraph of W2 and a proper supergraph of Wn and Theorem RS
gives λ2 > 2. Otherwise (if there are no 3 consecutive non-loaded vertices, which
actually means l = 11), we find λ2 > 2 by direct checking.

If there are only 5 consecutive loaded vertices of the cycle, suppose that the
first non-loaded neighbour s of this sequence has also a non-loaded neighbour (Fig.
3(e)). Then by removing vertices s and t we have a proper supergraph of W2 and a
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supergraph of Wn, implying λ2 > 2. The remaining possibility is displayed in Fig.
3(f), where the removal of the vertex s gives a tree with λ2 > 2, which completes
the proof.2

4 Maximal graphs

We will now find all maximal unicyclic reflexive graphs with seven loaded vertices
if the length of the cycle is l = 8, 9, 10.

4.1 l = 10

Among all ways of loading the 10 vertices of the cycle, the condition λ2 ≤ 2
admits only that one displayed in Fig. 4. The maximal graphs can easily be found
by direct calculating the spectra.
Theorem 3. If l = 10, the only maximal unicyclic reflexive graphs are the two
graphs of Fig. 4 (both having λ2 = 2).

Figure 4
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4.2 l = 9

Let now the length of the cycle be 9. There are two different ways to load seven
vertices of such a cycle and to keep its reflexiveness:

l=11

S3

S2S1

Figure 5

Case 1: Loaded vertices are grouped in two sets of consecutive vertices of the
form 5+2. Such a graph can be extended only by paths of different lengths, and the
three maximal graphs are found by directly calculating the spectra, and are given
in Figure 5.

G1 G2 G3

G4
G5

Figure 6

Case 2: There are six consecutive loaded vertices of the cycle and one loaded
vertex with both non-loaded neighbours (the form 6 + 1). This graph can also be
extended by paths of different lengths, and the five maximal graphs of that form
are also found by directly calculating the spectra, and are given in Figure 6.

But, besides, two middle vertices in the set of 6 consecutive loaded vertices can
be loaded by graphs Zi, i ∈ N (see Figure 2(b)).

We shall prove that all graphs of the form of Figure 7(a) have λ2 = λ3 = 2 and
are maximal reflexive graphs in the observed family.
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Figure 7

To do that, consider graph F given in Fig. 7(b) (which is a subgraph of graph G
given in Fig. 7(a)). If we remove vertex s of F (thus getting subgraph F’ ) and apply
Theorem RS to (vertex t of) F’, we see that λ2(F’) < 2 and now the interlacing
theorem gives λ3(F) < 2 and λ4(G) < 2.

Consider now graph G1 given in Figure 7(c). Applying Corollary 1 to the edge
e1e2 we have:

PG1(2) = PH(2)PZm−1(2)−PH−e1(2)PZm−2(2), (H being the graph of Fig.7(d)).
Direct calculation of PH(2) and PH−e1(2) and the application of Lemma 3

(PZn(2) = 4) gives PG1(2) = 0. Now, by repeated application of Corollary 1 we
find: PG(λ) = PG1(λ)PZn−1(λ)− PG1−f1(λ)PZn−2(λ).

To calculate PG1−f1(λ), we have to apply again Corollary 1: PG1−f1(λ) =
PH−f1(λ)PZm−1(λ)− PH−e1−f1(λ)PZm−2(λ).

Now, we can easily calculate PG(2) and P ′G(2) by direct calculating the values
PH−f1(2), PH−e1−f1(2), P ′H−f1

(2) and P ′H−e1−f1
(2) and by using the results of

Lemma 3 and Lemma 4, and we see that PG(2) = P ′G(2) = 0 holds.
Consider, now graphs shown in Figure 7(c) and 7(e). Any extension of the

graph of Figure 7(e) by a pendant edge at any vertex vi, i = 1, 2, 3, 4, 5, has λ2 > 2,
implying that any such an extension is impossible for its supergraph of Fig. 7(c)
(for m ≥ 4). If m = 0, 1, 2, 3 for the graph in Fig. 7(c) - direct calculating the
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spectra leads us to the same conclusion - any extension by a pendant edge at any
vertex vi, i = 1, 2, 3, 4, 5, has λ2 > 2.

This means that graph of Fig. 7(a) cannot be extended at any vertex vi. It also
cannot be extended at any vertex a, b, c, d, ei, fi, because the removal of the vertices
s and t and the application of the Theorem RS gives λ2 > 2 in such an extension.
Thus, graph given in Fig. 7(a) is a maximal reflexive graph in the observed family
of graphs.

We have come to the following conclusion:

Theorem 4. If l = 9, the only maximal unicyclic reflexive graphs with 7 loaded
vertices of the cycle, all having λ2 = 2, are the graphs given in Fig. 5, Fig. 6 and
Fig. 7(a).

4.3 l = 8

Let now the length of the cycle be 8. There is only one way to load 7 vertices
of such a cycle - all loaded vertices are adjacent.

It turns out that such a graph can be extended:

1. by paths of different lengths,

2. by graphs Zn, n ∈ N,

3. by trees given in Fig. 8 (l1 ∈ N
⋃{0}, l2, l3 ∈ N).

l1

l2

l3

Figure 8

In the first case there are 46 maximal reflexive graphs, and they are all found by
directly calculating the spectra. Those graphs are given in Table 1. Columns of the
table represent the 8 vertices of the graphs, and the number in each field marks the
length of the path that the corresponding vertex is loaded with. Graphs marked
with an asterisk have λ2 < 2.
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No. V1 V2 V3 V4 V5 V6 V7 V8
1 1 2 1 2 3 1 1 0
2 1 2 2 1 2 1 1 0
3 1 5 1 2 1 1 1 0
4 2 2 3 4 1 1 1 0
5 2 3 1 1 1 1 1 0
6 2 2 1 2 1 1 2 0
7 2 1 1 1 1 1 7 0
8 2 1 1 2 1 1 6 0
9 2 1 1 1 2 1 5 0
10 2 1 1 7 2 1 4 0
11 2 1 2 1 1 1 3 0
12 2 1 1 25 2 1 3 0
13 2 1 1 4 3 1 2 0
14 2 1 1 1 4 1 1 0
15 2 1 5 1 2 1 1 0
16 2 1 4 7 2 1 1 0
17 2 1 3 25 2 1 1 0
18 3 2 2 1 1 1 1 0
19 3 2 1 2 1 1 1 0
20 3 1 1 2 1 1 5 0
21 3 1 1 18 1 1 3 0
22 3 1 1 50 1 1 2 0
23 3 1 1 2 1 2 1 0
24 3 1 1 2 2 1 1 0
25 3 1 2 1 2 1 1 0
26 4 1 1 7 1 1 4 0
27 4 1 4 7 1 1 1 0
28 4 1 13 6 1 1 1 0
29 4 1 22 5 1 1 1 0
30 4 1 31 4 1 1 1 0
31 4 1 40 3 1 1 1 0
32 4 1 49 2 1 1 1 0
33 4 1 58 1 1 1 1 0
34 5 1 1 3 1 1 2 0
35 5 1 8 3 1 1 1 0
36 5 1 17 2 1 1 1 0
37 5 1 26 1 1 1 1 0
38 6 1 6 2 1 1 1 0
39 6 1 15 1 1 1 1 0
40 7 1 1 2 1 1 1 0
41 7 1 10 1 1 1 1 0
42 8 1 6 1 1 1 1 0
43 9 1 4 1 1 1 1 0
44 10 1 3 1 1 1 1 0
45 11 1 2 1 1 1 1 0
46 12 1 1 1 1 1 1 0

Table 1

In the second case, the procedure similar to the one described in previous section,
leads us to the 10 families of maximal reflexive graphs shown in Fig. 9.
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Graphs Gi,l, i = 1, 2, 5, 6, l = 0, 1, 2, 3, and graph G9,0 are not maximal. They
can be extended at one or both of the vertices a and b. This observation leads us
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to the third case - vertices of the cycle are loaded not only by paths, or graphs Zn,
but one vertex is loaded by graph given in Fig. 8.

By direct calculating the spectra we can see that there are 44 new maximal
reflexive graphs. They are given in Table 2.

To understand the meaning of Tab. 2, consider, first, Fig. 10.

v4
v5

v6

v7v1

v2

v3

l1

l2 l3

Figure 10

The columns vi, i = 1, 2, 3, 5, 6, 7, of the table represent six vertices of the graph
that are loaded by paths of different lengths, the columns l1, l2, l3 represent the
lengths of the paths of the graph given in Fig. 8, vertex v4 being loaded by graph
of Fig. 8.
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No. V1 V2 V3 l1 l2 l3 V5 V6 V7
1 1 1 1 0 1 13 1 1 1
2 1 1 2 0 1 10 1 1 1
3 1 1 2 0 1 9 2 1 1
4 1 1 3 0 1 8 2 1 1
5 1 1 4 0 1 7 4 1 1
6 1 1 5 0 1 6 2 1 1
7 1 2 7 0 1 5 1 1 1
8 1 2 1 0 1 5 1 2 1
9 1 1 6 0 1 5 2 1 1
10 1 1 5 0 1 5 3 1 1
11 1 1 10 0 1 4 1 1 1
12 1 1 7 0 1 4 2 1 1
13 1 1 16 0 1 3 1 1 1
14 1 1 8 0 1 3 2 1 1
15 1 1 1 0 2 3 1 1 1
16 1 1 34 0 1 2 1 1 1
17 1 1 9 0 1 2 2 1 1
18 1 1 1 0 1 2 1 3 1
19 1 1 2 0 1 2 1 2 1
20 1 2 1 0 2 2 1 2 1
21 1 2 7 0 2 2 1 1 1
22 1 1 6 0 2 2 2 1 1
23 1 2 5 0 2 2 3 1 1
24 1 1 4 0 2 2 4 1 1
25 1 1 1 1 1 4 1 1 1
26 1 2 1 1 1 3 1 2 1
27 1 2 7 1 1 3 1 1 1
28 1 1 6 1 1 3 2 1 1
29 1 1 5 1 1 3 3 1 1
30 1 1 4 1 1 3 4 1 1
31 1 1 25 1 1 2 1 1 1
32 1 3 1 1 1 2 1 1 1
33 1 1 8 1 1 2 2 1 1
34 1 1 16 2 1 2 1 1 1
35 1 1 8 2 1 2 2 1 1
36 1 1 5 2 1 2 3 1 1
37 1 1 4 2 1 2 4 1 1
38 1 2 7 2 1 2 1 1 1
39 1 2 1 2 1 2 1 2 1
40 1 2 7 3 1 2 1 1 1
41 1 1 6 3 1 2 2 1 1
42 1 1 5 3 1 2 3 1 1
43 1 1 4 3 1 2 4 1 1
44 1 2 1 3 1 2 1 2 1

Table 2

Now we can formulate the next theorem:
Theorem 5. If l = 8, the only maximal unicyclic reflexive graphs with 7 loaded
vertices of the cycle are the graphs given in Table 1, Figure 9, and Table 2.
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