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POLYNOMIALS RELATED TO GENERALIZED
CHEBYSHEV POLYNOMIALS

Gospava B. Djordjević∗

Abstract

We study several classes of polynomials, which are related to the Cheby-
shev, Morgan-Voyce, Horadam and Jacobsthal polynomials. Thus, we unify
some of well-known results.

1 Introduction

Classes of Chebyshev polynomials are well-known. There are many classes of poly-
nomials which are related to the Chebyshev polynomials. In this paper we are
motivated by some recent results in this topic, such as [5] and [7]. In this sec-
tion we first define polynomials which will be investigated in the rest of the paper.
The main aim is to define classes of polynomials which include, as special cases,
some well-known classes of polynomials. Then, we prove some properties of new
polynomials, and thus justify the motivation for introducing them.

Throughout this paper we use N to denote the set of all nonnegative integers.
The generalized Chebyshev polynomials Ωn,m(x) and Vn,m(x) we introduce here

as follows (x is a real variable):

Ωn,m(x) = xΩn−1,m(x)− Ωn−m,m(x), n ≥ m, n,m ∈ N, (1.1)

with Ωn,m(x) = xn, n = 1, 2, . . . , m− 1, Ωm,m(x) = xm − 2. Moreover,

Vn,m(x) = xVn−1,m(x)− Vn−m,m(x), n ≥ m, n, m ∈ N, (1.2)

with Vn,m(x) = xn, n = 1, 2, . . . ,m− 1, Vm,m(x) = xm − 1.
Using standard methods, we find that

Fm(t) = (1− tm)(1− xt + tm)−1 =
∞∑

n=1

Ωn,m(x)tn (1.3)
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and

Gm(t) = (1− xt + tm)−1 =
∞∑

n=1

Vn,m(x)tn (1.4)

are generating functions of polynomials Ωn,m(x) and Vn,m(x), respectively.
By (1.3) and (1.4), we get the following explicit formulas:

Ωn,m(x) =
[n/m]∑

k=0

(−1)k n− (m− 2)k
n− (m− 1)k

(
n− (m− 1)k

k

)
xn−mk, (1.5)

Vn,m(x) =
[n/m]∑

k=0

(−1)k

(
n− (m− 1)k

k

)
xn−mk. (1.6)

For m = 2, these polynomials become the modified Chebyshev polynomials [7].
Next, we introduce the family of polynomials Pn,m(x) by:

Pn,m(x) = xPn−1,m(x) + 2Pn−m,m(x)− Pn−2m,m(x), n ≥ 2m, n,m ∈ N. (1.7)

For m = 1, (1.7) becomes (and this is considered in [7])

Pn(x) = (x + 2)Pn−1(x)− Pn−2(x), n ≥ 2,

for every P ∈ {b,B, c, C}, where:

b0 = 1, b1 = x + 1, (Morgan–Voyce polynomials);
B0 = 1, B1 = x + 2 (Morgan–Voyce polynomials);
c0 = 1, c1 = x + 3 (Horadam polynomials);
C0 = 2, C1 = x + 2 (Horadam polynomials).

The generalized Jacobsthal Jn,m(x) and the Jacobsthal–Lucas jn,m(x) polyno-
mials (see [2], [3], [4]) are given by recurrence relations, respectively:

Jn,m(x) = Jn−1,m(x) + 2xJn−m,m(x), n ≥ m, m, n ∈ N; (1.8)

with initial values

J0,m(x) = 0, Jn,m(x) = 1, n = 1, 2, . . . , m− 1;

and by

jn,m(x) = jn−1,m(x) + 2xjn−m,m(x), n ≥ m, n, m ∈ N, (1.9)

with initial values

j0,m = 2, jn,m(x) = 1, n = 1, 2, . . . , m− 1.
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By (1.8) and (1.9), we find the following explicit formulas ([2], [3], [4]):

Jn+1,m(x) =
[n/m]∑

k=0

(
n− (m− 1)k

k

)
(2x)k; (1.10)

jn,m(x) =
[n/m]∑

k=0

n− (m− 2)k
n− (m− 1)k

(
n− (m− 1)k

k

)
(2x)k. (1.11)

The rest of the paper is organized as follows. In Section 2 we investigate the
relationship between the Chebyshev polynomials and polynomials Pn,3(x) . In Sec-
tion 3 we consider a general class of polynomials that include polynomials bn,m(x),
Bn,m(x), cn,m(x) and Cn,m(x). In Section 4 we investigate the relationship between
the Chebyshev and the Jacobsthal polynomials. Finally, in Section 5 we consider
mixed convolutions of the Chebyshev type.

2 Polynomials Pn,3(x) and Chebyshev
polynomials

In this section we consider polynomials Pn,m(x) for m = 3. Thus, we get Pn,3(x) ,
which generalize polynomials Pn(x) , and they satisfy the following recurrence re-
lation (by (1.7)):

Pn,3(x) = xPn−1,3(x) + 2Pn−3,3(x)− Pn−6,3(x), n ≥ 6, (2.1)

where Pn,3 ∈ {bn,3, Bn,3, cn,3, Cn,3}, with the following sets of initial values, respec-
tively:

b0,3(x) = 1, b1,3(x) = x, b2,3(x) = x2, b3,3(x) = x3 + 1,

b4,3(x) = x4 + 3x, b5,3(x) = x5 + 5x2;

B0,3(x) = 1, B1,3(x) = x, B2,3(x) = x2, B3,3(x) = x3 + 2,

B4,3(x) = x4 + 4x, B5,3(x) = x5 + 6x;

c0,3 = 1, c1,3 = x, c2,3 = x2, c3,3 = x3 + 3, c4,3 = x4 + 5x,

c5,3 = x5 + 7x2;

C0,3(x) = 2, C1,3(x) = x, C2,3(x) = x2, C3,3(x) = x3 + 2,

C4,3(x) = x4 + 4x, C5,4(x) = x5 + 6x2.

Now, we prove the following result.
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Theorem 2.1. Using previous notations, the following identities are fulfilled:

(−1)nxcn,3(−x2) = Ω2n+1,6(x), n ≥ 0; (2.2)

(−1)nCn,3(−x2) = Ω2n,6(x), n ≥ 0; (2.3)

(−1)nbn,3(−x2) = V2n,6(x), n ≥ 0; (2.4)

(−1)nxBn,3(−x2) = V2n+1,6(x), n ≥ 0; (2.5)

cn+3,3(x)− cn,3(x) = Cn+3,3(x), n ≥ 0; (2.6)

bn+3,3(x) + bn,3(x) = Cn+3,3(x), n ≥ 0; (2.7)

Cn+3,3(x)− Cn,3(x) = xcn+2,3(x), n ≥ 0; (2.8)

Bn,3(x) + Bn−3,3(x) = cn,3(x), n ≥ 3; (2.9)

Bn,3(x)−Bn−6,3(x) = Cn,3(x), n ≥ 6. (2.10)

Proof. We prove theorem using the induction on n. The equality (2.3) is satisfied
for n = 1, by (1.1). Suppose that (2.3) holds for n− 1 instead of n (n ≥ 1). Then,
using (2.1), we get:

(−1)nCn,3(−x2) = (−1)n(−x2Cn−1,3(−x2) + 2Cn−3,3(−x2)− Cn−6,3(−x2))
= (−1)n−1x2Cn−1,3(−x2)− 2(−1)n−3Cn−3,3(−x2)− (−1)n−6Cn−6,3(−x2)
= x2Ω2n−2,6(x)− 2Ω2n−6,6(x)− Ω2n−12,6(x)
= x(Ω2n−1,6(x) + Ω2n−7,6(x)) + 2(Ω2n,6(x)− xΩ2n−1,6(x))
+Ω2n−6,6(x)− xΩ2n−7,6(x)
= 3Ω2n,6(x) + 2Ω2n−6,6(x)− 2xΩ2n−1,6(x)
= Ω2n,6(x) + 2(Ω2n,6(x) + Ω2n−6,6(x)− xΩ2n−1,6(x))
= Ω2n,6(x).

It is easy to verify the equality (2.4) for n = 1 and n = 2, from initial values.
Suppose that (2.4) holds for n (n ≥ 2). Then, from (2.1), we have:

(−1)n+1bn+1,3(−x2) = (−1)n+1
(−x2bn,3(−x2) + 2bn−2,3(−x2)− bn−5,3(−x2)

)

= x2((−1)nbn,3(−x2))− 2(−1)n−2bn−2,3(−x2)− (−1)n−5bn−5,3(−x2)
= x2V2n,6(x)− 2V2n−4,6(x)− V2n−10,6(x)
= x (V2n+1,6(x) + V2n−5,6(x))− 2V2n−4,6(x) + V2n−4,6(x)− xV2n−5,6(x)
= xV2n+1,6(x)− V2n−4,6(x) = V2n+2,6(x).

We immediately prove the equality (2.6) for n = 1 i n = 2. Suppose that (2.6)
holds for n (n ≥ 2). So, for n + 1 instead of n, it follows that

Cn+4,3 = xCn+3,3 + 2Cn+1,3 − Cn−2,3

= x(cn+3,3 − cn,3) + 2(cn+1,3 − cn−2,3)− cn−2,3 + cn−5,3

= xcn+3,3 − xcn,3 + 2cn+1,3 − 3cn−2,3 + cn−5,3

= xcn+3,3 + 2cn+1,3 − (xcn,3 + 2cn−2,3)− cn−2,3 + cn−5,3

= xcn+3,3 + 2cn+1,3 − cn−2,3 − cn+1,3 = cn+4,3 − cn+1,3.
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In a similar way, we also can prove equalities (2.2), (2.5), (2.7)– (2.10).

Now we consider two sequences of numbers {Ωn,3(2) ≡ an} and
{Vn,3(2) ≡ bn}. For these numbers we find the corresponding explicit formulas.

For x = 2 in (1.1), we get the following difference equation

an = 2an−1 − an−3, a1 = 2, a2 = 4, a3 = 6. (2.11)

The solution of the difference equation (2.11) is given by

an =
2
√

5
5




(
1 +

√
5

2

)n+1

−
(

1−√5
2

)n+1

 . (2.12)

For x = 2 in (1.2), we get the following difference equation

bn = 2bn−1 − bn−3, b1 = 2, b2 = 4, b3 = 7. (2.13)

The solution of (2.13) is given by

bn = −1 +
2 +

√
5√

5

(
1 +

√
5

2

)n

− 2−√5√
5

(
1−√5

2

)n

. (2.14)

The following result can be proved.

Theorem 2.2. The sequences of numbers {an}) and {(bn}) satisfy the following
relations:

an+1 = an + an−1; (2.15)

bn+1 = bn + bn−1 + 1. (2.16)

3 Generalized polynomials

The family of polynomials Pn,m(x) , which is given by (1.7), for different initial
values produces special polynomials: bn,m(x), Bn,m(x), cn,m(x), Cn,m(x). These
special polynomials obey the following properties.

Theorem 3.1. Using previos notations, for all n ≥ m (n ∈ N, m ∈ 2N + 1) the
following hold:

(−1)nxcn,m(−x2) = Ω2n+1,2m(x), (3.1)
(−1)nCn,m(−x2) = Ω2n,2m(x), (3.2)
(−1)nbn,m(−x2) = V2n,2m(x), (3.3)
(−1)nxBn,m(−x2) = V2n+1,2m(x), (3.4)
cn+m,m(x)− cn,m(x) = Cn+m,m(x), (3.5)
bn+m,m(x) + bn,m(x) = Cn+m,m(x), (3.6)
Cn+m,m(x)− Cn,m(x) = xcn+m−1,m(x), (3.7)
Bn+m,m(x) + Bn,m(x) = cn+m,m(x), (3.8)
Bn,m(x)−Bn−2m,m(x) = Cn,m(x), n ≥ 2m. (3.9)
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Proof. Suppose that the equality (3.1) holds for n− 1 instead of n (n ≥ 1). Then,
by (1.7) we get that the following is satisfied:

(−1)nxcn,m(−x2) =
(−1)nx

(−x2cn−1,m(−x2) + 2cn−m,m(−x2)− cn−2m,m(−x2)
)

= x2
(
(−1)n−1xcn−1,m(−x2)

)
+ 2(−1)m(−1)n−mxcn−m,m(−x2)

−(−1)2m(−1)n−2mcn−2m,m(−x2)
= x2Ω2n−1,2m(x)− 2Ω2n−2m+1,2m(x)− Ω2n−4m+1,2m(x)
= x(Ω2n,2m(x) + Ω2n−2m,2m(x))− 2(xΩ2n−2m,2m(x)
−Ω2n−4m+1,2m(x))− Ω2n−4m+1,2m(x)
= xΩ2n,2m(x)− xΩ2n−2m,2m(x) + Ω2n−4m+1,2m(x)
= Ω2n+1,2m(x) + Ω2n−2m+1,2m(x)− xΩ2n−2m,2m(x) + Ω2n−4m+1,2m(x)
= Ω2n+1,2m(x)− Ω2n−4m+1,2m(x) + Ω2n−4m+1,2m(x)
= Ω2n+1,2m(x).

Next, suppose that (3.9) holds for n − 1 instead of n (n ≥ 1). Then, by (1.7),
we get:

Cn,m(x) = xCn−1,m(x) + 2Cn−m,m(x)− Cn−2m,m(x)
= x(Bn−1,m(x)−Bn−1−2m,m(x)) + 2(Bn−m,m(x)−Bn−3m,m(x))
−Bn−2m,m(x) + Bn−4m,m(x) = xBn−1,m(x)
− xBn−1−2m,m(x) + 2Bn−m,m(x)− 2Bn−3m,m(x)−Bn−2m,m(x) + Bn−4m,m(x)
= Bn,m(x)− 2Bn−m,m(x) + Bn−2m,m(x)−Bn−2m,m(x) + 2Bn−3m,m(x)
−Bn−4m,m(x) + 2Bn−m,m(x)− 2Bn−3m,m(x)−Bn−2m,m(x) + Bn−4m,m(x)
= Bn,m(x)−Bn−2m,m(x).

In a similar way, equalities (3.2)–(3.8) can be proved.

Corollary 3.1. If we exchange x by ix in Theorem 3.1 (i2 = −1), then we obtain
the following identities:

(−1)n(ix)cn,m(x2) = Ω2n+1,2m(ix); (by (3.1))
(−1)nCn,m(x2) = Ω2n,2m(ix); (by (3.2))
(−1)nbn,m(x2) = V2n,2m(ix); (by (3.3))
(−1)n(ix)Bn,m(x2) = V2n+1,2m(ix), (by (3.4)).

4 Chebyshev and Jacobsthal polynomials

In this section we discover connections between polynomials Ωn,m(x) and Vn,m(x)
on one side, and polynomials Jn,m(x) and jn,m(x) on the other side.
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Theorem 4.1. For all n ≥ m (n,m ∈ N), the following hold:

Vn,m(x) = xnJn+1,m(−(2xm)−1); (4.1)

Ωn,m(x) = xnjn,m(−(2xm)−1). (4.2)

Proof. By (1.6) and (1.10), we have:

xnJn+1,m(−(2xm)−1) = xn

[n/m]∑

k=0

(
n− (m− 1)k

k

)
(−2(2xm)−1)k

=
[n/m]∑

k=0

(−1)k

(
n− (m− 1)k

k

)
xn−mk

= Vn,m(x).

Hence, (4.1) is proved. Next, from (1.5) and (1.11), we obtain (4.2) as follows:

xnjn,m(−(2xm)−1) = xn

[n/m]∑

k=0

n− (m− 2)k
n− (m− 1)k

(
n− (m− 1)k

k

)
(−2(2xm)−1)k

=
[n/m]∑

k=0

(−1)k n− (m− 2)k
n− (m− 1)k

(
n− (m− 1)k

k

)
xn−mk

= Ωn,m(x).

We also prove the following result.

Theorem 4.2. For all n ≥ m (n,m ∈ N) the following hold:

Ω2n+1,2m(x) = x2n+1j2n+1,2m(−(2x2m)−1); (4.3)
Ω2n,2m(x) = x2nj2n,2m(−(2x2m)−1); (4.4)
V2n,2m(x) = x2nJ2n+1,2m(−(2x2m)−1); (4.5)
V2n+1,2m(x) = x2n+1J2n+2,2m(−(2x2m)−1). (4.6)

Proof. By (1.11) and (1.5), we obtain:

x2nj2n,2m(−(2x2m)−1) =

= x2n

[n/m]∑

k=0

2n− (2m− 2)k
2n− (2m− 1)k

(
2n− (2m− 1)k

k

)
(−2(2x2m)−1)k

=
[n/m]∑

k=0

(−1)k 2n− (2m− 2)k
2n− (2m− 1)k

(
2n− (2m− 1)k

k

)
x2n−2mk

= Ω2n,2m(x).
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So, the equality (4.4) is proved.
Next, by (1.6) and (1.10), we get:

x2n+1J2n+2,2m(−(2x2m)−1) =

= x2n+1

[n/m]∑

k=0

(
2n + 1− (2m− 1)k

k

)
(−2(2x2m)−1)k

=
[n/m]∑

k=0

(−1)k

(
2n + 1− (2m− 1)k

k

)
x2n+1−2mk

= V2n+1,2m(x).

Hence, (4.6) holds. Equalities (4.3) and (4.5) can be proved similarly.

The following result is an exercise for a reader.

Theorem 4.3. For all n ≥ 2m (n ∈ N, m ∈ 2N+ 1) the following hold:

cn,m(−x2) = (−1)nx2nj2n+1,2m(−(2x2m)−1); (4.7)
Cn,m(−x2) = (−1)nx2nj2n,2m(−(2x2m)−1); (4.8)
bn,m(−x2) = (−1)nx2nJ2n+1,2m(−(2x2m)−1); (4.9)
Bn,m(−x2) = (−1)nx2nJ2n+2,2m(−(2x2m)−1). (4.10)

Corollary 4.1. Taking x instead of −x2 in Theorem 4.3, we get the following
relations:

cn,m(x) = xnj2n+1,2m((2xm)−1);
Cn,m(x) = xnj2n,2m((2xm)−1);
bn,m(x) = xnJ2n+1,2m((2xm)−1);
Bn,m(x) = xnJ2n+2,2m((2xm)−1).

In this section we prove one more result.

Theorem 4.4. For r ≥ 1 and n ≥ m (n,m, r ∈ N), the following hold:

n∑

i=0

(−1)i

(
n

i

)
xihr+(m−1)i,m(x) = (−1)nhr+mn,m(x); (4.11)

n∑

i=0

(
n

i

)
hr+mi,m(x) = xnhr+(m−1)n,m(x), (4.12)

where hn,m(x) = Ωn,m(x) or hn,m(x) = Vn,m.
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Proof. It is easy to prove the equality (4.11) for n = 1. Suppose that (4.11) holds
for n ≥ 1. Then, from (1.1) and (1.2), we get:

hr+m(n+1),m(x) = xhr+m−1+mn,m(x)− hr+mn,m(x)

= (−1)nx

n∑

i=0

(−1)i

(
n

i

)
xihr+m−1+(m−1)i,m(x)−

(−1)n
n∑

i=0

(−1)i

(
n

i

)
xihr+(m−1)i,m(x)

= (−1)n
n∑

i=0

(−1)i

(
n

i

)
xi+1hr+m−1+(m−1)i,m(x)

+(−1)n
n∑

i=0

(−1)i−1

(
n

i

)
xihr+(m−1)i,m(x)

= (−1)n
n+1∑

i=1

(−1)i−1

(
n

i− 1

)
xihr+(m−1)i,m(x)

+(−1)n
n∑

i=0

(−1)i−1

(
n

i

)
xihr+(m−1)i,m(x)

= (−1)n
n∑

i=1

(−1)i−1

(
n + 1

i

)
xihr+(m−1)i,m(x) + xn+1hr+(m−1)(n+1),m(x)

−(−1)nhr+(m−1)0,m(x) = (−1)n+1
n+1∑

i=0

(−1)i

(
n + 1

i

)
xihr+(m−1)i,m(x)

= (−1)n+1hr+m(n+1),m(x).

The relation (4.12) can be proved similarly.

5 Mixed convolutions of the Chebyshev type

In this section we introduce and study polynomials V r
n,m(x), which are the rth–con-

volutions of polynomials Vn,m(x). We also study polynomials Ωs
n,m(x), which are

the sth–convolutions of Ωn,m(x). Finally, we investigate polynomials vr,s
n,m(x), which

are the mixed convolutions of the Chebyshev type, where r and s are nonnegative
integers with r + s ≥ 1.

In the rest of the section we have m,n, r, s ∈ N and r + s ≥ 1.
Polynomials V r

n,m(x) are defined by

Gm
r (t) = (1− xt + tm)−(r+1) =

∞∑
n=1

V r
n,m(x)tn. (5.1)

Hence, using standard methods, we get the following recurrence relation

nV r
n,m(x) = x(r + n)V r

n−1,m(x)− (n + mr)V r
n−m,m(x). (5.2)
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By expanding Gm
r (t) (see (5.1)) in a power series of t, we get:

(1− xt + tm)−(r+1) =
∞∑

n=1

(−(r + 1)
n

)
(−t)n(x− tm−1)n (5.3)

=
∞∑

n=1

(r + 1)!
n!

n∑

k=0

(
n

k

)
xn−k(−tm−1)ktk (5.4)

=
∞∑

n=1

[n/m]∑

k=0

(−1)k (r + 1)n−(m−1)k

k!(n−mk)!
xn−mktn. (5.5)

Now, using the following equalities (see [4]):

(−1)k(r + 1)n−(m−1)k

(n−mk)!
· (x−m)k

k!
=

(−1)k(−1)(m−1)k(r + 1)n(−n)mk

(−r − n)(m−1)k(−1)mkn!
· (x−m)k

k!
=

(r + 1)nmmk
(−n

m

)
k

(
1−n
m

)
k
· · · (m−1−n

m

)
k

n!(m− 1)(m−1)k
(
−r−n
m−1

)
k

(
1−r−n
m−1

)
k
· · ·

(
m−2−r−n

m−1

)
k

· (x−m)k

k!
=

(r + 1)n

n!
·

(−n
m

)
k

(
1−n
m

)
k
· · · (m−1−n

m

)
k(

−r−n
m−1

)
k

(
1−r−n
m−1

)
k
· · ·

(
m−2−r

m−1

)
k

·
mm

(m−1)(m−1) x
−m

k!
,

in (5.3)–(5.5), we get the following formula

V r
n,m(x) =

xn(r + 1)n

n! mFm−1

[
−n
m , 1−n

m , . . . m−1−n
m ; x−mmm

(m−1)(m−1)

−r−n
m−1 , 1−r−n

m−1 , . . . m−2−r−n
m−1 ;

]
(5.6)

So, for m = 2 and r = 0, we obtain the following formula

Vn(x) = xn
2F1

[−n
2 , 1−n

2 ; 4
x2

−n;

]
(5.7)

since V 0
n,2(x) ≡ Vn(x).

The sth– convolutions Ωs
n,m(x) we define by

Fm
s (t) = (1− tm)(1− xt + tm)−(s+1) =

∞∑
n=1

Ωs
n,m(x)tn. (5.8)

Hence, we find that polynomials Ωs
n,m(x) satisfy the recurrence relation

nΩs
n,m(x) = x(n + s)Ωs

n−1,m(x)− 2m(s + 1)Ωs
n−m,m(x) (5.9)

= x(s + 1)(2m− n)Ωs
n−1−m,m(x) + (n− 2m)Ωs

n−2m,m(x). (5.10)
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Also, from (5.8), we find the following formula

Ωs
n,m(x) =

[n/m]∑

j=0

(
s + 1

j

)
V s

n−mj,m(x). (5.11)

Mixed convolutions vr,s
n,m(x) are defined by

Sm(t) =
(1− tm)s+1

(1− xt + tm)r+s+2
=

∞∑
n=1

vr,s
n,m(x)tn. (5.12)

From (5.12) we get the following formulas:

Sm(t) =
(1− tm)s+1

(1− xt + tm)s+1
· 1
(1− xt + tm)r+1

=

( ∞∑
n=1

Ωs
n,m(x)tn

)( ∞∑
n=1

V r
n,m(x)tn

)

=
∞∑

n=1

(
n∑

k=1

Ωs
n−k,m(x)V r

k,m(x)

)
tn.

By (5.12), using the well–known manner, we obtain the recurrence relation

nvr,s
n,m(x) = x(r + s + 2)vr+1,s

n−1,m(x)

−m(s + 1)vr+1,s−1
n−m,m (x)−m(r + s + 2)vr+1,s

n−m,m(x).

Again from (5.12) we find that

∞∑
n=1

vr,s
n,m(x)tn = (1− tm)s+1

∞∑
n=1

V r+s+1
n,m (x)tn. (5.13)

Furthermore, for r = s in (5.13), we get the following representation

vs,s
n,m(x) =

[n/m]∑

k=1

(−1)k

(
s + 1

k

)
V 2s+1

n−mk,m(x). (5.14)

Hence, for s = 0 (and respectively for r = 0), we have:

vr,0
n,m(x) = V r

n,m(x), the rth –convolutions of Vn,m(x); (5.15)

v0,s
n,m(x) = Ωs

n,m(x), the sth–convolutions of Ωn,m(x). (5.16)

Thus, for m = 2 in (5.15) and (5.16), we get, repsectively: vr,0
n,2(x) = V r

n (x), the
rth–convolutions of Vn(x); and v0,s

n,2(x) = Ωs
n(x), the sth–convolutions of Ωn(x).
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