SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH SALAGEAN DERIVATIVE

Sayali S. Joshi

ABSTRACT.

In the present paper a new subclass of Harmonic univalent functions is defined using Salegaon derivative operator and several interesting properties like coefficient bound, distortion theorem are obtained.

2000 Mathematics Subject Classification:30C45,30C55.

Keywords and phrases: Harmonic functions, univalent, sence-preserving, analytic.

Received: June 25, 2009

Communicated by Dragan S. Djordjević

1. Introduction

A continuous function f is said to be a complex-valued harmonic function in a simply connected domain D in complex plane \square if both $\operatorname{Re}\{f\}$ and $\operatorname{Im}\{f\}$ are real harmonic in D. Such functions can be expressed as

$$f = h + \overline{g} \tag{1.1}$$

where h and g are analytic in D. We call h as analytic part and g as coanalytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that |h'(z)| > |g'(z)| for all z in D, see [2].

Let S_H be the family of functions of the form (1.1) that are harmonic ,univalent and orientation preserving in the open unit disk $U=\{z: |z|<1\}$, so that $f=h+\overline{g}$ is normalized by $f(0)=h(0)=f_z(0)-1=0$. Further $f=h+\overline{g}$ can be uniquely determined by the coefficients of power series expansions

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
, $g(z) = \sum_{n=1}^{\infty} b_n z^n$, $z \in U$, $|b_1| < 1$, (1.2)

where $a_n \in \square$ for $n = 2, 3, 4, \dots$ and $b_n \in \square$ for $n = 1, 2, 3, \dots$

We note that this family S_H was investigated and studied by Clunie and Sheil-Small [2] and it reduces to the well-known family S, the class of all normalized analytic univalent functions h given in (1.2), whenever the co-analytic part g of f is identically zero.

Let $\overline{S_H}$ denote the subfamily of S_H consisting of harmonic functions of the form

$$f_m = h + \overline{g_m}$$

where

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
, $g_m(z) = (-1)^m \sum_{n=1}^{\infty} b_n z^n$, $z \in U$, $|b_1| < 1$, (1.3)

Recently, Jahangiri *et al* [5] defined the Salagean derivative of harmonic functions f = h + g in S_H by

$$D^{m} f(z) = D^{m} h(z) + (-1)^{m} \overline{D^{m} g(z)}$$
(1.4)

 $m \in \mathbb{N} \cup \{0\}$, where Salagean derivative of power series $\phi(z) = \sum_{n=1}^{\infty} \phi_n z^n$ is given by

$$D^0\phi(z) = \phi(z)$$
, $D^1\phi(z) = z\phi'(z)$ and $D^m\phi(z) = D(D^{m-1}\phi(z)) = \sum_{n=1}^{\infty} n^m\phi_n z^n$.

Definition. The function $f = h + \overline{g}$ defined by (1.2) is in the class $S_H(k, \beta; m)$ if

$$\operatorname{Re}\left\{\frac{D^{m+1}f(z)}{D^{m}f(z)}\right\} \ge k \left|\frac{D^{m+1}f(z)}{D^{m}f(z)} - 1\right| + \beta$$
(1.5)

where $0 \le k < \infty, 0 \le \beta < 1, m \in N \cup \{0\}$

Also let
$$\overline{S_H}(k, \beta; m) = S_H(k, \beta; m) \cap \overline{S_H}$$
 (1.6)

We note that by specializing the parameter, especially when k=0, $S_H(k,\beta;m)$ reduces to well-known family of starlike harmonic functions of order β . In recent years many researchers have studied various subclasses of S_H for example [1],[3],[4],[7] and [8].

In the present paper we aim at systematic study of basic properties, in particular coefficient bound, distortion theorem and extreme points of aforementioned subclass of harmonic functions.

2. Main Results

Theorem1. Let $f = h + \overline{g}$ be given by (1.2). If condition

$$\sum_{n=1}^{\infty} \left[\frac{n^m \left[n(1+k) - k - \beta \right]}{\left(1 - \beta \right)} \left| a_n \right| + \frac{n^m \left[n(1+k) + k + \beta \right]}{\left(1 - \beta \right)} \left| b_n \right| \right] \le 2$$
 (2.1)

where $a_1 = 1, 0 \le \beta < 1, 0 \le k < \infty, m \in \mathbb{N} \cup \{0\}$

then f is sense-preserving harmonic univalent in U and $f \in S_H(k,\beta;m)$.

Proof. If the inequality (2.1) holds for coefficients of $f = h + \overline{g}$ then by (1.2), f is orientation preserving and harmonic univalent in U. Now it remains to show that

 $f \in S_H(k, \beta; m)$. According to (1.4) and (1.5) we have

$$\operatorname{Re}\left\{\frac{D^{m+1}f(z)}{D^{m}f(z)}\right\} \ge k \left|\frac{D^{m+1}f(z)}{D^{m}f(z)} - 1\right| + \beta$$

which is equivalent to $\operatorname{Re}\left(A(z)/B(z)\right) > \beta$ where

$$A(z) = (1+k)D^{m+1}f(z) - kD^{m}f(z)$$
 and $B(z) = D^{m}f(z)$

Using the fact that, $Re(w) > \beta$ if $|1 - \beta + w| \ge |1 + \beta - w|$ it suffices to show that

$$|A(z) + (1-\beta)B(z)| \ge |A(z) - (1+\beta)B(z)|$$

substituting values of A(z) and B(z) and with simple calculations we led to

$$\begin{vmatrix}
(2-\beta)z + \sum_{n=2}^{\infty} n^{m} \left[(1+k)n - k + (1-\beta) \right] a_{n} z^{n} - (-1)^{m} \sum_{n=1}^{\infty} n^{m} \left[(1+k)n - k - (1-\beta) \right] \overline{b_{n}} \overline{z^{n}} \\
- \left| \beta z + \sum_{n=2}^{\infty} n^{m} \left[(1+k)n - k + (1-\beta) \right] a_{n} z^{n} + (-1)^{m} \sum_{n=1}^{\infty} n^{m} \left[(1+k)n - k - (1-\beta) \right] \overline{b_{n}} \overline{z^{n}} \right| \\
\geq 2(1-\beta) |z| - \sum_{n=2}^{\infty} n^{m} \left[2(1+k)n - 2k - 2\beta \right] |a_{n}| |z|^{n} - (-1)^{m} \sum_{n=1}^{\infty} n^{m} \left[2(1+k)n + 2k + 2\beta \right] |\overline{b_{n}}| |\overline{z}|^{n} \\
\geq 2(1-\beta) |z| \left\{ 1 - \sum_{n=2}^{\infty} n^{m} \left[\frac{(1+k)n - k - \beta}{(1-\beta)} \right] |a_{n}| |z|^{n-1} - (-1)^{m} \sum_{n=1}^{\infty} n^{m} \left[\frac{(1+k)n + k + \beta}{(1-\beta)} \right] |\overline{b_{n}}| |\overline{z}|^{n-1} \right\} \\
\geq 0$$

by assumption. Hence proof is completed.

The functions

$$f(z) = z + \sum_{n=2}^{\infty} \frac{(1-\beta)}{n^m \left[(1+k)n - k - \beta \right]} x_n z^n + \sum_{n=1}^{\infty} \frac{(1-\beta)}{n^m \left[(1+k)n + k + \beta \right]} \overline{y_n} \overline{z^n}$$
where $\sum_{n=2}^{\infty} |x_n| + \sum_{n=1}^{\infty} |y_n| = 1$, (2.3)

shows that the coefficient bound given (2.1) is sharp.

Theorem2. Let $f_m = h + \overline{g}_m$ be so that h and g_m are given by (1.6). Then $f_m \in \overline{S}_H(k,\beta,m)$ if and only if

$$\sum_{n=1}^{\infty} \left\lceil \frac{n^k \left[(1+k)n - \beta - k \right]}{(1-\beta)} \left| a_n \right| + \frac{n^k \left[(1+k)n + \beta + k \right]}{(1-\beta)} \left| b_n \right| \right\rceil \le 2 \tag{2.4}$$

where $a_1 = 1, 0 \le \beta < 1, 0 \le k < \infty, m \in \mathbb{N} \cup \{0\}$.

Proof. The 'if' part follows form Theorem 1 with the fact that $\overline{S_H}(k,\beta,m) \subset S_H(k,\beta,m)$.

For only if part, we show that $f_m \notin \overline{S_H}(k,\beta,m)$ if the condition (2.4) is not satisfied.

Note that necessary and sufficient condition for $f_m = h + \overline{g_m}$ given by (1.6) to be in $\overline{S_H}(k,\beta,m)$ is that

$$\operatorname{Re}\left\{\frac{D^{m+1}f_m(z)}{D^m f_m(z)}\right\} \ge k \left|\frac{D^{m+1}f_m(z)}{D^m f_m(z)} - 1\right| + \beta$$

which is equivalent to

$$\operatorname{Re}\left\{\frac{(1+k)D^{m+1}f_{m}(z) + (k-\beta)D^{m}f_{m}(z)}{D^{m}f_{m}(z)}\right\}$$

$$=\operatorname{Re}\left\{\frac{(1-\beta)z - \sum_{n=2}^{\infty}n^{m}\left[(1+k)n - k - \beta\right]a_{n}z^{n} - (-1)^{2k}\sum_{n=1}^{\infty}n^{m}\left[(1+k)n + k + \beta\right]b_{n}\overline{z}^{n}}{z - \sum_{n=2}^{\infty}n^{m}a_{n}z^{n} + (-1)^{2k}\sum_{n=1}^{\infty}n^{m}b_{n}\overline{z}^{n}}\right\}$$
>0

The above conditions must hold for all values of z, |z|=r<1. Choosing z on positive axis where $0 \le |z|=r<1$, we have

$$\frac{\left(1-\beta\right)z - \sum_{n=2}^{\infty} n^{m} \left[(1+k)n - k - \beta\right] a_{n} r^{n-1} - \left(-1\right)^{2k} \sum_{n=1}^{\infty} n^{m} \left[(1+k)n + k + \beta\right] b_{n} \overline{r}^{n-1}}{z - \sum_{n=2}^{\infty} n^{m} a_{n} r^{n-1} + \left(-1\right)^{2k} \sum_{n=1}^{\infty} n^{m} b_{n} \overline{r}^{n-1}} \ge 0$$

(2.5)

or equivalently if the condition (2.4) dose not hold then the numerator in (2.5) is negative for r sufficiently close to 1.

Thus there exists $z_0 = r_0$ in (0,1) for which the quotient in (2.5) is negative . This contradicts that required condition for $f_m \in \overline{S_H}(k,\beta,m)$ and hence proof is completed.

Theorem3. Let f_m be given by (1.6). Then $f_m \in \overline{S_H}(k, \beta, m)$ if and only if $f_m(z) = \sum_{n=1}^{\infty} (x_n h_n(z) + y_n g_{m_n}(z))$

$$h_1(z) = z, h_n(z) = z - \frac{1 - \beta}{n^m \left[(1+k)n - k - \beta \right]} z^n$$
, $n = 2, 3, ...$

$$g_{m_n}(z) = z + (-1)^{m-1} \frac{1-\beta}{n^m [(1+k)n+k+\beta]} z^n$$
, $n = 1, 2, 3, ...$

and

$$x_m \ge 0, y_m \ge 0, x_1 = 1 - \sum_{n=2}^{\infty} (x_n + y_n) \ge 0.$$

In particular, the extreme points of $\overline{S_H}(k,\beta,m)$ are $\{h_m\}$ and $\{g_{m_n}\}$.

Proof. Let

$$f_{m}(z) = \sum_{n=1}^{\infty} (x_{n}h_{n}(z) + y_{n}g_{m_{n}}(z))$$

$$= \sum_{n=1}^{\infty} (x_{n} + y_{n})z - \sum_{n=2}^{\infty} \frac{1-\beta}{n^{m}[(1+k)n - k - \beta]} x_{n}z^{n} + (-1)^{m-1} \sum_{n=1}^{\infty} \frac{1-\beta}{n^{m}[(1+k)n + k + \beta]} y_{n}\overline{z}^{n}.$$

Then

$$\sum_{n=2}^{\infty} \frac{n^{m} \left[(1+k)n - k - \beta \right]}{1-\beta} |a_{n}| + \sum_{n=1}^{\infty} \frac{n^{m} \left[(1+k)n + k + \beta \right]}{1-\beta} |b_{n}|$$

$$= \sum_{n=2}^{\infty} x_n + \sum_{n=1}^{\infty} y_n = 1 - x_1 \le 1$$

and so
$$f_m \in \overline{S_H}(k,\beta,m)$$
.

Conversely, suppose that $f_m \in \overline{S_H}(k,\beta,m)$.

Setting

$$x_{n} = \frac{n^{m} [(1+k)n - k - \beta]}{1 - \beta} a_{n}, \quad n = 2, 3, ...$$

$$y_{n} = \frac{n^{m} [(1+k)n + k + \beta]}{1 - \beta} b_{n}, \quad n = 1, 2, ...$$

where
$$\sum_{n=1}^{\infty} (x_n + y_n) = 1$$
, we obtain $f_m(z) = \sum_{n=1}^{\infty} (x_n h_n(z) + y_n g_{m_n}(z))$

as required

Theorem 4. Let $f_m \in \overline{S_H}(k, \beta, m)$ then for |z| = r < 1

we have

$$|f_m(z)| \le (1+|b_1|)r + \frac{1}{2^m} \left(\frac{1-\beta}{2(k+1)-k-\beta} - \frac{2(k+1)+k+\beta}{2(k+1)-k-\beta} |b_1| \right) r^2$$

and

$$|f_m(z)| \ge (1-|b_1|)r - \frac{1}{2^m} \left(\frac{1-\beta}{2(k+1)-k-\beta} - \frac{2(k+1)+k+\beta}{2(k+1)-k-\beta} |b_1| \right) r^2$$

Proof. Let $f_m \in \overline{S_H}(k, \beta, m)$. Taking absolute value of f_m we obtain

$$\begin{split} \left| f_m(z) \right| &\leq (1 + \left| b_1 \right|) r + \sum_{n=2}^{\infty} (\left| a_n \right| + \left| b_n \right|) r^n \\ &\leq (1 + \left| b_1 \right|) r + \sum_{n=2}^{\infty} (\left| a_n \right| + \left| b_n \right|) r^2 \\ &\leq (1 + \left| b_1 \right|) r + \frac{1 - \beta}{2^m (2(k+1) - k - \beta)} \sum_{n=2}^{\infty} \left(\frac{2^m (2(k+1) - k - \beta)}{1 - \beta} (\left| a_n \right| + \left| b_n \right|) \right) r^2 \\ &\leq (1 + \left| b_1 \right|) r + \frac{1 - \beta}{2^m (2(k+1) - k - \beta)} \sum_{n=2}^{\infty} \left(\frac{2^m (2(k+1) - k - \beta)}{1 - \beta} \left| a_n \right| + \frac{2^m (2(k+1) + k + \beta)}{1 - \beta} \left| b_n \right| \right) \right) r^2 \\ &\leq (1 + \left| b_1 \right|) r + \frac{1 - \beta}{2^m (2(k+1) - k - \beta)} \sum_{n=2}^{\infty} \left(1 - \frac{(2(k+1) + k + \beta)}{1 - \beta} \left| b_1 \right| \right) \right) r^2 \\ &\leq (1 + \left| b_1 \right|) r + \frac{1}{2^m} \left(\frac{1 - \beta}{(2(k+1) - k - \beta)} - \frac{2(k+1) + k + \beta}{2(k+1) - k - \beta} \left| b_1 \right| \right) r^2 \end{split}$$

The forthcoming result follows from left hand inequality in Theorem 2.4.

Corollary. Let f_m of the form (1.3) be so that if $f_m \in \overline{S_H}(k, \beta, m)$, then

$$\left\{\omega;\left|\omega\right|<\frac{2^{m}\left(k+2\right)-1-\left(2^{m}-1\right)\beta}{2^{m}\left(k+2-\beta\right)}-\frac{\left(2^{m}-1\right)\left(k+2\right)-k-\left(2^{m}+1\right)\beta}{2^{m}\left(k+2-\beta\right)}\left|b_{1}\right|\right\}\subset f_{m}\left(U\right).$$

Theorem 5. The class $\overline{S_H}(k,\beta,m)$ is closed under convex combination.

Proof. For i = 1, 2, ... suppose $f_{m_i}(z) \in \overline{S_H}(k, \beta, m)$ where

$$f_{m_i}(z) = z - \sum_{n=2}^{\infty} |a_{in}| z^n + (-1)^m \sum_{n=1}^{\infty} |b_{in}| z^n$$

then by Theorem 2

$$\sum_{n=2}^{\infty} \frac{n^m \left((k+1)n - k - \beta \right)}{\left(1 - \beta \right)} \left| a_{in} \right| + \sum_{n=2}^{\infty} \frac{n^m \left((k+1)n + k + \beta \right)}{\left(1 - \beta \right)} \left| b_{in} \right| \le 1 \quad . \tag{2.6}$$

For $\sum_{i=1}^{\infty} t_i = 1, 0 \le t_i \le 1$, the convex combination of f_{m_i} may be written as

$$\sum_{i=1}^{\infty} t_i f_{m_i}(z) = z - \sum_{n=2}^{\infty} \left(\sum_{i=1}^{\infty} t_i |a_{in}| \right) z^n + (-1)^m \sum_{n=1}^{\infty} \left(\sum_{i=1}^{\infty} t_i |b_{in}| \right) z^n$$

hence by (2.6)

$$\sum_{n=2}^{\infty} \frac{n^{m} \left((k+1)n - k - \beta \right)}{1 - \beta} \left(\sum_{i=1}^{\infty} t_{i} \left| a_{in} \right| \right) + \sum_{n=1}^{\infty} \frac{n^{m} \left((k+1)n + k + \beta \right)}{1 - \beta} \left(\sum_{i=1}^{\infty} t_{i} \left| b_{in} \right| \right)$$

$$= \sum_{i=1}^{\infty} t_{i} \left[\sum_{n=2}^{\infty} \frac{n^{m} \left((k+1)n - k - \beta \right)}{1 - \beta} \left| a_{in} \right| + \sum_{n=1}^{\infty} \frac{n^{m} \left((k+1)n + k + \beta \right)}{1 - \beta} \left| b_{in} \right| \right] \leq \sum_{i=1}^{\infty} t_{i} \leq 1$$

and therefore
$$\sum_{i=1}^{\infty} t_i f_{m_i}(z) \in \overline{S_H}(k,\beta,m)$$
 .

This completes the proof.

Acknowledgement. This work is supported by Department of Science and Technology, SERC Division, New Delhi under Young Scientist Project (SR/FTP/MS-17/2007) sanctioned to author.

References

- 1. O.P.Ahuja, R. Aghalary and S. B. Joshi, *Harmonic univalent functions associated with k-uniformly starlike functions*, Math Sci Res.J. **,9** (1) (2005), 9-17.
- 2. J. Clunie, T. Sheil-Small, *Harmonic univalent functions*, Ann.Acad Sci Fenn A.I.Math., **9** (1984), 3-25.
- 3. J. M. Jahangiri, *Harmonic functions starlike in the unit disc*, J.Math Anal Appl., **235** (1999), 470-477.
- 4. J. M. Jahangiri, Y. C. Kim and H. M. Srivastava, Construction of a certain class of harmonic close-to convex functions associated with Alexander integral transform, Integral Trans and Spec Funct., 14 (2003), 237-242.
- 5. J. M. Jahangiri, G. Murgusundarmoorthy and K. Vijay, *Salagean –type harmonic univalent functions*, South J.Pure and Appl Math., **2** (2002), 77-82.
- 6. G. S. Salagean, *Subclass of univalent functions*, Lect Notes in Math. Springer-Verlag, **1013** (1983), 362-372.
- 7. H. Silverman, *Harmonic univalent functions with negative coefficients*, J. Math Anal Appl., **220** (1998), 283-289.
- 8. S. Yalcin, On certain harmonic univalent functions defined by Salagean derivative, Soochow J.Math., 31 (3) (2005), 321-331.

Department of Mathematics, Walchand College of Engineering, Sangli 416 415, Maharshtra, India

E-mail: sayali 75@yahoo.co.in