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MULTIPLICATIVE PARAMETERS

IN GRADIENT DESCENT METHODS

Predrag Stanimirović∗, Marko Miladinović † and Snežana Djordjević

Abstract

We introduced an algorithm for unconstrained optimization based on the
reduction of the modified Newton method with line search into a gradient de-
scent method. Main idea used in the algorithm construction is approximation
of Hessian by a diagonal matrix. The step length calculation algorithm is
based on the Taylor’s development in two successive iterative points and the
backtracking line search procedure.

1 Introduction

We consider the problem
min f(x), x ∈ Rn, (1.1)

where Rn denotes the set of n-tuples with elements from R and f : Rn → R is the
objective function. It is assumed that the function f : Rn → R is uniformly convex
and twice continuously differentiable. The most frequently used general iterative
scheme aimed to solve the problem (1.1) is given by

xk+1 = xk + tkdk,

where xk+1 is new iterative point, xk is previous iterative point, tk > 0 is a step-
length, and dk is an appropriate search direction. The key problem is to find the
descent direction vector dk and a suitable step size tk.

As usual, we use the following notations:

g(x) = ∇f(x), G(x) = ∇2f(x), gk = ∇f(xk), Gk = ∇2f(xk),
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where ∇f(x) denotes the gradient of f and ∇2f(x) denotes the Hessian of f . For
x ∈ Rn, xT denotes the transpose of x.

The search direction dk is generally required to satisfy the descent condition

gT
k dk < 0.

For the choice of the search direction there are several procedures [13, 20]. In the
Newton method with line search the descent direction dk is generated by solving
the system Gkd = −gk. In the gradient descent method dk is defined by dk = −gk.

Different choices of step-sizes lead to various gradient algorithms. The line
search algorithms determine the step size tk such that the objective function value
decreases, i.e. f(xk + tkdk) < f(xk). Two main algorithms have been proposed:
exact line search and inexact line search. In the exact line search there is the
well-known formula (see, for example [17], [20])

tk = arg min
t>0

f(xk + tdk).

In practice the most frequently used is the inexact line search which try to minimize
f along the ray xk + tdk, t ≥ 0, or to sufficiently decrease the value of f .

The general iterative scheme for the realization of the line search methods is
given as follows [20]:

Algorithm 1.1 General scheme for line search methods.
Require: Objective function f(x), initial point x0 ∈ Rn and tolerance 0 ≤ ε ¿ 1.
1: k = 0.
2: (Verify termination criterion) If ||gk|| ≤ ε then return xk and f(xk) and stop

the algorithm; else continue by the next step.
3: (Finding the direction) Find the vector dk which is a descent direction.
4: (Finding the stepsize) Find the stepsize tk such that

f(xk + tkdk) < f(xk).

5: (Loop) Compute xk+1 := xk + tkdk; set k := k + 1 and go to Step 2.

For the sake of completeness, we describe the inexact line search known as the
backtracking, introduced in [4].

Algorithm 1.2 The backtracking line search.
Require: Objective function f(x), the direction dk of the search at the point xk

and numbers 0 < σ < 0.5 and β ∈ (0, 1).
1: t = 1.
2: While f(xk + tdk) > f(xk) + σtgT

k dk, take t := tβ.
3: Return tk = t.

The standard values of the parameters are σ = 0.0001 and β = 0.8.
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The paper is organized as follows. In the second section we describe motivation
and main directives used in the present article. In the third section we introduce
several variants of a gradient descent method arising from the modified Newton
method with line search, developed after the reduction of the Hessian by an appro-
priately generated diagonal matrix and using the backtracking line search for the
step length calculation. Linear convergence of the algorithm is proved in Section
4. Numerical results obtained applying the implementation of the method in the
programming language MATHEMATICA are presented in the last section.

2 Motivation

We briefly describe our idea used in the present paper. The Newton’s method with
the line search is defined by the iterative scheme

xk+1 = xk − tkG−1
k gk.

However, for various practical problems, the efforts for computing the Hessian ma-
trices and their inverses are very expensive, or the Hessian is not available ana-
lytically. These difficulties initiate a class of methods that only uses the function
values and the gradients of the objective function and that is closely related to the
Newton’s method. Modified Newton methods do not need to compute the Hessian,
but generates a series of Hessian approximations, and at the same time maintains a
fast rate of convergence. This can be accomplished by constructing approximations
to the inverse Hessian based on information gathered during the descent process
[13, 20]. In this way, the general iterative scheme for modified Newton methods is

xk+1 = xk − tkSkgk, (2.1)

where, in general, Sk is selected as an approximation to the inverse of the Hessian.
If we take the following diagonal approximation to the inverse of the Hessian

Sk = γ−1
k I, γk ∈ R, (2.2)

the modified Newton method (2.1) reduces to the iterative scheme

xk+1 = xk − tkγ−1
k gk, (2.3)

which is essentially a technique for the step length calculation in the frame of the
gradient descent general iterative scheme.

Our general decision to approximate the Hessian by a diagonal matrix was used
by Barzilai and Borwein in [5]. They suggested an algorithm (called as BB algo-
rithm) which essentially is a gradient one, where the choice of the step size along the
negative gradient is derived from a two-point approximation to the secant equation
underlying quasi-Newton methods:

Skyk−1 = sk−1,
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where sk−1 = xk − xk−1 and yk−1 = gk − gk−1. Considering Sk = γkI as an
approximation to the Hessian of f at xk, in order to make the matrix Sk have
quasi-Newton property, Barzilai and Borwein chose γk according to the rule

Sk = arg min ‖Gsk−1 − yk−1‖2,
yielding the following iterative scheme:

xk+1 = xk − 1
γBB

k

gk, γBB
k =

sT
k−1yk−1

sT
k−1sk−1

. (2.4)

In the recent years lots of researches have been done on how to choose the step size
for the gradient method, following the amazing result by Barzilai and Borwein; for
example, see [6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 19].

Our diagonal matrix is computed without using the secant equation from quasi-
Newton methods. Therefore, our method starts from the modified Newton methods
with line search.

On the other hand, we observed that the iterative scheme (2.3) possesses the
general form of the accelerated gradient descent methods from [2], which is defined
as the gradient descent iterative scheme

xk+1 = xk − θktkgk, (2.5)

where θk > 0 is the acceleration parameter which improves the behavior of the
gradient descent algorithm.

In this way, our approach is between the ideas used in [1], [2] and [5].
Formal comparison of the iterative schemes (2.3) and (2.5) consists of the com-

putation of the real number γk in (2.3) with respect to the construction of the
modification parameter θk in (2.5). The step length tk is a common scalar which
appears in both iterative processes (2.3) and (2.5). Following essential ideas in
these iterative schemes, we observed that (2.5) tends to accelerate the basic gradi-
ent descent algorithm, while the iterations (2.3) become from a modification of the
Newton method given by the general form (2.1).

3 Gradient descent method

Main idea used in the algorithm construction is approximation of the Hessian in the
modified Newton method by a diagonal matrix using (2.2), where γk = γ(xk, xk−1)
is appropriately selected real number on the basis of Taylor’s approximation in the
point xk+1, computed by means of (2.3). In order to select an appropriately real
number γk we extend the idea for the step length selection in the frame of gradient
descent method from [1]. In the (k + 1)-th iteration of the iterative scheme (2.3)
we have from the Taylors theorem

f(xk+1) = f(xk)− tkgT
k γ−1

k gk +
1
2
t2k(γ−1

k gk)T∇2f(ξ)γ−1
k gk, (3.1)
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where ξ ∈ [xk, xk+1] is defined by

ξ = xk + α(xk+1 − xk) = xk − αtkγ−1
k gk, 0 ≤ α ≤ 1. (3.2)

If xk and xk+1 are close enough, it is reasonable take α = 1 and obtain the
approximation ξ = xk+1. Besides, we take the approximation (2.2) of the Hessian
and obtain

∇2f(ξ) = γk+1I, (3.3)

where γk+1 = γ(xk, xk−1) is defined appropriately in (k + 1)-th iteration. Now,
from (3.1) and (3.3) it is not difficult to verify

f(xk+1) = f(xk)− tkγ−1
k ‖gk‖2 +

1
2
t2kγk+1γ

−2
k ‖gk‖2, (3.4)

and later

γk+1 = 2γk
γk [f(xk+1)− f(xk)] + tk‖gk‖2

t2k‖gk‖2 . (3.5)

It is clear that the condition γk > 0 is indispensable. We propose three solutions
for the situation γk+1 < 0.

(I) In the case γk+1 < 0 simply take γk+1 = 1. Motivation for such solution is:
when Gk is not positive definite, the gradient descent direction −gk with the
step size tk = 1 is used.

(II) This solution is a generalization of the idea used in [1]. From (3.5) we obtain
(assuming that in the previous iterative step γk > 0 is satisfied)

γk+1 < 0 ⇔ f(xk)− f(xk+1) > tkγ−1
k ‖gk‖2.

Let a real value ηk be chosen such that the following inequality holds:

f(xk)− f(xk+1) < (tk + ηk)γ−1
k ‖gk‖2.

We compute ηk as a real number satisfying

tk + ηk >
γk(f(xk)− f(xk+1))

‖gk‖2 .

It follows that

ηk >
γk(f(xk)− f(xk+1))

‖gk‖2 − tk.

Hence, we can take

ηk =
f(xk)− f(xk+1)

γ−1
k ‖gk‖2

− tk + δ, δ > 0, (3.6)

where δ > 0 is a chosen positive real number. So, we obtain

γk+1 = 2γk
γk [f(xk+1)− f(xk)] + (tk + ηk)‖gk‖2

(tk + ηk)2‖gk‖2 . (3.7)
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(III) The third idea is to use γk+1 = αk+1 + γk+1 = δ > 0. Motivation arises from
the following approach: to avoid the case when Gk+1 is not positive definite
it is possible to change the Hessian Gk+1 to Gk+1 +αk+1I, where αk+1 ≥ 0 is
chosen such that Gk+1 +αk+1I is positive definite and well-conditioned. This
can be regarded as a kind of compromise between steepest descent (αk very
large) and Newtons method (αk = 0). Ideally, αk is not much larger than the
smallest that makes Gk+1 + αk+1I positive definite and well-conditioned.

In our implementation we used the solution (I), since the solution (II) requires
relatively complicated computations and implies greater CPU times in initiated
iterative scheme.

After the parameter γk+1 > 0 is found, we need to compute to find the parameter
tk+1 to determine the next iterative estimation xk+2 = xk+1− tk+1γ

−1
k+1gk+1 we use

the inexact backtracking line search procedure for generating tk+1. In order to
derive an upper bound for the backtracking line search we analyze the function

Φk+1(t) = f(xk+1)− tgT
k+1γ

−1
k+1gk+1 +

1
2
t2(γ−1

k+1gk+1)T∇2f(ξ)γ−1
k+1gk+1,

where ξ ∈ [xk+1, xk+2], t ≥ 0 and γk+1 > 0. In the case, when the approximation
ξ ≈ xk+1 is applied, we obtain

Φk+1(t) = f(xk+1)− tγ−1
k+1‖gk+1‖2 +

1
2
t2γk+1γ

−2
k+1‖gk+1‖2

= f(xk+1)− tγ−1
k+1‖gk+1‖2 +

1
2
t2γ−1

k+1‖gk+1‖2.

It is obvious that Φk+1(0) = f(xk+1) and

Φ′k+1(0) = −γ−1
k+1‖gk+1‖2 < 0.

In the case γk+1 > 0 the function Φ is convex for every t ≥ 0. We have

Φ′k+1(t) = 0 ⇔ t̄k+1 = 1, (3.8)

and the minimal value for Φk+1(t) is equal to

Φk+1(1) = f(xk+1)− 1
2
γ−1

k+1‖gk+1‖2.

It is clear that f is reduced if γk+1 > 0. In accordance with (3.8), we can take

tk+1 = arg min
t≤1

f(xk+1 − tG−1
k+1gk+1)

≈ arg min
t≤1

f(xk+1 − tγ−1
k+1gk+1)

(3.9)

using the backtracking line search procedure.
Since the search direction and the step size are found, we are in a position to

introduce the following algorithm:
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Algorithm 3.1 The gradient descent algorithm defined by (2.3) and (3.5) (GDQN).
Require: Objective function f(x) and chosen initial point x0 ∈ dom(f).
1: Set k = 0 and compute f(x0), g0 = ∇f(x0) and use γ0 = 1.
2: If test criteria is fulfilled, then stop the iteration; otherwise, go to the next step.
3: Compute tk = arg min

t<1
f(xk − tkγ−1

k gk) using the backtracking line search pro-

cedure.
4: Compute xk+1 = xk − tkγ−1

k gk, f(xk+1) and gk+1 = ∇f(xk+1).
5: Compute the scalar approximation γk+1 of the Hessian of f at the point xk+1

using (3.5). If γk+1 > 0 go to Step 7, otherwise go to the next step.
6: If γk+1 < 0, then apply one of the following two solutions:

(1) Use γk+1 = 1.
(2) Use ηk as it is defined in (3.6) and later take the positive value of γk+1 as
in (3.7).
(3) Select αk+1 ≥ 0 such that αk+1 + γk+1 > 0 and set γk+1 = αk+1 + γk+1.

7: Using the backtracking procedure, compute the length of the tk+1 of the step
as

tk+1 = arg min
t≤1

f(xk+1 − tγ−1
k+1gk+1).

8: Take xk+2 = xk+1 − tk+1γ
−1
k+1gk+1, set k := k + 1, and go to Step 2.

9: Return xk+1 and f(xk+1).

In the rest of this section we introduce another variant of Algorithm GDQN.
Starting from (3.2), instead of (3.3) and (3.5) we use

∇2f(ξ) = γ(ξ)I, (3.10)

where
γ(ξ) = γ(xk) + αk (γk+1 − γk) , αk ∈ (0, 1), k = 0, 1, . . . .

For example, we can use

γ(ξ) = γk + tk (γk+1 − γk) , k = 0, 1, . . . . (3.11)

In view of (3.11) and (3.5) we derive the following heuristic for computing γk+1:

γk+1 ≈ γ(ξ) = γk
2γk(f(xk+1)− f(xk)) + ‖gk‖2(3tk − t2k)

tk‖gk‖2 . (3.12)

In this way, we introduce the following algorithm, which differs from Algorithm
3 in Step 5, which is now defined as in the following:

5: Compute the scalar approximation γk+1 of the Hessian of f at the point xk+1

using (3.12). If γk+1 > 0 go to Step 7, otherwise go to the next step.

4 Convergence of algorithm GDQN

Proposition 4.1. If the function f : Rn → R is twice continuously differentiable
and uniformly convex on Rn then:
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1) the function f has a lower bound on L0 = {x ∈ Rn | f(x) ≤ f(x0)}, where
x0 ∈ Rn is available;

2) the gradient g is Lipschitz continuous in an open convex set B which contains
L0, i.e. there exists L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ B;

3) f(x) has a unique minimizer x∗, and there exist real numbers m, M satisfying
0 < m ≤ M such that

m‖y‖2 ≤ yT∇2f(x)y ≤ M‖y‖2, ∀ x, y ∈ Rn; (4.1)
1
2
m‖x− x∗‖2 ≤ f(x)− f(x∗) ≤ 1

2
M‖x− x∗‖2, ∀ x ∈ Rn; (4.2)

m‖x− y‖2 ≤ (g(x)− g(y))T (x− y) ≤ M‖x− y‖2, ∀ x, y ∈ Rn. (4.3)

The proof can be found in [16].
If we put x∗ = y in the last inequality, and apply mean value Theorem as well

as the Cauchy-Schwartz inequality we get

m‖x− x∗‖ ≤ ‖g(x)‖ ≤ M‖x− x∗‖, ∀ x ∈ Rn. (4.4)

Lemma 4.1. For twice continuously differentiable and uniformly convex function
f on Rn, and for sequence {xk} generated by Algorithm GDQN we have

f(xk)− f(xk+1) ≥ µ‖gk‖2, (4.5)

where

µ = min
{

σ

M
,
σ(1− σ)

L
β

}
. (4.6)

Proof. Let us observe the following sets K1 = {k | tk = 1}, K2 = {k | tk < 1}
from Algorithm 3. Using the backtracking scheme from Algorithm 1.2 we have the
following two inequalities:

f(xk)− f(xk+1) ≥ −σgT
k dk, ∀ k ∈ K1, (4.7)

f(xk)− f(xk+1) ≥ −σtkgT
k dk, ∀ k ∈ K2. (4.8)

Since tk/β ≤ 1, ∀ k ∈ K2, we get

f(xk)− f

(
xk +

tk
β

dk

)
< −σ

tk
β

gT
k dk, ∀ k ∈ K2.

Now, applying the mean value Theorem on the left hand side of the above inequality,
we have that ∃θk ∈ (0, 1) such that

− tk
β

g

(
xk + θ

tk
β

dk

)T

dk < −σ
tk
β

gT
k dk, k ∈ K2,
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and hence

g

(
xk + θ

tk
β

dk

)T

dk > σgT
k dk, k ∈ K2. (4.9)

If we subtract gT
k dk from both hand sides of the above inequality, and apply Cauchy-

Schwartz inequality as well as the statement 2) from Lemma 4.1 we have

−(1− σ)gT
k dk <

(
g

(
xk + θ

tk
β

dk

)
− gk

)T

dk ≤ L

β
tk‖dk‖2, k ∈ K2,

which implies

tk > −β(1− σ)
L

gT
k dk

‖dk‖2 , k ∈ K2.

After the substitution dk = −γ−1
k gk we obtain from the last inequality

tk >
β(1− σ)γk

L
, k ∈ K2. (4.10)

Applying (4.10) into the (4.8) we get

f(xk)−f(xk+1) ≥ −σtkgT
k dk >

−σ(1− σ)βγk

L

−gT
k gk

γk
>

σ(1− σ)β
L

‖gk‖2, ∀ k ∈ K2.

On the other hand, using the fact that γk < M (follows from (4.1)) in the case
k ∈ K1 we have

f(xk)− f(xk+1) ≥ −σgT
k dk ≥ σ

M
‖gk‖2, ∀ k ∈ K1.

Finally from the last two inequalities the proof follows immediately.

Theorem 4.1. If the objective function f is twice continuously differentiable as
well as uniformly convex on Rn, then the sequence {xk} generated by Algorithm
GDQN satisfies

lim
k→∞

‖g(xk)‖ = 0, (4.11)

and converges to x∗ at least linearly.

Proof. Starting from the inequality (4.5), after applying (4.4) and (4.2) we have

f(xk)− f(xk+1) ≥ µ‖gk‖2 ≥ µm2‖xk − x∗‖2

≥ 2µ
m2

M
(f(xk)− f(x∗)).

Since the objective f is bounded below and f(xk) decreases, it follows that f(xk) →
f(xk+1). Therefore we proved lim

k→∞
‖g(xk)‖ = 0 as well as convergence of the

sequence {f(xk)} to f(x∗), which implies lim
k→∞

xk = x∗. It remains to prove that

2µ
m2

M
< 1.
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In the case µ = σ/M we have

2µ
m2

M
= 2

σm2

M2
< 1.

Similarly, in the case µ = σ(1− σ)β/L we have

µ
m2

M
= 2β

σ(1− σ)
L

m2

M
<

m2

ML
< 1,

because from (4.3) we have m ≤ L.

Lemma 4.1 and Theorem 4.1 are derived using analogous results from [17]. In
the following theorem we introduce some additional results about the behavior of
GDQN algorithm.

Theorem 4.2. Values of the goal function f decrease during the iterative steps of
Algorithm GDQN inside the closed interval

[
f(xk)− ‖gk‖2

2γk+1
, f(xk)

]
. (4.12)

Proof. From (3.4) we have

f(xk+1)− f(xk) =
tk‖gk‖2

γk

(
tkγk+1

2γk
− 1

)
.

For every k = 0, 1, . . . we have that the values γk, generated by Algorithm GDQN,
are bounded away from zero, so that that the minimum of the function

Ψ(t) =
t‖gk‖2

γk

(
tγk+1

2γk
− 1

)

is achieved at the point
topt =

γk

γk+1

and it is equal to

minΨ(t) = −‖gk‖2
2γk+1

.

So, the following holds

f(xk+1) ≥ f(xk)− ‖gk‖2
2γk+1

(4.13)

On the other hand, using (4.5) and (4.6), we obtain

f(xk+1) ≤ f(xk),

which means, in conjunction with (4.13) that values of the goal function f decrease
during the iterative steps and the decreasing is bounded inside the closed interval
(4.12).
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5 Numerical results

Implementation of considered algorithms is performed in package MATHEMATICA. In
Table 1. are compared results obtained applying the gradient descent (GD) method,
AGD method from [2] and our method, denoted as GDQNusing dimensions n = 30
for test functions from [3]. Numerical results corresponding to Algorithm GDQN
are derived using solution (1) in Step 6 in the case γk+1 < 0. A streak in the table
means a great number of iterative steps while the symbol N means a wrong result
produced. Summarized results are arranged in the last row of the table.

Number of iterations CPU time

Test function GD GDQN AGD Steepest GDQN AGD
Extended Penalty 114 29 17 4 0.6 0.7
Perturbed quadratic 124 50 147 4.1 1.2 5
Raydan-1 102 35 99 1.8 0.6 1.8
Raydan-2 6 8 4 0.1 0.1 0.1
Diagonal1 48 33 50 1.2 0.6 1.2
Diagonal2 49 35 12 0.9 0.7 0.4
Diagonal3 95 35 108 2.5 0.7 2.8
Hager 51 15 23 1.1 0.4 0.6
Generalized Tridiagonal - 1 38 19 35 1.6 0.5 1.5
Extended Tridiagonal - 1 455 88 54 7.6 1.5 1
Extended Three Expon 123 11 25 3.8 0.3 0.9
Diagonal4 471 8 8 9.4 0.1 0.1
Diagonal5 4 6 3 0.2 0.2 0.3
Extended Himmelblau 87 15 23 2.5 0.3 0.7
Generalized PSC1 506 25 14 20 1 0.7
Extended PSC1 92 10 16 2.4 0.2 0.5
Extended Block Diagonal BD1 45 16 17 1.2 0.3 0.5
Quadr. Diag. Perturbed 200 17 230 6.2 0.4 7.1
Quadratic QF1 132 44 154 2.3 0.5 2.6
Extended Quad. Penalty QP1 42 14 9 1.5 0.4 0.4
Extended EP1 32 5 3 1.7 0.1 0.2
Extended Tridiagonal - 2 39 22 66 1.4 0.7 2.4
Tridia 1055 253 1427 43.8 5.3 60.6
Arwhead 61 13 11 2.5 0.3 0.5
Dqdrtic 819 106 1071 18.7 1.2 23.9
Almost Perturbed 119 50 148 2.2 0.5 2.7
Tridiagonal Perturbed Quadratic 365 49 181 14.1 1.3 7.4
Liarwhd 415 46 302 22.4 1.5 16.3
Power (cute) 2764 851 3941 75.2 9.5 107.3
Quartc 2102 22 13 19.7 0.2 0.2
Dixon3dq (cute) 1377 320 1785 26.9 5.5 36.8
Biggsb1 (cute) 1165 353 1651 22.8 6.8 34.1
Generalized quartic 50 14 12 1.3 0.3 0.3
Diagonal 7 39 8 5 1.1 0.2 0.2
Diagonal 8 40 8 5 1.4 0.3 0.3
Full Hessian FH3 41 6 4 2.5 0.4 0.5
Himmelbg / 3 5 / 0.1 0.1
Average 368.53 71.41 315.62 9.23 1.21 8.72
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Table 1. Numerical results derived comparing GD, AGD and GDQN

In Table 2 are compared results obtained applying the methods GDQN with the
results obtained applying the Barzilai and Borwein from [5], (denoted by BB), as
well as with the results obtained using the method called as NA in [1]. Comparison
is performed using dimensions n = 100 for test functions from [3]. Summarized
results are presented in the last row of the table.

Number of iterations CPU time

Test function GDQN BB NA GDQN BB NA
1 Extended Penalty 36 32 35 26.9 9.8 28.6
2 Perturbed quadratic 78 72 72 48.5 6.8 47.4
3 Raydan-1 62 64 74 22.2 80.4 28.3
4 Raydan-2 8 7 7 3.9 10.3 4.1
5 Diagonal1 45 N / 18.5 / /
6 Diagonal2 75 18 37 29.6 43.4 20.6
7 Diagonal3 75 51 50 30.2 108.4 23.2
8 Hager 23 18 18 11 34 10.4
9 Generalized Tridiagonal - 1 17 19 18 10.2 2.6 11.8
10 Extended Tridiagonal - 1 77 32 33 26.3 1.9 11.3
11 Extended Three Expon 11 8 10 4.8 1.5 5.1
12 Diagonal4 8 7 7 1.5 0.5 1.5
13 Diagonal5 6 4 5 7 16.3 9,y2
14 Extended Himmelblau 15 12 39 4.7 1.1 14.2
15 Generalized PSC1 25 22 24 19.8 10,y1 20.6
16 Extended PSC1 10 14 9 4.3 1.8 4.6
17 Extended Block Diagonal BD1 18 17 44 6.1 1.7 16.5
18 Quadr. Diag. Perturbed 27 19 19 14,5 2.5 10.9
19 Quadratic QF1 119 86 86 24.8 2.2 18.3
20 Extended Quad. Penalty QP1 12 10 11 8.4 4.1 9.4
21 Quadratic QF2 130 85 96 56 3.8 44.1
22 Extended EP1 5 3 4 2.3 1.4 2.6
23 Extended Tridiagonal - 2 21 23 24 13.2 3 16.25
24 Arwhead 12 11 15 5.8 1.9 8
25 Dqdrtic 104 35 35 21.6 1.2 7.5
26 Almost Perturbed 94 83 83 19.5 2.2 17.6
27 Tridiagonal Perturbed Quadratic 120 79 79 72.3 5.5 49.1
28 Liarwhd 84 39 44 50.3 4.5 26.6
29 Quartc 22 19 21 4.1 0.9 4.4
30 Generalized quartic 13 13 15 6 1.6 7.8
31 Diagonal 7 8 6 8 5.7 13.4 6.9
32 Diagonal 8 8 6 7 7.2 16 8
33 Full Hessian FH3 5 4 4 7.7 16.4 8.9
34 Himmelbg 3 7 2 0.8 1.5 0.9
Average 40.47 28.03 31.36 17.52 12.51 15.29

Table 2. Numerical results derived comparing GD, AGD and GDQN
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6 Conclusion

If we approximate the Hessian of the objective function by an appropriate diagonal
matrix we derive an accelerated gradient descent method (2.3) from the modified
Newton method (2.1). Value lying on the main diagonal of the diagonal matrix
becomes he acceleration parameter. In this way, our investigations continue results
of articles [1], [2] and [5].

Linear convergence is proved using the general principles from [17] about the
convergence of line search techniques.

Implementation of the GDQN methods as well as related methods AGD, NA
and BB is performed in the package MATHEMATICA. Comparative criteria between
these methods are both number of iterative steps and the CPU time. From Table
1 we conclude that our method GDQN produces better results with respect to
the gradient descent method and the AGD method from [2]. From Table 2 we
conclude that the average CPU time as well as the average number of iterations is
slightly smaller in the NA method with respect to GDQN method. But, there are
several test functions when the method GDQN produces better results. The best
performances shows BB method. Let us mention that the comparison of methods
GDQN , AGD and NA with BB is relative, since GDQN , AGD and NA are based
on the usage of the line search procedures in each iterative step, while BB uses the
line search only in the initial step.
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