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SOME FURTHER RESULTS ON LAHIRI

Abhijit Banerjee

Abstract

With the aid of weighted sharing of values we prove a result on the unique-
ness of meromorphic functions sharing three values. Our result will improve
and supplement some earlier results of Lahiri [6], Yi [21] and some very recent
results of both the present author [2] and Chen, Shen, Lin [4]. We also exhibit
some examples to show that our result is best possible. In the application
part of our result we will show that some results obtained by Chen, Shen, Lin
[4] are wrong by obtaining the actual results.

1 Introduction and Definitions.

Let f and g be two nonconstant meromorphic functions defined in the open
complex plane C. If for some a ∈ C ∪ {∞}, f and g have the same set of a-points
with same multiplicities then we say that f and g share the value a CM (counting
multiplicities). If we do not take the multiplicities into account, f and g are said
to share the value a IM (ignoring multiplicities).

We use I to denote any set of infinite linear measure of 0 < r < ∞, not neces-
sarily the same at each occurrence.

Definition 1.1. [2] Let s is a non negative integer. We denote by N(r, a; f |= s)
the reduced counting function of those a-points of f whose multiplicity is exactly s,
for a ∈ C ∪ {∞}.
Definition 1.2. [6, 8] Let s be a positive integer and a ∈ C ∪ {∞}. We denote by
N(r, a; f |≥ s) the counting function of those a-points of f whose multiplicities are
greater than or equal to s, where each a-point is counted only once.

Progress to investigate the uniqueness of meromorphic functions that share three
values has been remarkable during the last few decades and naturally several elegant
results have been obtained in this aspect. {c.f. [1]-[4], [6]-[7], [9]-[23]}.

Ozawa [13] investigated the influence of the distribution of zeros on the unique-
ness problem of entire function and proved the following.
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38 Abhijit Banerjee

Theorem A. Let f and g be two entire function of finite order such that they share
0, 1 CM and 2δ(0; f) > 1, then either f ≡ g or f · g ≡ 1.

Ueda [15] removed the order restriction in Theorem A and extended it to mero-
morphic functions.

In 1989 G.Brosch [3] improved the result of Ueda.
In 1998 H.X.Yi [20] improved all the previous results and proved the following.

Theorem B. Let f and g share 1,∞, 0 CM. If

lim sup
r−→∞

N(r, 0; f |= 1) + N(r,∞; f |= 1)− 1
2m(r, 1; g)

T (r, f)
<

1
2

r ∈ I

then f ≡ g or f · g ≡ 1.

To state the next results we have to introduce the notion of gradation of sharing
known as weighted sharing which measure how close a shared value is to being
shared CM or to being shared IM.

Definition 1.3. [6, 8] Let k be a nonnegative integer or infinity. For a ∈ C∪ {∞}
we denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity
m is counted m times if m ≤ k and 1 + k times if m > k. If Ek(a; f) = Ek(a; g),
we say that f, g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is
an a-point of f with multiplicity m(≤ k) if and only if it is an a-point of g with
multiplicity m(≤ k) and z0 is an a-point of f with multiplicity m(> k) if and only
if it is an a-point of g with multiplicity n(> k), where m is not necessarily equal to
n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k) then f , g share (a, p) for all integer p, 0 ≤ p < k. Also
we note that f, g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

In 2001 with the notion of weighted sharing of values the following two results
were proved in [6].

Theorem C. Let f and g be two nonconstant meromorphic functions sharing (0, 1),
(∞, 0) and (1,∞). If

N(r, 0; f |= 1) + 4N(r,∞; f) < (λ + 0(1))T (r)

for r ∈ I and 0 < λ < 1
2 then either f ≡ g or f · g ≡ 1.

Theorem D. Let f and g be two nonconstant meromorphic functions sharing (0, 1),
(∞,∞) and (1,∞). If

N(r, 0; f |= 1) + N(r,∞; f |= 1) < (λ + 0(1))T (r)

for r ∈ I and 0 < λ < 1
2 then either f ≡ g or f · g ≡ 1.
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In 2003 Yi [21] improved Theorem C and Theorem D and proved the following
three theorems.

Theorem E. Let f and g share (0, 1), (∞, 0), (1, 5). If

lim sup
r−→∞

N(r, 0; f |= 1) + 3N(r,∞; f)− 1
2m(r, 1; g)

T (r, f)
<

1
2

(1.1)

r ∈ I

then either f ≡ g or f · g ≡ 1.

Theorem F. Let f and g share (0, 1), (∞, 0), (1, 3). If

lim sup
r−→∞

N(r, 0; f |= 1) + 4N(r,∞; f)− 1
2m(r, 1; g)

T (r, f)
<

1
2

(1.2)

r ∈ I

then either f ≡ g or f · g ≡ 1.

Theorem G. Let f and g share (0, 1), (∞, 2), (1, 6). If

lim sup
r−→∞

N(r, 0; f |= 1) + N(r,∞; f |= 1)− 1
2m(r, 1; g)

T (r, f)
<

1
2

r ∈ I

then either f ≡ g or f · g ≡ 1.

We now state some more definitions.

Definition 1.4. [2] Let f and g be two nonconstant meromorphic functions such
that f and g share (a, k) where a ∈ C∪{∞}. Let z0 be an a-point of f with multiplic-
ity p, an a-point of g with multiplicity q. We denote by NL(r, a; f) (NL(r, a; g)) the
counting function of those a-points of f and g where p > q (q > p), by N

(k+1

E (r, a; f)
the counting function of those a-points of f and g where p = q ≥ k + 1 each point
in these counting functions is counted only once. In the same way we can define
N

(k+1

E (r, a; g).
Clearly N

(k+1

E (r, a; f) = N
(k+1

E (r, a; g)

Definition 1.5. [6, 8] Let f , g share a value IM. We denote by N∗(r, a; f, g) the
reduced counting function of those a-points of f whose multiplicities differ from the
multiplicities of the corresponding a-points of g.
Clearly N∗(r, a; f, g) = N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) + NL(r, a; g).

Recently the present author [2] has improved Theorem E and Theorem F by
weakening the conditions (1.1) and (1.2) as follows.
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Theorem H. Let f and g be two nonconstant meromorphic functions sharing (0, 1),
(∞, 0), (1, 5). If

lim sup
r−→∞

N(r, 0; f |= 1) + 3N(r,∞; f)− 1
2m(r, 1; g)− 1

2NL(r, 1; g)
T (r, f)

<
1
2
(1.3)

r ∈ I

then either f ≡ g or f · g ≡ 1

Theorem I. Let f and g be two nonconstant meromorphic functions sharing (0, 1),
(∞, 0), (1, 3). If

lim sup
r−→∞

N(r, 0; f |= 1) + 4N(r,∞; f)− 1
2m(r, 1; g)− 1

2NL(r, 1; g)
T (r, f)

<
1
2
(1.4)

r ∈ I

then either f ≡ g or f · g ≡ 1

Recently Chen, Shen and Lin [4] have got the following two theorems that im-
proved Theorem E, Theorem F and Theorem G in a different direction from that in
[2].
Following two theorems are their main results.

Theorem J. Let f and g be two nonconstant meromorphic functions sharing (0, 1),
(∞, 0), (1,m) where m(≥ 2) is an integer or infinity. If

lim sup
r−→∞

N(r, 0; f |= 1) + 2(m+1)
m−1 N(r,∞; f)− 1

2m(r, 1; g)
T (r, f)

<
1
2

(1.5)

r ∈ I

then either f ≡ g or f · g ≡ 1

Theorem K. Let f and g be two nonconstant meromorphic functions sharing
(0, 1), (∞, k), (1,m), where k and m are positive integers or infinity satisfying
(m− 1)(km− 1) > (1 + m)2. If

lim sup
r−→∞

N(r, 0; f |= 1) + N(r,∞; f |= 1)− 1
2m(r, 1; g)

T (r, f)
<

1
2

(1.6)

r ∈ I

then either f ≡ g or f · g ≡ 1

It can be easily seen that the condition (m−1)(km−1) > (1+m)2 is equivalent
to (m− 1)(k − 1) > 4 and so is symmetric in m and k. Obviously m, k both must
be ≥ 2. Next we consider the followoing examples.

Example 1.1. Let f = 4ez(ez−1)2

(ez+1)4 , g = − (ez−1)4

4ez(ez+1)2 . Clearly f , g share (0, 1),
(∞, 1) and (1,∞). Here T (r, f) = 4T (r, ez) + O(1), T (r, g) = 4T (r, ez) + O(1) and
N(r, 0; f |= 1) = N(r,∞; f |= 1) = 0, N(r,∞; f) ∼ T (r, ez), N(r, 1; g) ∼ 4T (r, ez)
but neither f ≡ g nor fg ≡ 1.
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Example 1.2. Let f = 1
(ez−1)2 , g = 1

(ez−1) . Clearly f , g share (0,∞), (∞, 0) and
(1,∞). Here T (r, f) = 2T (r, ez)+O(1), T (r, g) = T (r, ez)+O(1), N(r, 0; f |= 1) =
N(r,∞; f |= 1) = 0, N(r, 1; g) ∼ T (r, ez) but neither f ≡ g nor fg ≡ 1.

Example 1.3. Let f = 1
(1−ez)3 , g = e2z

3(ez−1) . Clearly f , g share (0,∞), (∞, 0) and
(1,∞). Here T (r, f) = 3T (r, ez) + O(1), T (r, g) = 2T (r, ez) + O(1), N(r, 0; f |=
1) = N(r,∞; f |= 1) = 0, N(r, 1; g) ∼ 2T (r, ez), NL(r, 1; g) = 0, but neither f ≡ g
nor fg ≡ 1.

In the above three examples though the condition (1.6) is satisfied, the conclusion
of Theorem K ceases to hold. So the condition (m − 1)(k − 1) > 4 is necessary in
Theorem K.

Hence it is a natural query to explore the situation for k < 2 and at the same
time to investigate the case (m− 1)(k − 1) ≤ 4 with m ≥ 2 in Theorem K.

The above discussion is the motivation of this paper. We will not only provide
an affirmative solution in the above direction but also improve all the theorems
discussed till now by deriving a generalized result at the cost of modification of
condition (1.6). Following theorem is the main result of the paper.

Theorem 1.1. Let f and g be two nonconstant meromorphic functions sharing
(0, 1), (∞, k), (1,m) where m ≥ 2. If

lim sup
r→∞,

r∈I

{
N(r, 0; f |= 1) + N(r,∞; f) + m+3

m−1N(r,∞; f |≥ k + 1)
− 1

2m(r, 1; g)− 1
2NL(r, 1; g)

}

T (r, f)
<

1
2

(1.7)

then either f ≡ g or f · g ≡ 1

Remark 1.1. If k = 0 then the condition (1.7) can be rewritten by the weaker
condition (1.5) and so Theorem 1.1 improves Theorem J. If k = 0 and m = 5 or
k = 0 and m = 3 in Theorem 1.1 then from (1.7) we get the weaker conditions
(1.3) and (1.4) respectively, and consequently Theorem 1.1 improves Theorem H
and Theorem I. Since the conditions of Theorem 1.1 imply the weaker conditions
(1.6) and (m− 1)(km− 1) > (1 + m)2, thus Theorem 1.1 improves Theorem K.

We also consider the following examples.

Example 1.4. Let f = ez−e2z, g = e−z−e−2z. Clearly f , g share (0,∞), (∞,∞)
and (1,∞). Here N(r, 0; f |= 1) ∼ T (r, ez), N(r,∞; f) = 0, NL(r, 1; g) = 0. Again
T (r, f) = 2T (r, ez) + O(1), T (r, g) = 2T (r, ez) + O(1), N(r, 1; g) ∼ 2T (r, ez) but
neither f ≡ g nor fg ≡ 1.

Example 1.5. Let f = e2z

ez−1 , g = 1
ez(1−ez) . It is easy to see that f , g share (0,∞),

(∞,∞) and (1,∞). Here N(r, 0; f |= 1) = 0, N(r,∞; f |= 1) = N(r,∞; f) ∼
T (r, ez), NL(r, 1; g) = 0. Also T (r, f) = 2T (r, ez)+O(1), T (r, g) = 2T (r, ez)+O(1),
N(r, 1; g) ∼ 2T (r, ez) but neither f ≡ g nor fg ≡ 1.
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Example 1.6. Let f = ez + 1, g = e−z + 1. Clearly f , g share (0,∞), (∞,∞)
and (1,∞). Here N(r, 0; f |= 1) ∼ T (r, ez), N(r,∞; f) = 0, NL(r, 1; g) = 0. Again
T (r, f) = T (r, ez)+O(1), T (r, g) = T (r, ez)+O(1), N(r, 1; g) = 0 but neither f ≡ g
nor fg ≡ 1.

Example 1.7. Let f = 1
1−ez , g = −ez

(1−ez) .

From Example 1.1 and Examples 1.4-1.7 it is easy to verify that the conditions
(1.7) and (1.6) in Theorem 1.1 and Theorem K respectively are sharp.

Following examples show that in Theorem 1.1 and Theorem K the sharing (0, 1)
can not be relaxed to (0, 0).

Example 1.8. Let f = (1 − ez)3, g = 3(ez−1)
e2z . Clearly f , g share (0, 0), (∞,∞)

and (1,∞). Here N(r, 0; f |= 1) = N(r,∞; f) = 0, N(r, 1; g) ∼ 2T (r, ez) + O(1),
NL(r, 1; g) = 0. Also T (r, f) = 3T (r, ez) + O(1), T (r, g) = 2T (r, ez) + O(1) but
neither f ≡ g nor fg ≡ 1.

Example 1.9. Let f = (ez−1)2, g = (ez−1). Clearly f , g share (0, 0), (∞,∞) and
(1,∞). Here N(r, 0; f |= 1) = N(r,∞; f) = 0, N(r, 1; g) ∼ T (r, ez), NL(r, 1; g) =
0. Also T (r, f) = 2T (r, ez) + O(1), T (r, g) = T (r, ez) + O(1) but neither f ≡ g nor
fg ≡ 1.

Example 1.10. Let f = (1−ez)3

1−3ez , g = 4(1−ez)
1−3ez . Clearly f , g share (0, 0), (∞,∞) and

(1,∞). Here N(r, 0; f |= 1) = 0, N(r,∞; f) ∼ T (r, ez), N(r, 1; g) ∼ T (r, ez)+O(1),
NL(r, 1; g) = 0. Also T (r, f) = 3T (r, ez)+O(1), T (r, g) = T (r, ez)+O(1) but neither
f ≡ g nor fg ≡ 1.

2 Lemmas

In this section we present some lemmas which will be needed in the sequel.
Henceforth we shall denote by H, φ1, φ2 the following three functions.

H =
f
′′

f ′
− 2f

′

f − 1
− g

′′

g′
+

2g
′

g − 1
,

φ1 =
f
′

f − 1
− g

′

g − 1
and φ2 =

f
′

f
− g

′

g
.

Lemma 2.1. [6, 11] If f, g share (0, 0), (1, 0), (∞, 0) then

(i) T (r, f) ≤ 3T (r, g) + S(r, f),
(ii) T (r, g) ≤ 3T (r, f) + S(r, g).

Lemma 2.1 shows that S(r, f) = S(r, g) and we denote them by S(r).

Lemma 2.2. [20] Let f , g share (0, 0), (1, 0), (∞, 0) and H ≡ 0 then f , g share
(0,∞), (1,∞), (∞,∞).
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Lemma 2.3. [2] Let f , g share (0, p), (∞, k), (1,m), where 2 ≤ m < ∞ and
H 6≡ 0. Then

T (r, f) ≤ N(r, 0; f) + N(r, 0; g) + N∗(r, 0; f, g) + N(r,∞; f)
+N(r,∞; g) + N∗(r,∞; f, g)−m(r, 1; g)−N(r, 1; f |= 3)
− . . .− (m− 2)N(r, 1; f |= m)− (m− 2)NL(r, 1; f)

−(m− 1)NL(r, 1; g)− (m− 1)N
(m+1

E (r, 1; f) + S(r).

Lemma 2.4. If f , g share (0, 0) and 0 is not an Picard exceptional value of f and
g. Then φ1 ≡ 0 implies f ≡ g.

Proof. Suppose
φ1 ≡ 0.

Then by integration we obtain

f − 1 ≡ C(g − 1),

where C 6= 0 is a constant. It is clear that if z0 is a zero of f then it is a zero of g.
So C = 1 and hence f ≡ g.

Lemma 2.5. If f , g share (1, 0) and 1 is not an Picard exceptional value of f and
g. Then φ2 ≡ 0 implies f ≡ g.

Proof. Suppose
φ2 ≡ 0.

Then by integration we obtain
f ≡ Cg,

where C 6= 0 is a constant. It is clear that if z0 is an 1 point of f then it is so also
of g. So C = 1 and hence f ≡ g.

Lemma 2.6. Let f , g share (0, 1), (∞, k), (1,m) where m ≥ 2 is a positive integer
or infinity. If H 6≡ 0 then

N(r, 0; f |≥ 2) ≤ N∗(r, 1; f, g) + N(r,∞; f |≥ k + 1) + S(r),

N∗(r, 1; f, g) ≤ 2
m− 1

N(r,∞; f |≥ k + 1) + S(r).

Proof. Suppose 0, 1 are e.v.P. (exceptional value Picard ) of f and g then the lemma
follows immediately.
Next suppose 0, 1 are not Picard exceptional values of f and g. Since H 6≡ 0, we
have f 6≡ g and so by Lemmas 2.4-2.5 it follows that φi 6≡ 0 for i = 1, 2. Now

N(r, 0; f |≥ 2) ≤ N(r, 0; φ1) (2.1)
≤ T (r, φ1) + O(1)
= N(r,∞; φ1) + S(r)
≤ N∗(r, 1; f, g) + N(r,∞; f |≥ k + 1) + S(r),
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which is the first part of the lemma.
Again

m N∗(r, 1; f, g) ≤ N(r, 0; φ2) (2.2)
≤ N(r,∞; φ2) + S(r)
≤ N(r, 0; f |≥ 2) + N(r,∞; f |≥ k + 1) + S(r).

Substituting (2.1) in (2.2) we get the second conclusion of the lemma.

Lemma 2.7. [10] Let f , g share (0, 1), (∞, k), (1,m) and f 6≡ g, where k and m
are positive integers or infinity satisfying (m − 1)(km − 1) > (1 + m)2. Then for
a = 0, 1,∞ we have N(r, a; f |≥ 2) = N(r, a; g |≥ 2) = S(r).

3 Proofs of the theorems.

Proof of Theorem 1.1. Suppose H 6≡ 0. Then using Lemma 2.3 for p = 1 and
Lemma 2.6 we get

T (r, f) ≤ 2N(r, 0; f |= 1) + 3N(r, 0; f |≥ 2) + 2N(r,∞; f) (3.1)
+N(r,∞; f |≥ k + 1)− (m− 2)N∗(r, 1; f, g)
−NL(r, 1; g)−m(r, 1; g) + S(r)

≤ 2N(r, 0; f |= 1) + 2N(r,∞; f) + 3N∗(r, 1; f, g)
+4N(r,∞; f |≥ k + 1)− (m− 2)N∗(r, 1; f, g)
−NL(r, 1; g)−m(r, 1; g) + S(r)

≤ 2N(r, 0; f |= 1) + 2N(r,∞; f) + 4N(r,∞; f |≥ k + 1)
+(5−m)N∗(r, 1; f, g)−NL(r, 1; g)−m(r, 1; g) + S(r)

≤ 2N(r, 0; f |= 1) + 2N(r,∞; f) +
2(m + 3)
m− 1

N(r,∞; f |≥ k + 1)

−NL(r, 1; g)−m(r, 1; g) + S(r),

which contradicts (1.7). So H ≡ 0. Hence by Lemma 2.2 f and g share (0,∞),
(1,∞), (∞,∞). So NL(r, 1; g) ≡ 0. Now by Theorem B the theorem follows.

Proof of Theorem K. Suppose f 6≡ g, we shall show that f ·g ≡ 1. Noting that here
both k and m are ≥ 2, using Lemma 2.7 we get N(r,∞; f |≥ 2) = N(r,∞; f |≥
k +1) = NL(r, 1; g) = S(r) and hence (1.7) reduces to (1.6). So by Theorem 1.1 we
can obtain the conclusion of Theorem K.

4 Some remarks.

In 2003 Yi proved the following theorems.
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Theorem L. [21] Let f and g be two nonconstant meromorphic functions sharing
(0, 0), (∞, 1), (1, 5). If

lim sup
r−→∞

3N(r, 0; f) + N(r,∞; f |= 1)− 1
2m(r, 1; g)

T (r, f)
<

1
2

r ∈ I

then either f ≡ g or f.g ≡ 1.

Theorem M. [21] Let f and g be two nonconstant meromorphic functions sharing
(0, 0), (∞, 1), (1, 3). If

lim sup
r−→∞

4N(r, 0; f) + N(r,∞; f |= 1)− 1
2m(r, 1; g)

T (r, f)
<

1
2

r ∈ I

then either f ≡ g or f.g ≡ 1.

Theorem N. [21] Let f and g be two nonconstant meromorphic functions sharing
(0, 2), (∞, 1), (1, 6). If

lim sup
r−→∞

N(r, 0; f |= 1) + N(r,∞; f |= 1)− 1
2m(r, 1; g)

T (r, f)
<

1
2

r ∈ I

then either f ≡ g or f.g ≡ 1.

Recently the present author [2] have improved Theorems L and M and Chen,
Shen, Lin [4] improved Theorems L-N in two different directions. As a consequence
of Theorem 1.1 and Theorem K we will improve Theorems L-N which will also
improve the results of Banerjee [2] as well as Chen, Shen, Lin [4] in this respect.

Theorem 4.1. Let f and g be two nonconstant meromorphic functions sharing
(0, k), (∞, 1), (1,m) where m ≥ 2. If

lim sup
r→∞
r∈I

{
N(r,∞; f |= 1) + N(r, 0; f) + m+3

m−1N(r, 0; f |≥ k + 1)
− 1

2m(r, 1; g)− 1
2NL(r, 1; g)

}

T (r, f)
<

1
2

(4.1)

then f ≡ g or f.g ≡ 1

Proof. Let

F =
1
f

, G =
1
g

(4.2)

It is clear that
T (r, f) = T (r, F ) + O(1) (4.3)
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and
m(r, 1; g) = m(r, 1;G) + O(1) (4.4)

From the given condition and by (4.2)-(4.4) we get

lim sup
r→∞
r∈I

{
N(r, 0; F |= 1) + N(r,∞; F ) + (m+3)

m−1 N(r,∞; F |≥ k + 1)
− 1

2m(r, 1;G)− 1
2NL(r, 1;G)

}

T (r, F )
<

1
2

Since f , g share (0, k), (∞, 1) and (1,m) from (4.2) it follows that F , G share
(0, 1), (∞, k) and (1,m). So by Theorem 1.1 we get either F ≡ G or FG ≡ 1 from
which the theorem follows.

Considering the substitution (4.2), from Theorem K we can easily prove the
following.

Corollary 4.1. Let f and g be two nonconstant meromorphic functions sharing
(0, k), (∞, 1), (1,m), where (m− 1)(km− 1) > (1 + m)2. If (1.6) holds then either
f ≡ g or f.g ≡ 1

5 Applications of the main results

Definition 5.1. [6] Let S be a set of distinct elements of C ∪ {∞} and k be a
nonnegative integer or ∞. We denote by Ef (S, k) the set

⋃

a∈S

Ek(a; f).

In this section denote by Si i = 1, 2, 3 the following three sets unless otherwise
stated.
S1 = {a+ b, a+ bω, . . . , a+ bωn−1}, S2 = {a}, S3 = {∞} where ω = cos 2π

n + isin2π
n

and n is a positive integer, a and b (6= 0) are constants.
In 2003 improving the result of Lahiri [6], Yi [21] proved the following result.

Theorem O. If n ≥ 2 and Ef (S1, 6) = Eg(S1, 6), Ef (S2, 0) = Eg(S2, 0), Ef (S3, 1) =
Eg(S3, 1), then f −a ≡ t(g−a), where tn = 1 or (f −a)(g−a) ≡ s where sn = b2n.

From Theorem K we can prove the following.

Theorem 5.1. If n ≥ 2 and Ef (S1,m) = Eg(S1,m), Ef (S2, 0) = Eg(S2, 0),
Ef (S3, k) = Eg(S3, k), where (m − 1)(nk + n − 2) > 4 then f − a ≡ t(g − a),
where tn = 1 or (f − a)(g − a) ≡ s where sn = b2n.

Proof. Let F =
(

f−a
b

)n

and G =
(

g−a
b

)n

We note that

F − 1 =
(

f − a

b

)n

− 1 =
(

f − a

b
− 1

)(
f − a

b
− ω

)
. . .

(
f − a

b
− ωn−1

)

=
1
bn

(f − (a + b)) (f − (a + bω) . . .
(
f − (a + bωn−1)

)
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and

G− 1 =
1
bn

(g − (a + b)) (g − (a + bω) . . .
(
g − (a + bωn−1)

)
.

Also since Ef (S1,m) = Eg(S1,m) implies that the totality of zeros of f − (a + bωi)
and g−(a+bωi), i = 0, 1, . . . , n−1 coincides in locations as well as multiplicities up
to order m, it follows that F and G share (1,m). It is also clear that F and G share
(0, n − 1), (∞, nk + n − 1). As n ≥ 2, we note that F and G always share (0, 1).
Again from (m−1)(nk+n−2) > 4 we get (m−1) ((nk + n− 1)m− 1) > (1+m)2.
Combining Theorem K and N(r, 0; F |= 1) = N(r, 1; F |= 1) = 0, we get either
F ≡ G or FG ≡ 1. From this we get the conclusion of the theorem.

Corollary 5.1. When n ≥ 2 Theorem 5.1 holds for the following pairs of least
values of m and k: (i) m=2, k=3; (ii) m=3, k=2; (iii) m=4, k=1;

Corollary 5.2. When n ≥ 3 Theorem 5.1 holds for the following pairs of least
values of m and k: (i) m=2, k=3; (ii) m=3, k=1; (iii) m=6, k=0;

Example 5.1. Let f(z) = (e2z+1)2

2ez(e2z−1) and g(z) = 2iez(e2z+1)
(e2z−1)2 and S1 = {−1, 1},

S2 = {0}, S3 = {∞}. Clearly here Ef (S1,∞) = Eg(S1,∞), Ef (S2, 0) = Eg(S2, 0),
Ef (S3, 0) = Eg(S3, 0).

Remark 5.1. When n ≥ 3, Theorem 8.3 in [22] is a better result than (ii) and
(iii) in Corollary 5.2 obtained in this paper.

From Example 5.1 we see that the condition k ≥ 1 can not be relaxed to k = 0.

Example 5.2. Let f(z) = a − 3b(ez + e2z) and g(z) = a + b(1 + e−z)3 and let
S1 = {a + b}, S2 = {a} and S3 = {∞}, where a and b(6= 0) are constants.

We verify that Ef (S1, 1) = Eg(S1, 1), Ef (S2, 0) = Eg(S2, 0), Ef (S3, 1) = Eg(S3, 1),
but f 6≡ g and fg 6≡ 1 in Example 5.2. This example shows that the assumption
n ≥ 2 in Theorem 5.1 is best possible.

In 2003 Yi [21] proved the following theorem.

Theorem P. If n ≥ 2 and Ef (S1, 6) = Eg(S1, 6), Ef (S2, 1) = Eg(S2, 1), Ef (S3, 0) =
Eg(S3, 0), then f −a ≡ t(g−a), where tn = 1 or (f −a)(g−a) ≡ s where sn = b2n.

By replacing f and g with a + b2

f−a and a + b2

g−a respectively in Theorem 5.1 we
get the following theorem which improves Theorem P.

Theorem 5.2. If n ≥ 2 and Ef (S1,m) = Eg(S1,m), Ef (S2, k) = Eg(S2, k),
Ef (S3, 0) = Eg(S3, 0), where (m − 1)(nk + n − 2) > 4 then f − a ≡ t(g − a),
where tn = 1 or (f − a)(g − a) ≡ s where sn = b2n.

Remark 5.2. Theorem 5.1 and Theorem 5.2 of this paper correct Theorems 5.1-
Theorem 5.4 in [4]. In fact, from the assumptions of Theorem 5.1 in [4] we see

that F =
(

f−a
b

)n

(n ≥ 2) and G =
(

g−a
b

)n
(n ≥ 2) share (1,m), (0, 1) and (∞, k),



48 Abhijit Banerjee

where m = 2 and k = 3, which do not satisfies (m − 1)(km − 1) > (1 + m)2,
and so we can not use Corollary 1.5 in [4] to get Theorem 5.1 in [4]. Similarly,

from the assumptions of Theorem 5.2 in [4] we see that 1
F =

(
b

f−a

)n

(n ≥ 2) and

1
G =

(
b

g−a

)n

(n ≥ 2) share (1,m), (0, 1) and (∞, k), where m = 2 and k = 3, which

do not satisfies (m − 1)(km − 1) > (1 + m)2 and so we can not use Corollary 1.5
in [4] to get Theorem 5.2 in [4], from the assumptions of Theorem 5.3 in [4] we

see that F =
(

f−a
b

)n

(n ≥ 3) and G =
(

g−a
b

)n
(n ≥ 3) share (0, k1), (∞, k2) and

(1, k3), where k1 = k2 = k3 = 2, which do not satisfies k1k2k3 > k1+k2+k3+2, and
so we can not use Corollary 1.5 in [4] and Theorem 1.1 in [22] to get Theorem 5.3

in [4], from the assumptions of Theorem 5.4 in [4] we see that 1−F = 1−
(

f−a
b

)n

(n ≥ 3) and 1 − G = 1 − (
g−a

b

)n
(n ≥ 3) share (1,m), (0, 1) and (∞, k), where

m = 2 and k = 5, which do not satisfies (m − 1)(km − 1) > (1 + m)2, and so we
can not use Corollary 1.5 in [4] to get Theorem 5.4 in [4].
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