
Faculty of Sciences and Mathematics, University of Nǐs, Serbia
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COMMON FIXED POINT THEOREMS

FOR FAMILIES OF MAPS

IN COMPLETE L-FUZZY METRIC SPACES ∗

Xianjiu Huang, Chuanxi Zhu and Xi Wen

Abstract

In this paper, we prove some common fixed point theorems for any even
number of compatible mappings in complete L-fuzzy metric spaces. Our main
results extend and generalize some known results in fuzzy metric spaces, in-
tuitionistic metric spaces and L-fuzzy metric spaces.

1 Introduction

As a generalization of fuzzy sets introduced by Zadeh [1], Atanassov [2] introduced
the idea of intuitionistic fuzzy set. Since then, various concepts of fuzzy metric and
intuitionistic fuzzy metric spaces were considered in [3-6]. Recently, Saadati et al.
[7] introduced the concept of L-fuzzy metric spaces which is a generalization of
fuzzy metric spaces [8] and intuitionistic fuzzy metric spaces [9-10].

Fixed point and common fixed point properties for mappings defined on fuzzy
metric spaces, intuitionistic fuzzy metric spaces, and L-fuzzy metric spaces have
been studied by many authors[11-15]. Most of the properties which provide the
existence of fixed points and common fixed points are of linear contractive type
conditions. On the other hand, there are many generalizations [16-20] of com-
mutativity for functions defined on spaces. Sessa [18] defined a generalization of
commutativity, which is called weak commutativity. Further Jungck [21] introduced
more generalized commutativity, so called compatibility. Mishra et al. [22] obtained
common fixed point theorems for compatible maps on fuzzy metric spaces. Recently,
Abu-Donia et al.[23] introduced the concept of compatible mappings of type (α) in
intuitionistic fuzzy metric spaces, which is equivalent to the concept of compatible
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mappings under some conditions and proved common fixed point theorems for five
mappings satisfying some conditions in intuitionistic fuzzy metric spaces. Alaca, et
al.[24] introduced the concept of compatible mappings type (I) and (II) and proved
common fixed point theorems for four mappings satisfying some conditions in intu-
itionistic fuzzy metric spaces. Adibi et al.[11] introduced the concept of compatible
mappings and proved common fixed point theorems for four mappings satisfying
some conditions in L-fuzzy metric spaces.

In this paper, we shall prove a common fixed point theorem for any even number
of compatible mappings in L-fuzzy metric spaces. In Section 2, we recall the concept
of L-fuzzy metric spaces and some definitions on compatible and weakly compatible
mappings in L-fuzzy metric spaces and their relations. In Section 3, we prove the
common fixed point theorem for any even number of compatible mappings in L-
fuzzy metric spaces. Our results generalize and extend many known results in fuzzy
metric spaces, intuitionistic metric spaces and L-fuzzy metric spaces.

2 Preliminaries

Throughout this paper, the letter N will denote the set of positive integers. In
this section, some definitions and preliminary results are given which will be used
in this paper.

Definition 2.1 [13] Let L = (L,≤L) be a complete lattice, and U a non-empty
set called a universe. An L-fuzzy set A on U is defined as a mapping A : U → L.
For each u in U , A(u) represents the degree (in L) to which u satisfies A.

Lemma 2.1 [25-26] Consider the set L∗ and the operation ≤L∗ defined by:

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1},

(x1, x2) ≤L∗ (y1, y2) ⇔ x1 ≤ y1 and x2 ≥ y2 for all (x1, x2), (y1, y2) ∈ L∗. Then
(L∗,≤L∗) is a complete lattice.

Classically, a triangular norm T on ([0, 1],≤) is defined as an increasing, com-
mutative, associative mapping T : [0, 1]2 → [0, 1] satisfying T (1, x) = x, for all
x ∈ [0, 1]. These definitions can be straightforwardly extended to any lattice
L = (L,≤L). Define first 0L = inf L and 1L = sup L.

Definition 2.2 [7] A triangular norm (t-norm) on L is a mapping T : L2 → L
satisfying the following conditions:

(a) (∀x ∈ L), (T (x, 1L) = x) (boundary condition);
(b) (∀(x, y) ∈ L2), (T (x, y) = T (y, x))(commutativity);
(c) (∀(x, y, z) ∈ L3), (T (x, T (y, z)) = T (T (x, y), z)) (associativity);
(d) (∀(x, x′, y, y′) ∈ L4), x ≤L x′ and y ≤L y′ ⇒ (T (x, y) ≤L T (x′, y′)) (mono-

tonicity).
A t-norm T on L is said to be continuous if for any x, y ∈ L and any sequences

{xn} and {yn} which converge to x and y we have

lim
n→∞

T (xn, yn) = T (x, y).
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For example, T (x, y) = min(x, y) and T (x, y) = xy are two continuous t-norms on
[0, 1]. A t-norm can also be defined recursively as an (n + 1)-ary operation (n ∈ N)
by T 1 = T and

T n(x1, x2, · · · , xn+1) = T (T n−1(x1, x2, · · · , xn), xn)

for n ≥ 2 and xi ∈ L, 1 ≤ i ≤ n + 1.
Definition 2.3 [7] A negation on L is any decreasing mapping N : L → L

satisfying N (0L) = 1L and N (1L) = 0L. If N (N (x)) = x, for all x ∈ L, then N is
called an involutive negation. In this paper, the involutive negation is fixed.

Definition 2.4 [7] The 3-tuple (X,M, T ) is said to be an L-fuzzy metric space
if X is an arbitrary (non-empty) set, T is a continuous t-norm on L and M is an
L-fuzzy sets on X2 × (0, +∞) satisfying the following conditions: for all x, y, z ∈
X, s, t > 0,

(a) M(x, y, t) >L 0L;
(b) M(x, y, t) = 1L for all t > 0 if and only if x = y;
(c) M(x, y, t) = M(y, x, t);
(d) T (M(x, y, t),M(y, z, s)) ≤L M(x, z, t + s) for all x, y, z ∈ X, s, t > 0;
(e) M(x, y, ·) : (0,+∞) → L is continuous and lim

t→+∞
M(x, y, t) = 1L.

In this case M is called an L-fuzzy metric. If M = MM,N is an intuitionistic
fuzzy set then the 3-tuple (X,MM,N , T ) is said to be an intuitionistic fuzzy metric
space.

Let (X,M, T ) be an L-fuzzy metric space. For t ∈ (0, +∞), we define the open
ball B(x, r, t) with center x ∈ X and a fixed radius r ∈ L \ {0L, 1L}, as

B(x, r, t) = {y ∈ X : M(x, y, t) >L N (r)}.
A subset A ⊆ X is called open if for each x ∈ A, there exist t > 0 and r ∈ L\{0L, 1L}
such that B(x, r, t) ⊆ A. Let τM denote the family of all open subsets of X. Then
τM is called the topology induced by the L-fuzzy metric M.

Example 2.1 [27] Let (X, d) be a metric space. Denote T (a, b) = (a1b1,min(a2+
b2, 1)), for all a = (a1, a2) and b = (b1, b2) in L∗ and let M and N be fuzzy sets on
X2 × (0,+∞) be defined as follows:

MM,N (x, y, t) = (M(x, y, t), N(x, y, t)) = (
t

t + d(x, y)
,

d(x, y)
t + d(x, y)

).

Then (X,MM,N , T ) is an intuitionistic fuzzy metric space.
Lemma 2.2 [8] Let (X,M, T ) be an L-fuzzy metric space. Then, M(x, y, t) is

nondecreasing with respect to t, for all x, y in X.
Definition 2.5 [7] Let (X,M, T ) be an L-fuzzy metric space. Then
(a) A sequence {xn} in X is called a Cauchy sequence if for each ε ∈ L \ {0L}

and t > 0, there exist n0 ∈ N such that for all m ≥ n ≥ n0(n ≥ m ≥ n0),

M(xn, xm, t) >L N (ε).

(b) A sequence {xn} in X is said to be converged to x in X (denote by xn → x)
if M(xn, x, t) = M(x, xn, t) → 1L whenever n →∞ for each t > 0.
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An L-fuzzy metric space is said to be complete if and only if every Cauchy
sequence is convergent. It is called compact if every sequence contains a convergent
subsequence.

Henceforth, we assume that T is a continuous t-norm on the lattice L such that
for every µ ∈ L \ {0L, 1L}, there is a λ ∈ L \ {0L, 1L} such that

T n−1(N (λ),N (λ), · · · ,N (λ)) >L N (µ).

For more information see [7].
Lemma 2.3 [7, 28] Let (X,M, T ) be an L-fuzzy metric space. If we define

Eλ,M : X2 → R+ ∪ {0} by

Eλ,M = inf{t > 0 : M(x, y, t) >L N (λ)}

for each λ ∈ L \ {0L, 1L} and any x, y ∈ X. Then we have
(a) For any µ ∈ L \ {0L, 1L}, there exists λ ∈ L \ {0L, 1L} such that

Eµ,M(x1, xn) ≤ Eλ,M(x1, x2) + Eλ,M(x2, x3) + · · ·+ Eλ,M(xn−1, xn)

for any x1, x2, · · · , xn ∈ X.
(b) The sequence {xn} is convergent to x with respect to L-fuzzy metric M if

and only if Eλ,M(xn, x) → 0. Also the sequence {xn} is Cauchy with respect to
L-fuzzy metric M if and only if it is Cauchy with Eλ,M.

Definition 2.6 [28] Let (X,M, T ) be an L-fuzzy metric space. M is said to
be continuous on X2 × (0,+∞) if

lim
n→∞

M(xn, yn, tn) = M(x, y, t).

whenever a sequence {(xn, yn, tn)} in X2 × (0, +∞) converges to a point (x, y, t) ∈
X2×(0, +∞) i.e. lim

n→∞
M(xn, x, t) = lim

n→∞
M(yn, y, t) = 1L and lim

n→∞
M(x, y, tn) =

M(x, y, t).
Lemma 2.4 [28] Let (X,M, T ) be an L-fuzzy metric space. Then M is a

continuous function on X2 × (0,+∞).
Definition 2.7 [11] Let S and T be two mappings from an L-fuzzy metric

space (X,M, T ) into itself and {xn} be a sequence in X such that lim
n→∞

Sxn =
lim

n→∞
Txn = z for some z ∈ X. Then the mapping S and T are said to be

(a) weakly commuting if M(STx, TSx, t) ≥L M(Sx, Tx, t) for all x ∈ X and
t > 0,

(b) compatible if lim
n→∞

M(STxn, TSxn, t) = 1L for all t > 0,

(c) compatible of type (A) if lim
n→∞

M(STxn, TTxn, t) = 1L, and

lim
n→∞

M(TSxn, SSxn, t) = 1L

for all t > 0,
(d) compatible of type (P ) if lim

n→∞
M(SSxn, TTxn, t) = 1L for all t > 0.
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Definition 2.8 [11] Let S and T be mappings from an L-fuzzy metric space
(X,M, T ) into itself. The maps S and T are said to be weakly compatible if
they commute at their coincidence points, i.e. if Sp = Tp for some p ∈ X, then
STp = TSp.

Proposition 2.1 [11] Self mappings S and T of an L-fuzzy metric space
(X,M, T ) are compatible then they are weakly compatible.

Proposition 2.2 [11] Let S and T be two mappings from an L-fuzzy metric
space (X,M, T ) into itself. If S and T are compatible then they are compatible of
type (A).

Proposition 2.3 [11] Let S and T be compatible mappings of type (A) from
an L-fuzzy metric space (X,M, T ) into itself. If one of S and T is continuous, then
S and T are compatible.

Proposition 2.4 [11] Let S and T be two mappings from an L-fuzzy metric
space (X,M, T ) into itself. Then S and T are compatible if and only if they are
compatible of type (P ).

Proposition 2.5 [11] Let S and T be compatible mappings of type (A) from
an L-fuzzy metric space (X,M, T ) into itself. If one of S and T is continuous, then
S and T are compatible of type (P ).

Lemma 2.5 [11] Let (X,M, T ) be an L-fuzzy metric space and {yn} be a
sequence in X. If there exists a number k ∈ (0, 1) such that

M(yn, yn+1, kt) ≥L M(yn−1, yn, t)

for all t > 0 and n = 1, 2, · · · , then {yn} is a Cauchy sequence in X.
Definition 2.9 [29] We say that the L-fuzzy metric space (X,M, T ) has the

property (C), if it satisfies the following condition:

M(x, y, t) = C, for all t > 0 implies C = 1L.

Lemma 2.6 Let (X,M, T ) be an L-fuzzy metric space, witch has the property
(C). If for all x, y ∈ X, t > 0 and for a number k ∈ (0, 1)

M(x, y, kt) ≥L M(x, y, t),

then x = y.
Proof Since k ∈ (0, 1), it follows that M(x, y, kt) ≤L M(x, y, t) for all x, y ∈

X, t > 0 by Lemma 2.2. By condition M(x, y, kt) ≥L M(x, y, t), we have
M(x, y, t) = C for all t > 0. Since (X,M, T ) has the property (C), it follows
that C = 1L, i.e., x = y.

3 Main results

Firstly, we prove a common fixed point theorem for any even number of
compatible mappings in a complete L-fuzzy metric space in this section.

Theorem 3.1 Let (X,M, T ) be a complete L-fuzzy metric space with T (t, t) ≥L
t for all t ∈ L, which has the property (C). Let P1, P2, · · · , P2n, Q0 and Q1 be map-
pings from X into itself that satisfy conditions:
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(1) Q0(X) ⊂ P1P3 · · ·P2n−1(X), Q1(X) ⊂ P2P4 · · ·P2n(X);
(2)P2(P4 · · ·P2n) = (P4 · · ·P2n)P2,

P2P4(P6 · · ·P2n) = (P6 · · ·P2n)P2P4,
...
P2 · · ·P2n−2(P2n) = (P2n)P2 · · ·P2n−2,
Q0(P4 · · ·P2n) = (P4 · · ·P2n)Q0,
Q0(P6 · · ·P2n) = (P6 · · ·P2n)Q0,
...
Q0P2n = P2nQ0,
P1(P3 · · ·P2n−1) = (P3 · · ·P2n−1)P1,
P1P3(P5 · · ·P2n−1) = (P5 · · ·P2n−1)P1P3,
...
P1 · · ·P2n−3(P2n−1) = (P2n−1)P1 · · ·P2n−3,
Q1(P3 · · ·P2n−1) = (P3 · · ·P2n− 1)Q1,
Q1(P5 · · ·P2n−1) = (P5 · · ·P2n−1)Q1,
...
Q1P2n−1 = P2n−1Q1;

(3) Either P2 · · ·P2n or Q0 is continuous;
(4) (Q0, P2 · · ·P2n) is compatible and (Q1, P1 · · ·P2n−1) is weakly compatible;
(5) There exist a number k ∈ (0, 1) such that
M(Q0x,Q1y, kt) ≥L

T (M(P2P4 · · ·P2nx,Q0x, t), T (M(P1P3 · · ·P2n−1y,Q1y, t), T (M(P2P4 · · ·P2nx,
P1P3 · · ·P2n−1y, t), T (M(P1P3 · · ·P2n−1y,Q0x, βt),M(P2P4 · · ·P2nx,Q1y, (2−β)t)))))

for all x, y ∈ X, β ∈ (0, 2) and t > 0. Then P1, P2, · · · , P2n, Q0 and Q1 have a
unique common fixed point in X.

Proof Let x0 be an arbitrary point in X. From the condition (1) there exist
x1, x2 ∈ X such that

Q0x0 = P1P3 · · ·P2n−1x1 = y0 and Q1x1 = P2P4 · · ·P2nx2 = y1.
Inductively we can construct sequences xn and yn in X:
Q0x2k = P1P3 · · ·P2n−1x2k+1 = y2k and Q1x2k+1 = P2P4 · · ·P2nx2k+2 = y2k+1

for k = 0, 1, · · · .
By the condition (5), for all t > 0 and β = 1− q with q ∈ (0, 1), we have

M(y2k, y2k+1, kt)
= M(Q0x2k, Q1x2k+1, kt) ≥L T (M(P2P4 · · ·P2nx2k, Q0x2k, t),

T (M(P1P3 · · ·P2n−1x2k+1, Q1x2k+1, t),
T (M(P2P4 · · ·P2nx2k, P1P3 · · ·P2n−1x2k+1, t), T (M(P1P3 · · ·P2n−1x2k+1, Q0x2k, βt),
M(P2P4 · · ·P2nx2k, Q1x2k+1, (2− β)t))))))
= T (M(y2k−1, y2k, t), T (M(y2k, y2k+1, t), T (M(y2k−1, y2k, t), T (M(y2k, y2k, (1−q)t),
M(y2k−1, y2k+1, (1 + q)t)))))
= T (M(y2k−1, y2k, t), T (M(y2k, y2k+1, t), T (M(y2k−1, y2k, t),

T (1L,M(y2k−1, y2k+1, (1 + q)t)))))
≥L T (M(y2k−1, y2k, t), T (M(y2k, y2k+1, t), T (M(y2k−1, y2k, t),

T (M(y2k−1, y2k, t),M(y2k, y2k+1, qt)))))
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= T (M(y2k−1, y2k, t), T (M(y2k, y2k+1, t), T (T (M(y2k−1, y2k, t),M(y2k−1, y2k, t)),
M(y2k, y2k+1, qt))))

≥L T (M(y2k−1, y2k, t), T (M(y2k, y2k+1, t), T (M(y2k−1, y2k, t),M(y2k, y2k+1, qt))))
= T (M(y2k−1, y2k, t), T (T (M(y2k, y2k+1, t),M(y2k−1, y2k, t)),M(y2k, y2k+1, qt)))
= T (T (M(y2k−1, y2k, t), T (M(y2k, y2k+1, t),M(y2k−1, y2k, t)),M(y2k, y2k+1, qt)))
= T (T (T (M(y2k−1, y2k, t),M(y2k−1, y2k, t),M(y2k, y2k+1, t)),M(y2k, y2k+1, qt)))
≥L T (T (M(y2k−1, y2k, t),M(y2k, y2k+1, t)),M(y2k, y2k+1, qt)).

As t-norm T is continuous, letting q → 1 we get:
M(y2k, y2k+1, kt) ≥L T (T (M(y2k−1, y2k, t),M(y2k, y2k+1, t)),M(y2k, y2k+1, t))

= T (M(y2k−1, y2k, t), T (M(y2k, y2k+1, t),M(y2k, y2k+1, t)))
≥L T (M(y2k−1, y2k, t),M(y2k, y2k+1, t)).

Similarly,M(y2k+1, y2k+2, kt) ≥L T (M(y2k, y2k+1, t),M(y2k+1, y2k+2, t)). There-
fore, for all m even or odd we have:

M(ym, ym+1, kt) ≥L T (M(ym−1, ym, t),M(ym, ym+1, t)).

Consequently, it follows that, for positive integers m, p

M(ym, ym+1, kt) ≥L T (M(ym−1, ym, t),M(ym, ym+1, t/kp)).

By noting that M(ym, ym+1, t/kp) → 1L, we have, for m = 1, 2, · · ·

M(ym, ym+1, kt) ≥L M(ym−1, ym, t).

By Lemma2.5, {ym} is a Cauchy sequence in X. Since X is complete, {ym}
converges to a point z ∈ X. Also, for its subsequences we have

Q1x2k+1 → z and P1P3 · · ·P2n−1x2k+1 → z,

Q0x2k → z and P2P4 · · ·P2nx2k → z.

Case 1. P2P4 · · ·P2n is continuous.
Define P ′1 = P2P4 · · ·P2n. Since P ′1 is continuous, P ′1 ◦ P ′1x2k → P ′1z and

P ′1Q0x2k → P ′1z. Also, as (Q0, P
′
1) is compatible, this implies that Q0P

′
1x2k → P ′1z.

(a) Putting x = P2P4 · · ·P2nx2k = P ′1x2k, y = x2k+1, and P ′2 = P1P3 · · ·P2n−1

with β = 1 in condition (5), we have
M(Q0P

′
1x2k, Q1x2k+1, kt) ≥L

T (M(P ′1P
′
1x2k, Q0P

′
1x2k, t), T (M(P ′2x2k+1, Q1x2k+1, t),

T (M(P ′1P
′
1x2k, P ′2x2k+1, t), T (M(P ′1P

′
1x2k, Q1x2k+1, t),M(P ′2x2k+1, Q0P

′
1x2k, t)))))

which implies that as k →∞
M(P ′1z, z, kt) ≥L T (1L, T (1L, T (M(P ′1z, z, t), T (M(z, P ′1z, t),M(P ′1z, z, t))))) ≥L

M(P ′1z, z, t).
Therefore, by Lemma 2.6, we have P ′1z = z i.e., P2P4 · · ·P2nz = z.
(b) Putting x = z, y = x2k+1, P

′
1 = P2P4 · · ·P2n, and P ′2 = P1P3 · · ·P2n−1 with

β = 1 in condition (5), we have
M(Q0z, Q1x2k+1, kt) ≥L

T (M(P ′1z, Q0z, t), T (M(P ′2x2k+1, Q1x2k+1, t), T (M(P ′1z, P ′2x2k+1, t),
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T (M(P ′1z, Q1x2k+1, t),M(P ′2x2k+1, Q0z, t)))))
which implies that as k →∞
M(Q0z, z, kt) ≥L T (M(z, Q0z, t), T (1L, T (1L, T (1L,M(z,Q0z, t))))) ≥L

M(Q0z, z, t).
Therefore, by Lemma 2.6, we have Q0z = z. Hence, Q0z = P2P4 · · ·P2nz = z.
(c) Putting x = P4P6 · · ·P2nz, y = x2k+1, P

′
1 = P2P4 · · ·P2n, and

P ′2 = P1P3 · · ·P2n−1 with β = 1 in condition (5), and using the condition
P2(P4 · · ·P2n) = (P4 · · ·P2n)P2 and Q0(P4 · · ·P2n) = (P4 · · ·P2n)Q0 in condition
(2), we have
M(Q0P4P6 · · ·P2nz, Q1x2k+1, kt)
≥L T (M(P ′1P4P6 · · ·P2nz, Q0P4P6 · · ·P2nz, t), T (M(P ′2x2k+1, Q1x2k+1, t),
T (M(P ′1P4P6 · · ·P2nz, P ′2x2k+1, t),
T (M(P ′1P4P6 · · ·P2nz, Q1x2k+1, t),M(P ′2x2k+1, Q0P4P6 · · ·P2nz, t)))))
which implies that as k →∞

M(P4P6 · · ·P2nz, z, kt) ≥L T (1L, T (1L, T (M(P4P6 · · ·P2nz, z, t),
T (M(P4P6 · · ·P2nz, z, t),M(z, P4P6 · · ·P2nz, t)))))
≥L M(P4P6 · · ·P2nz, z, t).

Therefore, by Lemma 2.6, we have P4P6 · · ·P2nz = z. Hence,
P2(P4P6 · · ·P2n)z = P2z and so P2z = P2P4P6 · · ·P2nz = z.

Continuing this procedure, we obtain

Q0z = P2z = P4z = · · · = P2nz = z.

(d) As Q0(X) ⊂ P1P3 · · ·P2n−1(X), there exist y ∈ X such that z = Q0z =
P1P3 · · ·P2n−1y. Putting x = x2k, P ′1 = P2P4 · · ·P2n, and P ′2 = P1P3 · · ·P2n−1 with
β = 1 in condition (5), we have
M(Q0x2k, Q1y, kt) ≥L

T (M(P ′1x2k, Q0x2k, t), T (M(P ′2y,Q1y, t), T (M(P ′1x2k, P ′2y, t), T (M(P ′1x2k, Q1y, t),
M(P ′2y, Q0x2k, t)))))
which implies that as k →∞
M(z, Q1y, kt) ≥L

T (1L, T (M(z, Q1y, t), T (1L, T (M(z, Q1y, t), 1L)))) ≥L M(z, Q1y, t).
Therefore, by Lemma 2.6, we have Q1y = z. Hence, P1P3 · · ·P2n−1y = Q1y = z.

As (Q1, P1P3 · · ·P2n−1) is weakly compatible, we have

P1P3 · · ·P2n−1Q1y = Q1P1P3 · · ·P2n−1y.

Thus P1P3 · · ·P2n−1z = Q1z.
(e) Putting x = x2k, y = z, P ′1 = P2P4 · · ·P2n, and P ′2 = P1P3 · · ·P2n−1 with

β = 1 in condition (5), we have
M(Q0x2k, Q1z, kt) ≥L

T (M(P ′1x2k, Q0x2k, t), T (M(P ′2z,Q1z, t), T (M(P ′1x2k, P ′2z, t),
T (M(P ′1x2k, Q1z, t),M(P ′2z, Q0x2k, t)))))
which implies that as k →∞
M(z, Q1z, kt) ≥L

T (1L, T (M(z, Q1z, t), T (1L, T (M(z, Q1z, t), 1L)))) ≥L M(z, Q1z, t).
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Therefore, by Lemma 2.6, we have Q1z = z. Hence, P1P3 · · ·P2n−1z = Q1z = z.
(f) Putting x = x2k, y = P3 · · ·P2n−1z, P ′1 = P2P4 · · ·P2n, and

P ′2 = P1P3 · · ·P2n−1 with β = 1 in condition (5), we have
M(Q0x2k, Q1P3 · · ·P2n−1z, kt) ≥L

T (M(P ′1x2k, Q0x2k, t), T (M(P ′2P3 · · ·P2n−1z,Q1P3 · · ·P2n−1z, t),
T (M(P ′1x2k, P ′2P3 · · ·P2n−1z, t), T (M(P ′1x2k, Q1P3 · · ·P2n−1z, t),
M(P ′2P3 · · ·P2n−1z, Q0x2k, t)))))
which implies that as k →∞
M(z, P3 · · ·P2n−1z, kt) ≥L

T (1L, T (1L, T (M(z, P3 · · ·P2n−1z, t), T (M(z, P3 · · ·P2n−1z, t),
M(P3 · · ·P2n−1z, z, t))))) ≥L M(z, P3 · · ·P2n−1z, t).

Therefore, by Lemma 2.6, we have P3 · · ·P2n−1z = z. Hence, P1z = z. Contin-
uing this procedure, we have

Q1z = P1z = P3z = · · · = P2n−1z.

Thus we have prove

Q0z = Q1z = P1z = P2z = P3z = · · · = P2n−1z = P2nz = z.

Case 2. Q0 is continuous.
Since Q0 is continuous, Q2

0x2k → Q0z and Q0(P2P4 · · ·P2n)x2k → Q0z. As
(Q0, P2P4 · · ·P2n) is compatible, we have (P2P4 · · ·P2n)Q0x2k → Q0z.

(g) Putting x = Q0x2k, y = x2k+1, P
′
1 = P2P4 · · ·P2n, and P ′2 = P1P3 · · ·P2n−1

with β = 1 in condition (5), we have
M(Q0Q0x2k, Q1x2k+1, kt)
≥L T (M(P ′1Q0x2k, Q0Q0x2k, t), T (M(P ′2x2k+1, Q1x2k+1, t),
T (M(P ′1Q0x2k, P ′2x2k+1, t),
T (M(P ′1Q0x2k, Q1x2k+1, t),M(P ′2x2k+1, Q0Q0x2k, t)))))

which implies that as k →∞
M(Q0z, z, kt) ≥L T (1L, T (1L, T (M(Q0z, z, t), T (M(Q0z, z, t),M(Q0z, z, t))))) ≥L

M(z, Q0z, t).
Therefore, by Lemma 2.6, we have Q0z = z. Now using step (d), (e) and (f)

and continuing step (f) gives us

Q1z = P1z = P3z = · · · = P2n−1z = z.

(h) As Q1(X) ⊂ P2P4 · · ·P2n(X), there exist w ∈ X such that z = Q1z =
P2P4 · · ·P2nw. Putting x = w, y = x2k+1, P

′
1 = P2P4 · · ·P2n, and P ′2 = P1P3 · · ·P2n−1

with β = 1 in condition (5), we have
M(Q0w, Q1x2k+1, kt)

≥L T (M(P ′1w, Q0w, t), T (M(P ′2x2k+1, Q1x2k+1, t), T (M(P ′2x2k+1, Q0w, t),
T (M(P ′1w, Q1x2k+1, t),M(P ′1w, P ′2x2k+1, t)))))

which implies that as k →∞
M(Q0w, z, kt) ≥L T (M(z,Q0w, t), T (1L, T (1L, T (1L,M(z, Q0w, t)))))

≥L M(z, Q0w, t).



76 Xianjiu Huang, Chuanxi Zhu and Xi Wen

Therefore, by Lemma 2.6, we have Q0w = z. Hence, Q0w = z = P2P4 · · ·P2nw.
As (Q0, P2P4 · · ·P2n) is weakly compatible, we have

P2P4 · · ·P2nQ0w = Q0P2P4 · · ·P2nw.

Thus P2P4 · · ·P2nz = Q0z = z.
Similarly to in step (c) it can be shown that P2z = P4z = · · · = P2nz = Q0z = z.

Thus we have proved that

Q0z = Q1z = P1z = P2z = P3z = · · · = P2nz = z.

Proof of uniqueness Let z′ be another common fixed point of the aforemen-
tioned mappings, then Q0z

′ = Q1z
′ = P1z

′ = P2z
′ = P3z

′ = · · · = P2nz′ = z′.
Putting x = z, y = z′, P ′1 = P2P4 · · ·P2n and P ′2 = P1P3 · · ·P2n−1 with β = 1 in
condition (5), we have

M(Q0z, Q1z
′, kt)

≥L T (M(P ′1z,Q0z, t), T (M(P ′2z
′, Q1z

′, t), T (M(P ′1z, P ′2z
′, t),

T (M(P ′1z, Q1z
′, t),M(P ′2z

′, Q0z, t)))))
which implies that as k →∞

M(z, z′, kt) ≥L T (1L, T (1L, T (M(z′, z, t), T (M(z, z′, t),M(z, z′, t))))) ≥L M(z, z′, t).

Therefore, by Lemma 2.6, we have z = z′, and this shows z is a unique common
fixed point of mappings.

Now we shall prove a common fixed point theorem, which is a slight generaliza-
tion of Theorem 3.1.

Theorem 3.2 Let (X,M, T ) be a complete L-fuzzy metric space with T (t, t) ≥L
t for all t ∈ L, which has the property (C). Let {Tµ}µ∈J and {Pi}2n

i=1 be two families
of self-mappings of X. Suppose that there exists a fixed ν ∈ J such that:

(1) Tµ(X) ⊂ P2P4 · · ·P2n(X), for each µ ∈ J and Tν(X) ⊂ P1P3 · · ·P2n−1(X)
for some ν ∈ J ;

(2)P2(P4 · · ·P2n) = (P4 · · ·P2n)P2,
P2P4(P6 · · ·P2n) = (P6 · · ·P2n)P2P4,
...
P2 · · ·P2n−2(P2n) = (P2n)P2 · · ·P2n−2,
Tν(P4 · · ·P2n) = (P4 · · ·P2n)Tν ,
Tν(P6 · · ·P2n) = (P6 · · ·P2n)Tν ,
...
TνP2n = P2nTν ,
P1(P3 · · ·P2n−1) = (P3 · · ·P2n−1)P1,
P1P3(P5 · · ·P2n−1) = (P5 · · ·P2n−1)P1P3,
...
P1 · · ·P2n−3(P2n−1) = (P2n−1)P1 · · ·P2n−3,
Tµ(P3 · · ·P2n−1) = (P3 · · ·P2n− 1)Tµ,
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Tµ(P5 · · ·P2n−1) = (P5 · · ·P2n−1)Tµ,
...
TµP2n−1 = P2n−1Tµ;

(3) Either P2 · · ·P2n or Tν is continuous;
(4) (Tν , P2 · · ·P2n) is compatible and (Tµ, P1 · · ·P2n−1) is weakly compatible;
(5)There exist a k ∈ (0, 1) such that
M(Tνx, Tµy, kt) ≥L T (M(P2P4 · · ·P2nx, Tνx, t), T (M(P1P3 · · ·P2n−1y, Tµy, t),

T (M(P2P4 · · ·P2nx, P1P3 · · ·P2n−1y, t), T (M(P1P3 · · ·P2n−1y, Tνx, βt),
M(P2P4 · · ·P2nx, Tµy, (2− β)t)))))

for all x, y ∈ X, β ∈ (0, 2) and t > 0. Then Pi and Tµ have a unique common
fixed point in X.

Proof Let Tµ0 be a fixed element in {Tµ}µ∈J . By Theorem 3.1 with Q0 = Tν

and Q1 = Tµ0 , it follows that there exists some z ∈ X such that
Tνz = Tµ0z = P2P4 · · ·P2nz = P1P3 · · ·P2n−1z = z

Let µ ∈ J be arbitrary and β = 1. Then from condition (5),
M(Tνz, Tµz, kt) ≥L T (M(P2P4 · · ·P2nz, Tνz, t), T (M(P1P3 · · ·P2n−1z, Tµz, t),

T (M(P2P4 · · ·P2nz, P1P3 · · ·P2n−1z, t), T (M(P1P3 · · ·P2n−1z, Tνz, t),
M(P2P4 · · ·P2nz, Tµz, t)))))

and hence,M(z, Tµz, kt) ≥L T (1L, T (M(z, Tµz, t), T (1L, T (1L,M(z, Tµz, t))))) ≥L

M(z, Tµz, t).
Therefore, by Lemma 2.6, we have Tµz = z for each µ ∈ J . Since condition (5)

implies the uniqueness of the common fixed point, Theorem 3.2 is proved.

Remark 3.1 Observe that Theorem 3.1 and 3.2 generalize the Theorem 2.11 of
Adibi et al.[11] and the Theorem 2.1 and 2.2 of Saadati et. al.[28] in many aspects.

If we put Q0 = A,Q1 = B, P2P4 · · ·P2n = S and P1P3 · · ·P2n−1 = T in Theorem
3.1. We have the following:

Corollary 3.1 Let A,S, B and T be self-mappings on a complete L-fuzzy metric
space (X,M, T ) with T (t, t) ≥L t for all t ∈ L, which has the property (C),
satisfying:

(1) A(X) ⊆ T (X), B(X) ⊆ S(X);
(2) Either A or S is continuous;
(3) (A,S) is compatible and (B, T ) is weakly compatible;
(4) There exists k ∈ (0, 1) such that

M(Ax,By, kt) ≥L T (M(Sx, Ax, t), T (M(Ty, By, t), T (M(Sx, Ty, t),
T (M(Ty, Ax, βt),M(Sx, By, (2− β)t)))))

for all x, y ∈ X, β ∈ (0, 2) and t > 0. Then A,S,B and T have a unique common
fixed point in X.

Remark 3.2 Above Corollary improves the result of Adibi. et al.[11], Theorem
2.11 in the sense that the requirement of weak compatibility is more general than
of compatibility or compatible of type(P ). Also the number of required continuities
of maps has been reduced to one only in our results.

If we put Q0 = L, Q1 = R, P2P4 · · ·P2n = ST and P1P3 · · ·P2n−1 = AB in
Theorem 3.1. We have the following:
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Corollary 3.2 Let A,B, S, T, L and R be self-mappings on a complete L-fuzzy
metric space (X,M, T ) with T (t, t) ≥L t for all t ∈ L, which has the property (C),
satisfying:

(1) L(X) ⊆ AB(X), R(X) ⊆ ST (X);
(2) AB = BA, ST = TS, LT = TL, RB = BR
(3) Either L or ST is continuous;
(4) (L, ST ) is compatible and (R, AB) is weakly compatible;
(5) There exists k ∈ (0, 1) such that
M(Lx,Ry, kt) ≥L T (M(STx, Lx, t), T (M(ABy, Ry, t), T (M(STx, ABy, t),

T (M(ABy, Lx, βt),M(STx, Ry, (2− β)t)))))
for all x, y ∈ X, β ∈ (0, 2) and t > 0. Then A,B, S, T, L and R have a unique

common fixed point in X.
Remark 3.3 Our results generalize and extend many known results in fuzzy

metric spaces and intuitionistic metric spaces (see[15, 20, 23-24]).
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