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ON EXTENDABILITY OF CAYLEY GRAPHS

Stefko Miklavi¢, Primoz Sparl

Abstract

A connected graph I of even order is n-extendable, if it contains a matching
of size n and if every such matching is contained in a perfect matching of I'.
Furthermore, a connected graph I' of odd order is n%-emtendable, if for every
vertex v of I' the graph I' — v is n-extendable.

It is proved that every connected Cayley graph of an abelian group of odd
order which is not a cycle is 1%-extendable. This result is then used to classify
2-extendable connected Cayley graphs of generalized dihedral groups.

1 Introductory remarks

Throughout this paper graphs are assumed to be finite and simple.

A connected graph I' of even order is n-extendable, if it contains a matching
of size n and if every such matching is contained in a perfect matching of I". The
concept of n-extendable graphs was introduced by Plummer [8] in 1980. Since then
a number of papers on this topic have appeared (see [2, 10, 11, 12] and the references
therein). In 1993 Yu [11] introduced an analogous concept for graphs of odd order.
A connected graph I' of odd order is n%-ewtendable, if for every vertex v of I' the
graph I' — v is n-extendable.

The problem of n-extendability of Cayley graphs was first considered in [3] where
a classification of 2-extendable Cayley graphs of dihedral groups was obtained. (For
a definition of a Cayley graph see Section 2.) A few years later a classification of
2-extendable Cayley graphs of abelian groups was obtained in [2]. In this paper we
generalize these results in two different ways. First, we consider n%-extendability for
Cayley graphs of abelian groups of odd order. In particular, we prove the following
theorem.

Theorem 1 Let I' be a connected Cayley graph on an abelian group of odd order
n > 3. Then either I is a cycle, or I is 1%—efctendable,
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Second, using Theorem 1 we generalize the result of [3] to generalized dihedral
groups as follows.

Theorem 2 Let I' be a connected Cayley graph on a generalized dihedral group
which is not a cycle. Then T is 2-extendable unless it is isomorphic to one of the
following Cayley graphs on cyclic groups, also called circulants: Cire(2n;{£1,+2})
(n > 3), Circ(4n;{£1,2n}) (n > 2), Circ(4n + 2;{£2,2n + 1}) and Circ(4dn +
2;{£1,42n}).

2 Preliminaries

In this section we introduce the notation and some results needed in the rest of
the paper.

A Cayley graph Cay(G;S) of a group G with respect to the connection set
S C G\ {1}, where S7! = S, is a graph with vertex-set G' in which g ~ gs for all
g € G, s € S. In the case that G = Z,, the graph Cay(G; S) is called a circulant and
is denoted by Circ(n;S). Let M be a subset of edges of Cay(G;S) and let g € G.
Then Mg denotes the set of all edges of the form {ug,vg}, where {u,v} € M.

A Hamilton path of a graph is a path visiting all of its vertices. The question
of existence of Hamilton paths in vertex-transitive graphs and in particular Cayley
graphs has been extensively studied over the last forty years (see for instance [1, 5,
6, 7] and the references therein). The following result on this topic is of particular
interest to us.

Proposition 3 [4] Let T be a connected Cayley graph of an abelian group and of
valency at least three. If T' is not bipartite then for any pair of its vertices u and
v there exists a Hamilton path of ' from w to v. If ' is bipartite then for any pair
of vertices uw and v from different parts of bipartition of I' there exists a Hamilton
path of T' from u to v.

Note that it follows from this proposition that every connected Cayley graph
of an abelian group is l-extendable if the order of the group is even and is 0%—
extendable otherwise. However, as the following proposition (which will be used in
the proofs of our main results) shows, not all Cayley graphs on abelian groups of
even order are 2-extendable.

Proposition 4 [2] Let T be a connected Cayley graph of an abelian group of even
order and valency at least three. Then I' is 2-extendable if and only if it is not
isomorphic to any of Circe(2n;{+1,+2}) (n > 3), Circ(4dn;{£1,2n}) (n > 2),
Circ(4n + 2;{£2,2n 4+ 1}) and Circ(dn + 2; {£1, £2n}).

We remark that none of the exceptional graphs from Proposition 4 is bipartite.
This fact will be used in the proof of Theorem 2.
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3 Cayley graphs of abelian groups

In this section we prove Theorem 1. To do this, we first need the following
result.

Proposition 5 Let G be an abelian group of odd order with identity 1, and let
S C G\{1} be a nonempty set such that S = S=t. ThenT = Cay({SU{g,g~'}); SU
{9,97'}) is 13-eatendable for every g € G\ (S).

Proof. Recall first that Cay((S);S) is 04-extendable by the comment following
Proposition 3. Let m be the smallest positive integer such that g™ € (S). Note that
the subgraphs of T" induced on cosets g*(S), i € {0,1,...,m — 1} are all isomorphic
to Cay((S); S). Furthermore, for every ¢ € {0,1,...,m—1} and s € (S5), the vertex
g's of T' is adjacent to the vertex ¢g'*t!s. Finally, since the order of G is odd, both
[(S)| and m are also odd and m > 3.

Pick an edge e = {g's1, 9782}, 4,7 € {0,1,...,m—1}, 51,82 € (S), and a vertex
x of I'. We show that there exists a perfect matching of I' — 2 containing e. Since
I" is vertex-transitive, we can assume that x = 1. The proof is split into four cases
depending on the numbers ¢ and j. Note that we can assume ¢ < j. Observe also
that if 7 # j, then s; = s5 and either j —i=1ori=0, 5 =m — 1.

CASE 1: i = j = 0. Since the subgraph of I' induced on the coset g2(S) is isomorphic
to Cay((S); S), which is 03-extendable, there exists an almost perfect matching M
of this subgraph missing the vertex g2. But then

{{513 32}7 {981,932}, {9’92}} U {{S,QS} HERS <S> \ {17 51, 32}} U MU
{{g"s, " s} : k€ {3,5,....,m — 2}, s € (S)}
is an almost perfect matching of I' missing 1 and containing e.

CASE 2: i = j # 0. Since Cay((S);S) is 03-extendable, there exists an almost
perfect matching M of Cay((S);S) missing 1. If ¢ is odd, then

MU {{gFs,g* s} ke {1,3,...,i—2,i+2,...,m—2}, s € (S)}U
{{g's, 9" s} s € (S)\ {s1.82}} U{{g's1, 9"s2}, {g" 51, 9" s} }
is an almost perfect matching of I missing 1 and containing e. If ¢ is even, then
MU {{gFs,g* s} ke {1,3,...,i=3,i+1,...,m—2}, s € (S)}U
{{g" s, g"s} s € (S)\ {s1,52}} U{{g" "s1,0" 52}, {g's1,9"52}}
is an almost perfect matching of I missing 1 and containing e.

CASE 3: i = j —1 # 0. Recall that in this case s; = sa. Since Cay((S);S) is

03-extendable, there exists an almost perfect matching M of Cay((S); S) missing

1. If 4 is odd, then
MU{{g"s,g" s} ke {1,3,...,m—2}, s€ (S)}
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is an almost perfect matching of I'" missing 1 and containing e.

Assume now that ¢ is even. Pick an edge {s,s'} of M. Since subgraphs of
I' induced on the cosets g(S) and g™ *(S) are 03-extendable, there exist almost
perfect matchings M; and M,,_; of these subgraphs, which miss vertices gs and
g~ 's’, respectively. But now

(M {{s,s1}) U {5,589}, {s",97"'s'}} U M1 U Mp,y U {{g"s, g"* s} :
ke{2,4,...,m—3}, s€(S)}
is an almost perfect matching of I' missing 1 and containing e.
CasE 4: i =0, j € {1,m — 1}. Without loss of generality we can assume j = 1
(otherwise replace g by ¢g~!). Since a subgraph of I' induced on the coset g2(S)

is isomorphic to Cay((S);S), there exist an almost perfect matching M of this
subgraph missing the vertex g2. But then

{{s,95} : s € (S)\{0}}U{{g, $*}JUMU{{¢"s, " T1s} : k € {3,5,...,m—2},s € (S)}
is an almost perfect matching of I' missing 1 and containing e. |

Proof. [Of Theorem 1] Assume that I' = Clay(G; S) is not a cycle and note that
this implies |S| > 4. We show that I is 13-extendable using induction on |S|.
Suppose first that |S| = 4. If for some s € S we have that (s) # G, then

Cay(G;S) is 1%—extendable by Proposition 5. We are left with the possibility that

S = {s,s71,t,t71} where (s) = (t) = G. Pick a vertex z and an edge e of Cay(G; S).
Let n denote the order of G. Without loss of generality we can assume that x =1,
that s = t* for some ¢ € {2,3,...,n — 2}, and that e = {t*,t's} for some i €
{1,2,....n =€ —1,n—¥¢+1,...,n — 1}. We now construct an almost perfect
matching M of I' containing e and missing x depending on the parity of ¢ and £.
If 7 and £ are both odd, then

M= {e} U{{t/, """}« jeJ},

where J={1,3,...,i —2,i+1,i+3,...,i+{—2,i+0+1,i+£+3,...,n—2}.
If 7 is odd and ¢ is even, then

M = {e, {1 T U {{t7, 7 T1Y ¢ je T},

where J={1,3,...,i —2,i +2,i+4,...,i+{—2,i+0+2,i+L+4,...,n—2}.
If 4 and ¢ are both even, then

M = {e, {71 T U {7, 9T} - e Ty,

where J={1,3,...,i—3,i+1,i+3,...,i+{—3,i+¢+1,i+¢+3,...,n—2}.
Finally, if ¢ is even and ¢ is odd, then

M = {e {1 (e U ({7, 01 j e d)

where J ={1,3,...,0—3,i+2,i+4,...,i+0—3,i+L+2,i+L+4,...,n—2}.
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Now suppose |S| > 6 and pick a vertex x and an edge e = {u,us}, s € S, of
Cay(G; S). We will show that there exists an almost perfect matching of Cay(G; S)
which contains e and misses z. Let t € S\ {s,s7 !}, let S’ = S\ {¢,t7!} and consider
the subgraph IV = Cay({S’); S"), which, by induction, is lé—extendable. If (8" = G,
then an almost perfect matching of IV, containing e and missing z, is also an almost
perfect matching of T" containing e and missing x. If however (S’) # G, then T is
lé—extendable by Proposition 5.

4 Cayley graphs of generalized dihedral groups

A group G containing an abelian subgroup H of index 2 and an involution
t ¢ H such that tht = h=! for each h € H is called a generalized dihedral group.
In this case we denote G by Dg. Observe that if I' = Cay(Dg;S) is a Cayley
graph of a generalized dihedral group Dy and h,th’ € S, then for any vertex x of
U, (x,zh,xth='h',xth’) is a 4-cycle of T'. Note also that for each ta € S and for
each subgroup H' < H the edges corresponding to ta introduce perfect matchings
between components of the subgraph Cay(Dg; SN H').

Proof. [Of Theorem 2] Let I' = Cay(Dpg; S) and let S; = HN S and S; = S\ 5.
Let 'y be the subgraph of T' induced by I' on H and let I's be the subgraph of
I' induced on tH. Furthermore pick any two disjoint edges e; and ey of I'. We
distinguish four cases depending on whether the edges e; belong to I'y or I's or
neither of them.

CASE 1: e; € I'; and ey ¢ Ty UT5. (The case e; € T'g, eo ¢ T'y UT'2 is done
analogously.)

Let ta € Sy be the unique element such that es = {z,tz'a} for some x € H and
let h € S; be such that e; = {y,yh} for some y € H. Then a perfect matching of
I" containing e; and es is

{er,e2} U{{z 27} 2 € H\ {y,yh,2}} U {{ty"a,ty~ h~"a}}.

CASE 2: ej,e3 € I'1. (The case ey, ep € I'y is done analogously.)

Since I' is connected, S5 is nonempty. With no loss of generality we can assume
t € Sy. Letting h,h’ € Sy be such that e; = {z,zh} and es = {y,yh'} for some
xz,y € H a perfect matching of " containing e; and es is

{er,ea}U{{z,tz7 '} : 2 € H\{x,y,xh,yh/}}u{{te™  ta ' A}, {ty~ ty P h/ "1} ).

CASE 3: e; €'y, e5 € T's.

If H' = (S;) is of even order, then each of the [H : H'] components of I'; (and I'z),
and thus I'; (and I') itself, is 1-extendable by the remark following Proposition 3.
Thus in this case I' clearly contains a desired perfect matching. We can therefore
assume that H' is of odd order. Moreover, we can also assume that e; = {1, h} for
some h € Sy. Let &, h' € H be such that e; = {tx, tah’'}. If there exists an element
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ta € Sy such that {ta,th=a} Ney = 0, then {z7ta,z7'h'"la} Ne; = 0, and so a
perfect matching of I' containing e; and e is

{e1,e2YU{{z,tz7 a} : z € H\{1,h, 27 a, 2 W " La}}u{{ta, th 'a}, {z " ta, 2~ h/ " a}}.

Similarly, if for some ta € Sy we have that es = {ta,th~'a}, then a desired perfect
matching of I is

{er,ea} U{{z,tz7 a} : 2 € H\ {1,h}}.

We are left with the possibility that for each ta € Sy we have |{ta,th™ta}Nes| = 1.
In view of the connectedness of T' this implies H' = H. Suppose first that |S1| > 2.
Then |H| > 4, and so there exists an edge e = {y, ty~'a} such that eN(e; Uey) = (.
By Theorem 1 both I'y and I's are 1%—extendable, and so a desired perfect matching
of T' clearly exists. Suppose now that S; = {h,h~'}. In this case each of I'; and
I'5 is isomorphic to a cycle of odd length, say 2n 4+ 1. Using the remarks from the
beginning of this section it is easy to see that the above assumptions imply |Ss| < 2
and I' = Cay(Zaon+1 X Z2;{(£1,0),(0,1)}) = Circ(dn +2; {£2,2n+1}) in the case
of |So| =1, and T = Cay(Zan+1 X Z2;{(£1,0), (£1,1)}) = Circ(4n+2; {£1,+2n})
in the case of |Se| = 2. Hence, in either case I' is a Cayley graph of an abelian
group, so that Proposition 4 applies.

CASE 4: e1,6e2 ¢ I'tuls.

With no loss of generality we can assume that e; = {1,¢t} and es = {x,tz"ta}
for some x,a € H. If a = 1 then a perfect matching of I' containing e; and e is
{{z,t27} : z € H}. We can thus assume a # 1 (implying that |Sy| > 2). We
distinguish two subcases depending on whether |Sz| = 2 or not.

SUBCASE 4.1: |S3| > 3.

We show that in this case a desired perfect matching of I' can be constructed using
just some of the edges corresponding to elements of Sy. Now, if z ¢ (a) then a
desired perfect matching of I' is given by

{z,tz7"Y iz € H\ {a)x} U {{z,tz" a} : 2 € (a)z},

so that we can assume x € (a). Let tb € Sa\{¢t,ta}, let H' = (a,b) < H and consider
the subgraph I'V of T" induced on H' U H't by the edges corresponding to t,ta and tb.
Note that it suffices to prove that IV is 2-extendable. To prove this we use a result
of [9] that a bipartite graph with bipartition AU B, where |A| = | B], is 2-extendable
if and only if for each subset X C A with |X| < |A|—2 we have that |N(X)| > | X |42
(here N(X) denotes the set of neighbours of vertices from X'). Suppose there exists
a subset X of H' of cardinality at most |H'| — 2 for which |N(X)| < |X]| + 1.
Since tz~=! € N(X) for each x € X, there cannot exist distinct z1,xo € X with
z1a” ' xpa”! ¢ X (in this case {tz™' : z € X} U {ta;'a,txy'a} C N(X) would
contradict |[N(X)| < |X|+ 1). Hence, except possibly with one exception, for each
x € X we have that za~! € X. Similarly, except possibly with one exception, for
each € X we have that xb~!' € X. It is easy to see that these two conditions imply
that |X| > |H'| — 1, a contradiction, showing that I'" and thus I" is 2-extendable.
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SUBCASE 4.2: |S3| = 2, that is Sy = {t,ta}. Note that since, by assumption, T" is
not a cycle, this forces S; to be nonempty.

SUBSUBCASE 4.2.1: (Sj) is of even order.

Suppose first that x ¢ (S1) and tx~'a ¢ t(S1). Then a desired perfect matching
of T' is obtained by taking {{z,tz71} : z € (S1)} U {{zz,ta= 127 a} : 2 € (S1)}
together with perfect matchings of the remaining 2([H : (S71)] — 2) components of
I’y UTy (which exist as they are Cayley graphs of an abelian group of even order).
Next, suppose z € (S1) but tz~ta ¢ t(S1) (the case x ¢ (S1), tz—ta € t(Sy) is
dealt with analogously). If |Si| = 1 (that is, S; consists of a single involution),
then either (a) = H or [H : {(a)] = 2. Hence either I' = Circ(4n;{£1,2n}) (the
cycle of length 4n corresponding to 41 is given by the edges corresponding to ¢
and ta) or T' 2 Cay(Zan X Z2;{(£1,0),(0,1)}), depending on whether (a) = H
or not, respectively. This shows that I' is a Cayley graph of an abelian group of
even order and valency three, so Proposition 4 applies. We can thus assume that
|S1] > 2 implying that there exists some h € S \ {z}. Since IV = Cay(({S1);51)
is l-extendable, there exists a perfect matching M of I containing {1,h}. Let
h' € H be such that {z,zh'} € M. Taking M; = Mt \ {{t,th™1}} and My =
Mta\ {{tz=ta,tx='h'~1a}} a desired perfect matching of T is obtained by taking

M\ {{1,n}, {z,2h'}} U {e1,ea} U {{h, th™ '}, {xh/ ta= W'~ a}} U My U M,

together with perfect matchings of the remaining 2[H : (S7)] — 3 components of
I'; UTs, each of which is isomorphic to I'V. Finally, suppose x € (S1) and tx~1la €
t(S1) (note that this implies (S1) = H.) We can clearly assume |S| > 1 (otherwise
I' = K4). Now, if |S1| = 2, then each of I'y and T's is isomorphic to a cycle of length
2n for some n. We can thus identify the vertex set of I" with the set V = Zo,, X Zs
in such a way that (¢,7) ~ (i + 1, ) for each i € Zs, and j € {0,1}, (¢,0) ~ (4,1)
for each ¢ € Zs, and (4,0) ~ (i + k,1) for each i € Zs, and some fixed nonzero
k € Zoy,. If k = 2k; for some ki, then (relabeling the vertices (¢,1) by (i — k1,1)
for i € Zs,) we clearly have that I' = Cay(Zz, X Za; {(£1,0), (£k1,1)}). If on the
other hand k = 2k; — 1 for some kq, then the permutation p of the vertex set V'
defined by p((¢,0)) = (i + k1,1) and p((é,1)) = (¢ — k1 + 1,0) for every i € Zs, is
easily seen to be an automorphism of I' of order 4n, so that I' is a circulant in this
case (in particular, I' & Circ(4n; {£2, £k})). In either case I' is a Cayley graph of
an abelian group, so that Proposition 4 applies. We can thus assume |S;| > 3, and
so Proposition 3 applies to I'; and T'5. If I'; is not bipartite, there is a Hamilton
path of I'; between 1 and « and there is a Hamilton path of I'y between t and tz " 'a.
Together with e; and es this gives a Hamilton cycle of I', and so a desired perfect
matching of I' can be obtained by taking every other edge of this cycle, starting
with e; (recall that T'y is of even order). If T'y is bipartite then it is 2-extendable
by Proposition 4. It is easy to see that, since I'; contains no triangles, there exist
disjoint edges e = {1,h} and ¢’ = {x,xh'} such that et and e’ta are also disjoint.
As I' is 2-extendable we can now find a perfect matching of I'; containing e and e’
as well as a perfect matching of I'y containing et and €’ta. It is now clear how to
construct a desired perfect matching of T'.

SUBSUBCASE 4.2.2: (S7) is of odd order.
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Consider first the case that = ¢ (S;) and tx~'a ¢ t(S;). Note that this implies
[H : (51)] > 2, and therefore the connectivity of I' forces that a ¢ (S1). Let
y € (S1)z, y # =, and observe that then ya=! ¢ (S;) (otherwise tz~ta € t(S1)).
Letting e = {y,ty~ '} and ¢’ = {ya=!,ty~'ta}, a desired perfect matching of T is

{e,Yu{{z,tz" a} : z € (S)a\{y}}U{{z,tz7 '} : 2 € H\((S1)xU(S))xa™ ) JUMUM>,

where M, is an almost perfect matching of the component of I'; containing xa ™!

which misses ya~! and M, is an almost perfect matching of the component of I'y
containing tz~! which misses ty~!. In the case that z € (S1) and tz~'a € t(S)
we clearly have (S1) = H. The existence of a desired perfect matching of I then
depends on |Si|. If |S1] = 2, then each of I'y and I's is just a cycle. Similar
argument as in Subsubcase 4.2.1 shows that then I' is a Cayley graph of an abelian
group, so that Proposition 4 applies. If |S1| > 2, then I'; and T'y are 1%—extendable
by Theorem 1. Taking h € S \ {z,za™'} (which exists since |S1| > 2) there thus
exists an almost perfect matching of I'y which contains {1, h} but misses z and there
exists an almost perfect matching of I's which contains {¢,th~!} but misses tz~'a.
It is now clear how to obtain a desired perfect matching of I'. We are left with the
possibility that z € (S1) but tx=ta ¢ t(S1) (the case = ¢ (S;), tz—ta € t(S;) is
dealt with analogously). Let M; be an almost perfect matching of the component
of T'y containing ¢ which misses ¢. By Proposition 3 each component of I'; U T’y
contains a Hamilton cycle (if |S1| = 2, then each component of I'y U T’y consists of
a single cycle). Take a Hamilton cycle C' of the component containing 1 and let y
be the neighbor of x on this cycle, such that the length of the subpath of C' from 1
to x not passing through y consists of an even number of vertices. Let Ms be the
unique matching in Cay((S1);S1) consisting of edges of C' which misses 1, z and
y. Furthermore, let M3 = Msta and let M, be an almost perfect matching of the
component containing e~ which misses a~'. Then a desired perfect matching of I'
is

{{z,tz71 2 € H\((S1)U(S1)a ") }U{er, e2, {y, ty ta}, {a™* ta} UM UM;UM3UM,.
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