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ON EXTENDABILITY OF CAYLEY GRAPHS

Štefko Miklavič, Primož Šparl

Abstract

A connected graph Γ of even order is n-extendable, if it contains a matching
of size n and if every such matching is contained in a perfect matching of Γ.
Furthermore, a connected graph Γ of odd order is n 1

2
-extendable, if for every

vertex v of Γ the graph Γ− v is n-extendable.
It is proved that every connected Cayley graph of an abelian group of odd

order which is not a cycle is 1 1
2
-extendable. This result is then used to classify

2-extendable connected Cayley graphs of generalized dihedral groups.

1 Introductory remarks

Throughout this paper graphs are assumed to be finite and simple.
A connected graph Γ of even order is n-extendable, if it contains a matching

of size n and if every such matching is contained in a perfect matching of Γ. The
concept of n-extendable graphs was introduced by Plummer [8] in 1980. Since then
a number of papers on this topic have appeared (see [2, 10, 11, 12] and the references
therein). In 1993 Yu [11] introduced an analogous concept for graphs of odd order.
A connected graph Γ of odd order is n 1

2 -extendable, if for every vertex v of Γ the
graph Γ− v is n-extendable.

The problem of n-extendability of Cayley graphs was first considered in [3] where
a classification of 2-extendable Cayley graphs of dihedral groups was obtained. (For
a definition of a Cayley graph see Section 2.) A few years later a classification of
2-extendable Cayley graphs of abelian groups was obtained in [2]. In this paper we
generalize these results in two different ways. First, we consider n 1

2 -extendability for
Cayley graphs of abelian groups of odd order. In particular, we prove the following
theorem.

Theorem 1 Let Γ be a connected Cayley graph on an abelian group of odd order
n ≥ 3. Then either Γ is a cycle, or Γ is 1 1

2 -extendable.

2000 Mathematics Subject Classifications. 05C70, 05C25.
Key words and Phrases. n-extendable, n 1

2
-extendable, Cayley graph, abelian group, general-

ized dihedral group.
Received: July 10, 2009
Communicated by Dragan Stevanović
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Second, using Theorem 1 we generalize the result of [3] to generalized dihedral
groups as follows.

Theorem 2 Let Γ be a connected Cayley graph on a generalized dihedral group
which is not a cycle. Then Γ is 2-extendable unless it is isomorphic to one of the
following Cayley graphs on cyclic groups, also called circulants: Circ(2n; {±1,±2})
(n ≥ 3), Circ(4n; {±1, 2n}) (n ≥ 2), Circ(4n + 2; {±2, 2n + 1}) and Circ(4n +
2; {±1,±2n}).

2 Preliminaries

In this section we introduce the notation and some results needed in the rest of
the paper.

A Cayley graph Cay(G;S) of a group G with respect to the connection set
S ⊆ G \ {1}, where S−1 = S, is a graph with vertex-set G in which g ∼ gs for all
g ∈ G, s ∈ S. In the case that G = Zn the graph Cay(G;S) is called a circulant and
is denoted by Circ(n;S). Let M be a subset of edges of Cay(G; S) and let g ∈ G.
Then Mg denotes the set of all edges of the form {ug, vg}, where {u, v} ∈ M .

A Hamilton path of a graph is a path visiting all of its vertices. The question
of existence of Hamilton paths in vertex-transitive graphs and in particular Cayley
graphs has been extensively studied over the last forty years (see for instance [1, 5,
6, 7] and the references therein). The following result on this topic is of particular
interest to us.

Proposition 3 [4] Let Γ be a connected Cayley graph of an abelian group and of
valency at least three. If Γ is not bipartite then for any pair of its vertices u and
v there exists a Hamilton path of Γ from u to v. If Γ is bipartite then for any pair
of vertices u and v from different parts of bipartition of Γ there exists a Hamilton
path of Γ from u to v.

Note that it follows from this proposition that every connected Cayley graph
of an abelian group is 1-extendable if the order of the group is even and is 0 1

2 -
extendable otherwise. However, as the following proposition (which will be used in
the proofs of our main results) shows, not all Cayley graphs on abelian groups of
even order are 2-extendable.

Proposition 4 [2] Let Γ be a connected Cayley graph of an abelian group of even
order and valency at least three. Then Γ is 2-extendable if and only if it is not
isomorphic to any of Circ(2n; {±1,±2}) (n ≥ 3), Circ(4n; {±1, 2n}) (n ≥ 2),
Circ(4n + 2; {±2, 2n + 1}) and Circ(4n + 2; {±1,±2n}).

We remark that none of the exceptional graphs from Proposition 4 is bipartite.
This fact will be used in the proof of Theorem 2.
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3 Cayley graphs of abelian groups

In this section we prove Theorem 1. To do this, we first need the following
result.

Proposition 5 Let G be an abelian group of odd order with identity 1, and let
S ⊆ G\{1} be a nonempty set such that S = S−1. Then Γ = Cay(〈S∪{g, g−1}〉; S∪
{g, g−1}) is 1 1

2 -extendable for every g ∈ G \ 〈S〉.
Proof. Recall first that Cay(〈S〉;S) is 0 1

2 -extendable by the comment following
Proposition 3. Let m be the smallest positive integer such that gm ∈ 〈S〉. Note that
the subgraphs of Γ induced on cosets gi〈S〉, i ∈ {0, 1, . . . , m− 1} are all isomorphic
to Cay(〈S〉; S). Furthermore, for every i ∈ {0, 1, . . . , m−1} and s ∈ 〈S〉, the vertex
gis of Γ is adjacent to the vertex gi+1s. Finally, since the order of G is odd, both
|〈S〉| and m are also odd and m ≥ 3.

Pick an edge e = {gis1, g
js2}, i, j ∈ {0, 1, . . . , m−1}, s1, s2 ∈ 〈S〉, and a vertex

x of Γ. We show that there exists a perfect matching of Γ − x containing e. Since
Γ is vertex-transitive, we can assume that x = 1. The proof is split into four cases
depending on the numbers i and j. Note that we can assume i ≤ j. Observe also
that if i 6= j, then s1 = s2 and either j − i = 1 or i = 0, j = m− 1.

Case 1: i = j = 0. Since the subgraph of Γ induced on the coset g2〈S〉 is isomorphic
to Cay(〈S〉;S), which is 0 1

2 -extendable, there exists an almost perfect matching M
of this subgraph missing the vertex g2. But then

{{s1, s2}, {gs1, gs2}, {g, g2}} ∪ {{s, gs} : s ∈ 〈S〉 \ {1, s1, s2}} ∪M∪
{{gks, gk+1s} : k ∈ {3, 5, . . . , m− 2}, s ∈ 〈S〉}

is an almost perfect matching of Γ missing 1 and containing e.

Case 2: i = j 6= 0. Since Cay(〈S〉; S) is 0 1
2 -extendable, there exists an almost

perfect matching M of Cay(〈S〉; S) missing 1. If i is odd, then

M ∪ {{gks, gk+1s} : k ∈ {1, 3, . . . , i− 2, i + 2, . . . , m− 2}, s ∈ 〈S〉}∪
{{gis, gi+1s} : s ∈ 〈S〉 \ {s1, s2}} ∪ {{gis1, g

is2}, {gi+1s1, g
i+1s2}}

is an almost perfect matching of Γ missing 1 and containing e. If i is even, then

M ∪ {{gks, gk+1s} : k ∈ {1, 3, . . . , i− 3, i + 1, . . . , m− 2}, s ∈ 〈S〉}∪
{{gi−1s, gis} : s ∈ 〈S〉 \ {s1, s2}} ∪ {{gi−1s1, g

i−1s2}, {gis1, g
is2}}

is an almost perfect matching of Γ missing 1 and containing e.

Case 3: i = j − 1 6= 0. Recall that in this case s1 = s2. Since Cay(〈S〉;S) is
01

2 -extendable, there exists an almost perfect matching M of Cay(〈S〉; S) missing
1. If i is odd, then

M ∪ {{gks, gk+1s} : k ∈ {1, 3, . . . , m− 2}, s ∈ 〈S〉}
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is an almost perfect matching of Γ missing 1 and containing e.
Assume now that i is even. Pick an edge {s, s′} of M . Since subgraphs of

Γ induced on the cosets g〈S〉 and gm−1〈S〉 are 0 1
2 -extendable, there exist almost

perfect matchings M1 and Mm−1 of these subgraphs, which miss vertices gs and
g−1s′, respectively. But now

(M \ {{s, s′}}) ∪ {{s, sg}, {s′, g−1s′}} ∪M1 ∪Mm−1 ∪ {{gks, gk+1s} :

k ∈ {2, 4, . . . , m− 3}, s ∈ 〈S〉}
is an almost perfect matching of Γ missing 1 and containing e.

Case 4: i = 0, j ∈ {1,m − 1}. Without loss of generality we can assume j = 1
(otherwise replace g by g−1). Since a subgraph of Γ induced on the coset g2〈S〉
is isomorphic to Cay(〈S〉; S), there exist an almost perfect matching M of this
subgraph missing the vertex g2. But then

{{s, gs} : s ∈ 〈S〉\{0}}∪{{g, g2}}∪M∪{{gks, gk+1s} : k ∈ {3, 5, . . . ,m−2}, s ∈ 〈S〉}
is an almost perfect matching of Γ missing 1 and containing e.

Proof. [Of Theorem 1] Assume that Γ = Cay(G; S) is not a cycle and note that
this implies |S| ≥ 4. We show that Γ is 1 1

2 -extendable using induction on |S|.
Suppose first that |S| = 4. If for some s ∈ S we have that 〈s〉 6= G, then

Cay(G; S) is 1 1
2 -extendable by Proposition 5. We are left with the possibility that

S = {s, s−1, t, t−1} where 〈s〉 = 〈t〉 = G. Pick a vertex x and an edge e of Cay(G;S).
Let n denote the order of G. Without loss of generality we can assume that x = 1,
that s = t` for some ` ∈ {2, 3, . . . , n − 2}, and that e = {ti, tis} for some i ∈
{1, 2, . . . , n − ` − 1, n − ` + 1, . . . , n − 1}. We now construct an almost perfect
matching M of Γ containing e and missing x depending on the parity of i and `.
If i and ` are both odd, then

M = {e} ∪ {{tj , tj+1} : j ∈ J},
where J = {1, 3, . . . , i− 2, i + 1, i + 3, . . . , i + `− 2, i + ` + 1, i + ` + 3, . . . , n− 2}.
If i is odd and ` is even, then

M = {e, {ti+1, ti+`+1}} ∪ {{tj , tj+1} : j ∈ J},
where J = {1, 3, . . . , i− 2, i + 2, i + 4, . . . , i + `− 2, i + ` + 2, i + ` + 4, . . . , n− 2}.
If i and ` are both even, then

M = {e, {ti−1, ti+`−1}} ∪ {{tj , tj+1} : j ∈ J},
where J = {1, 3, . . . , i− 3, i + 1, i + 3, . . . , i + `− 3, i + ` + 1, i + ` + 3, . . . , n− 2}.
Finally, if i is even and ` is odd, then

M = {e, {ti−1, ti+`−1}, {ti+1, ti+`+1}} ∪ {{tj , tj+1} : j ∈ J},
where J = {1, 3, . . . , i− 3, i + 2, i + 4, . . . , i + `− 3, i + ` + 2, i + ` + 4, . . . , n− 2}.
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Now suppose |S| ≥ 6 and pick a vertex x and an edge e = {u, us}, s ∈ S, of
Cay(G; S). We will show that there exists an almost perfect matching of Cay(G; S)
which contains e and misses x. Let t ∈ S\{s, s−1}, let S′ = S\{t, t−1} and consider
the subgraph Γ′ = Cay(〈S′〉; S′), which, by induction, is 1 1

2 -extendable. If 〈S′〉 = G,
then an almost perfect matching of Γ′, containing e and missing x, is also an almost
perfect matching of Γ containing e and missing x. If however 〈S′〉 6= G, then Γ is
11

2 -extendable by Proposition 5.

4 Cayley graphs of generalized dihedral groups

A group G containing an abelian subgroup H of index 2 and an involution
t /∈ H such that tht = h−1 for each h ∈ H is called a generalized dihedral group.
In this case we denote G by DH . Observe that if Γ = Cay(DH ; S) is a Cayley
graph of a generalized dihedral group DH and h, th′ ∈ S, then for any vertex x of
Γ, (x, xh, xth−1h′, xth′) is a 4-cycle of Γ. Note also that for each ta ∈ S and for
each subgroup H ′ ≤ H the edges corresponding to ta introduce perfect matchings
between components of the subgraph Cay(DH ; S ∩H ′).

Proof. [Of Theorem 2] Let Γ = Cay(DH ; S) and let S1 = H ∩ S and S2 = S \ S1.
Let Γ1 be the subgraph of Γ induced by Γ on H and let Γ2 be the subgraph of
Γ induced on tH. Furthermore pick any two disjoint edges e1 and e2 of Γ. We
distinguish four cases depending on whether the edges ei belong to Γ1 or Γ2 or
neither of them.

Case 1: e1 ∈ Γ1 and e2 /∈ Γ1 ∪ Γ2. (The case e1 ∈ Γ2, e2 /∈ Γ1 ∪ Γ2 is done
analogously.)
Let ta ∈ S2 be the unique element such that e2 = {x, tx−1a} for some x ∈ H and
let h ∈ S1 be such that e1 = {y, yh} for some y ∈ H. Then a perfect matching of
Γ containing e1 and e2 is

{e1, e2} ∪ {{z, tz−1a} : z ∈ H \ {y, yh, x}} ∪ {{ty−1a, ty−1h−1a}}.

Case 2: e1, e2 ∈ Γ1. (The case e1, e2 ∈ Γ2 is done analogously.)
Since Γ is connected, S2 is nonempty. With no loss of generality we can assume
t ∈ S2. Letting h, h′ ∈ S1 be such that e1 = {x, xh} and e2 = {y, yh′} for some
x, y ∈ H a perfect matching of Γ containing e1 and e2 is

{e1, e2}∪{{z, tz−1} : z ∈ H \{x, y, xh, yh′}}∪{{tx−1, tx−1h−1}, {ty−1, ty−1h′−1}}.

Case 3: e1 ∈ Γ1, e2 ∈ Γ2.
If H ′ = 〈S1〉 is of even order, then each of the [H : H ′] components of Γ1 (and Γ2),
and thus Γ1 (and Γ2) itself, is 1-extendable by the remark following Proposition 3.
Thus in this case Γ clearly contains a desired perfect matching. We can therefore
assume that H ′ is of odd order. Moreover, we can also assume that e1 = {1, h} for
some h ∈ S1. Let x, h′ ∈ H be such that e2 = {tx, txh′}. If there exists an element
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ta ∈ S2 such that {ta, th−1a} ∩ e2 = ∅, then {x−1a, x−1h′−1a} ∩ e1 = ∅, and so a
perfect matching of Γ containing e1 and e2 is

{e1, e2}∪{{z, tz−1a} : z ∈ H\{1, h, x−1a, x−1h′−1a}}∪{{ta, th−1a}, {x−1a, x−1h′−1a}}.

Similarly, if for some ta ∈ S2 we have that e2 = {ta, th−1a}, then a desired perfect
matching of Γ is

{e1, e2} ∪ {{z, tz−1a} : z ∈ H \ {1, h}}.
We are left with the possibility that for each ta ∈ S2 we have |{ta, th−1a}∩ e2| = 1.
In view of the connectedness of Γ this implies H ′ = H. Suppose first that |S1| > 2.
Then |H| > 4, and so there exists an edge e = {y, ty−1a} such that e∩ (e1∪e2) = ∅.
By Theorem 1 both Γ1 and Γ2 are 1 1

2 -extendable, and so a desired perfect matching
of Γ clearly exists. Suppose now that S1 = {h, h−1}. In this case each of Γ1 and
Γ2 is isomorphic to a cycle of odd length, say 2n + 1. Using the remarks from the
beginning of this section it is easy to see that the above assumptions imply |S2| ≤ 2
and Γ ∼= Cay(Z2n+1×Z2; {(±1, 0), (0, 1)}) ∼= Circ(4n + 2; {±2, 2n + 1}) in the case
of |S2| = 1, and Γ ∼= Cay(Z2n+1×Z2; {(±1, 0), (±1, 1)}) ∼= Circ(4n+2; {±1,±2n})
in the case of |S2| = 2. Hence, in either case Γ is a Cayley graph of an abelian
group, so that Proposition 4 applies.

Case 4: e1, e2 /∈ Γ1 ∪ Γ2.
With no loss of generality we can assume that e1 = {1, t} and e2 = {x, tx−1a}
for some x, a ∈ H. If a = 1 then a perfect matching of Γ containing e1 and e2 is
{{z, tz−1} : z ∈ H}. We can thus assume a 6= 1 (implying that |S2| ≥ 2). We
distinguish two subcases depending on whether |S2| = 2 or not.

Subcase 4.1: |S2| ≥ 3.
We show that in this case a desired perfect matching of Γ can be constructed using
just some of the edges corresponding to elements of S2. Now, if x /∈ 〈a〉 then a
desired perfect matching of Γ is given by

{{z, tz−1} : z ∈ H \ 〈a〉x} ∪ {{z, tz−1a} : z ∈ 〈a〉x},

so that we can assume x ∈ 〈a〉. Let tb ∈ S2\{t, ta}, let H ′ = 〈a, b〉 ≤ H and consider
the subgraph Γ′ of Γ induced on H ′∪H ′t by the edges corresponding to t, ta and tb.
Note that it suffices to prove that Γ′ is 2-extendable. To prove this we use a result
of [9] that a bipartite graph with bipartition A∪B, where |A| = |B|, is 2-extendable
if and only if for each subset X ⊂ A with |X| ≤ |A|−2 we have that |N(X)| ≥ |X|+2
(here N(X) denotes the set of neighbours of vertices from X). Suppose there exists
a subset X of H ′ of cardinality at most |H ′| − 2 for which |N(X)| ≤ |X| + 1.
Since tx−1 ∈ N(X) for each x ∈ X, there cannot exist distinct x1, x2 ∈ X with
x1a

−1, x2a
−1 /∈ X (in this case {tx−1 : x ∈ X} ∪ {tx−1

1 a, tx−1
2 a} ⊆ N(X) would

contradict |N(X)| ≤ |X|+ 1). Hence, except possibly with one exception, for each
x ∈ X we have that xa−1 ∈ X. Similarly, except possibly with one exception, for
each x ∈ X we have that xb−1 ∈ X. It is easy to see that these two conditions imply
that |X| ≥ |H ′| − 1, a contradiction, showing that Γ′ and thus Γ is 2-extendable.
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Subcase 4.2: |S2| = 2, that is S2 = {t, ta}. Note that since, by assumption, Γ is
not a cycle, this forces S1 to be nonempty.
Subsubcase 4.2.1: 〈S1〉 is of even order.
Suppose first that x /∈ 〈S1〉 and tx−1a /∈ t〈S1〉. Then a desired perfect matching
of Γ is obtained by taking {{z, tz−1} : z ∈ 〈S1〉} ∪ {{xz, tx−1z−1a} : z ∈ 〈S1〉}
together with perfect matchings of the remaining 2([H : 〈S1〉] − 2) components of
Γ1 ∪ Γ2 (which exist as they are Cayley graphs of an abelian group of even order).
Next, suppose x ∈ 〈S1〉 but tx−1a /∈ t〈S1〉 (the case x /∈ 〈S1〉, tx−1a ∈ t〈S1〉 is
dealt with analogously). If |S1| = 1 (that is, S1 consists of a single involution),
then either 〈a〉 = H or [H : 〈a〉] = 2. Hence either Γ ∼= Circ(4n; {±1, 2n}) (the
cycle of length 4n corresponding to ±1 is given by the edges corresponding to t
and ta) or Γ ∼= Cay(Z2n × Z2; {(±1, 0), (0, 1)}), depending on whether 〈a〉 = H
or not, respectively. This shows that Γ is a Cayley graph of an abelian group of
even order and valency three, so Proposition 4 applies. We can thus assume that
|S1| ≥ 2 implying that there exists some h ∈ S1 \ {x}. Since Γ′ = Cay(〈S1〉; S1)
is 1-extendable, there exists a perfect matching M of Γ′ containing {1, h}. Let
h′ ∈ H be such that {x, xh′} ∈ M . Taking M1 = Mt \ {{t, th−1}} and M2 =
Mta \ {{tx−1a, tx−1h′−1a}} a desired perfect matching of Γ is obtained by taking

M \ {{1, h}, {x, xh′}} ∪ {e1, e2} ∪ {{h, th−1}, {xh′, tx−1h′−1a}} ∪M1 ∪M2

together with perfect matchings of the remaining 2[H : 〈S1〉] − 3 components of
Γ1 ∪ Γ2, each of which is isomorphic to Γ′. Finally, suppose x ∈ 〈S1〉 and tx−1a ∈
t〈S1〉 (note that this implies 〈S1〉 = H.) We can clearly assume |S1| > 1 (otherwise
Γ = K4). Now, if |S1| = 2, then each of Γ1 and Γ2 is isomorphic to a cycle of length
2n for some n. We can thus identify the vertex set of Γ with the set V = Z2n × Z2

in such a way that (i, j) ∼ (i + 1, j) for each i ∈ Z2n and j ∈ {0, 1}, (i, 0) ∼ (i, 1)
for each i ∈ Z2n and (i, 0) ∼ (i + k, 1) for each i ∈ Z2n and some fixed nonzero
k ∈ Z2n. If k = 2k1 for some k1, then (relabeling the vertices (i, 1) by (i − k1, 1)
for i ∈ Z2n) we clearly have that Γ ∼= Cay(Z2n × Z2; {(±1, 0), (±k1, 1)}). If on the
other hand k = 2k1 − 1 for some k1, then the permutation ρ of the vertex set V
defined by ρ((i, 0)) = (i + k1, 1) and ρ((i, 1)) = (i − k1 + 1, 0) for every i ∈ Z2n is
easily seen to be an automorphism of Γ of order 4n, so that Γ is a circulant in this
case (in particular, Γ ∼= Circ(4n; {±2,±k})). In either case Γ is a Cayley graph of
an abelian group, so that Proposition 4 applies. We can thus assume |S1| ≥ 3, and
so Proposition 3 applies to Γ1 and Γ2. If Γ1 is not bipartite, there is a Hamilton
path of Γ1 between 1 and x and there is a Hamilton path of Γ2 between t and tx−1a.
Together with e1 and e2 this gives a Hamilton cycle of Γ, and so a desired perfect
matching of Γ can be obtained by taking every other edge of this cycle, starting
with e1 (recall that Γ1 is of even order). If Γ1 is bipartite then it is 2-extendable
by Proposition 4. It is easy to see that, since Γ1 contains no triangles, there exist
disjoint edges e = {1, h} and e′ = {x, xh′} such that et and e′ta are also disjoint.
As Γ1 is 2-extendable we can now find a perfect matching of Γ1 containing e and e′

as well as a perfect matching of Γ2 containing et and e′ta. It is now clear how to
construct a desired perfect matching of Γ.
Subsubcase 4.2.2: 〈S1〉 is of odd order.
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Consider first the case that x /∈ 〈S1〉 and tx−1a /∈ t〈S1〉. Note that this implies
[H : 〈S1〉] ≥ 2, and therefore the connectivity of Γ forces that a /∈ 〈S1〉. Let
y ∈ 〈S1〉x, y 6= x, and observe that then ya−1 /∈ 〈S1〉 (otherwise tx−1a ∈ t〈S1〉).
Letting e = {y, ty−1} and e′ = {ya−1, ty−1a}, a desired perfect matching of Γ is

{e, e′}∪{{z, tz−1a} : z ∈ 〈S1〉x\{y}}∪{{z, tz−1} : z ∈ H\(〈S1〉x∪〈S1〉xa−1)}∪M1∪M2,

where M1 is an almost perfect matching of the component of Γ1 containing xa−1

which misses ya−1 and M2 is an almost perfect matching of the component of Γ2

containing tx−1 which misses ty−1. In the case that x ∈ 〈S1〉 and tx−1a ∈ t〈S1〉
we clearly have 〈S1〉 = H. The existence of a desired perfect matching of Γ then
depends on |S1|. If |S1| = 2, then each of Γ1 and Γ2 is just a cycle. Similar
argument as in Subsubcase 4.2.1 shows that then Γ is a Cayley graph of an abelian
group, so that Proposition 4 applies. If |S1| > 2, then Γ1 and Γ2 are 1 1

2 -extendable
by Theorem 1. Taking h ∈ S1 \ {x, xa−1} (which exists since |S1| > 2) there thus
exists an almost perfect matching of Γ1 which contains {1, h} but misses x and there
exists an almost perfect matching of Γ2 which contains {t, th−1} but misses tx−1a.
It is now clear how to obtain a desired perfect matching of Γ. We are left with the
possibility that x ∈ 〈S1〉 but tx−1a /∈ t〈S1〉 (the case x /∈ 〈S1〉, tx−1a ∈ t〈S1〉 is
dealt with analogously). Let M1 be an almost perfect matching of the component
of Γ2 containing t which misses t. By Proposition 3 each component of Γ1 ∪ Γ2

contains a Hamilton cycle (if |S1| = 2, then each component of Γ1 ∪ Γ2 consists of
a single cycle). Take a Hamilton cycle C of the component containing 1 and let y
be the neighbor of x on this cycle, such that the length of the subpath of C from 1
to x not passing through y consists of an even number of vertices. Let M2 be the
unique matching in Cay(〈S1〉; S1) consisting of edges of C which misses 1, x and
y. Furthermore, let M3 = M2ta and let M4 be an almost perfect matching of the
component containing a−1 which misses a−1. Then a desired perfect matching of Γ
is

{{z, tz−1} : z ∈ H\(〈S1〉∪〈S1〉a−1)}∪{e1, e2, {y, ty−1a}, {a−1, ta}}∪M1∪M2∪M3∪M4.
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Štefko Miklavič
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