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WIENER-TYPE INVARIANTS

OF SOME GRAPH OPERATIONS∗

S. Hossein-Zadeh, A. Hamzeh and A. R. Ashrafi

Abstract

Let d(G, k) be the number of pairs of vertices of a graph G that are at
distance k, λ a real number, and Wλ(G) =

∑
k≥1

d(G, k)kλ. Wλ(G) is called
the Wiener-type invariant of G associated to real number λ. In this paper, the
Wiener-type invariants of some graph operations are computed. As immediate
consequences, the formulae for reciprocal Wiener index, Harary index, hyper-
Wiener index and Tratch-Stankevich-Zefirov index are calculated. Some upper
and lower bounds are also presented.

1 Introduction

In this paper, we only consider simple graphs. Suppose G is a simple graph. As
usual, the distance between the vertices u and v of G is denoted by dG(u, v) (d(u, v)
for short). It is defined as the length of a minimum path connecting them. Let
d(G, k) be the number of pairs of vertices of a graph G that are at distance k, λ
a real number, and Wλ(G) =

∑
k≥1 d(G, k)kλ. Wλ(G) is called the Wiener-type

invariant of G associated to real number λ, see [3] for details. Note that d(G, 0)
and d(G, 1) represent the number of vertices and edges, respectively. The case of
λ = 1, −1 and −2 are called the classical Wiener index [21], reciprocal Wiener
index [16] and Harary index [2] and [17], respectively. The quantities WW =
1
2 [W1 + W2] and TSZ = 1

6W3 + 1
2W2 + 1

3W1 are the so-called hyper-Wiener index
and Tratch−Stankevich−Zefirov index [4].

The Cartesian product G×H of graphs G and H is a graph such that V (G×H)
= V (G)×V (H), and any two vertices (a, b) and (u, v) are adjacent in G×H if and
only if either a = u and b is adjacent with v, or b = v and a is adjacent with u, see
[7] for details. The join G = G1 + G2 of graphs G1 and G2 with disjoint vertex sets
V1 and V2 and edge sets E1 and E2 is the graph union G1∪G2 together with all the
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104 S. Hossein-Zadeh, A. Hamzeh and A. R. Ashrafi

edges joining V1 and V2. The composition G = G1[G2] of graphs G1 and G2 with
disjoint vertex sets V1 and V2 and edge sets E1 and E2 is the graph with vertex set
V1 ×V2 and u = (u1, v1) is adjacent with v = (u2, v2) whenever (u1 is adjacent with
u2) or (u1 = u2 and v1 is adjacent with v2),[7, p. 185]. The disjunction G ∨ H of
graphs G and H is the graph with vertex set V (G)×V (H) and (u1, v1) is adjacent
with (u2, v2) whenever u1u2 ∈ E(G) or v1v2 ∈ E(H). The symmetric difference
G ⊕ H of two graphs G and H is the graph with vertex set V (G) × V (H) and
E(G ⊕ H) = {(u1, u2)(v1, v2) | u1v1 ∈ E(G) or u2v2 ∈ E(H) but not both}.

The first Zagreb index was originally defined as M1(G) =
∑

u∈V (G) d(u)2. The
first Zagreb index can be also expressed as a sum over edges of G, M1(G) =∑

uv∈E(G)[d(u) + d(v)], where d(x) denotes the degree of vertex x in G. We re-
fer the reader to [18] for the proof of this fact and for more information on Zagreb
index.

Throughout this paper, Cn, Pn, Kn and Sn denote the cycle, path, complete
and star graphs on n vertices. Also, Km,n denotes the complete bipartite graph.
The complement of a graph G is a graph H on the same vertices such that two
vertices of H are adjacent if and only if they are not adjacent in G. The graph H
is usually denoted by Ḡ. Our other notations are standard and taken mainly from
[1, 6, 20].

2 Main Results

In this section, some exact formulae for the Wiener-type invariants of the Cartesian
product, composition, join, disjunction and symmetric difference of graphs are pre-
sented. We begin with the following crucial lemma related to distance properties of
some graph operations.

Lemma 2.1. Let G and H be graphs. Then we have:

(a) |V (G × H)| = |V (G ∨ H)| = |V (G[H ])| = |V (G ⊕ H)| = |V (G)| · |V (H)|,
|E(G × H)| = |E(G)| · |V (H)| + |V (G)| · |E(H)|,
|E(G + H)| = |E(G)| + |E(H)| + |V (G)| · |V (H)|,
|E(G[H ])| = |E(G)| · |V (H)|2 + |E(H)| · |V (G)|,

|E(G ∨ H)| = |E(G)| · |V (H)|2 + |E(H)| · |V (G)|2 − 2|E(G)| · |E(H)|,
|E(G ⊕ H)| = |E(G)| · |V (H)|2 + |E(H)| · |V (G)|2 − 4|E(G)| · |E(H)|.

(b) G × H is connected if and only if G and H are connected.
(c) If (a, c) and (b, d) are vertices of G×H then dG×H((a, c), (b, d)) = dG(a, b)+

dH(c, d).
(d) The Cartesian product, join, composition, disjunction and symmetric dif-

ference of graphs are associative and all of them are commutative except from
composition.
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(e) dG+H(u, v) =

⎧⎨
⎩

0 u = v
1 uv ∈ E(G) or uv ∈ E(H) or (u ∈ V (G) v ∈ V (H))
2 otherwise

.

(f) dG[H]((a, b), (c, d)) =

⎧⎪⎪⎨
⎪⎪⎩

dG(a, c) a �= c
0 a = c & b = d
1 a = c & bd ∈ E(H)
2 a = c & bd �∈ E(H)

.

(g) dG∨H((a, b), (c, d)) =

⎧⎨
⎩

0 a = c & b = d
1 ac ∈ E(G) or bd ∈ E(H)
2 otherwise

.

(h) dG⊕H((a, b), (c, d)) =

⎧⎨
⎩

0 a = c & b = d
1 ac ∈ E(G) or bd ∈ E(H) but not both
2 otherwise

.

Proof. The parts (a−e) are consequences of definitions and some well-known results
of the book of Imrich and Klavžar, [7]. For the proof of (f−h) we refer to [11].

The Wiener index of the Cartesian product graphs was studied in [5, 19]. In
[14], Klavžar, Rajapakse and Gutman computed the Szeged index of the Cartesian
product graphs. The present authors, [8, 9, 10, 11, 12, 13, 22], computed some exact
formulae for the hyper-Wiener, vertex PI, edge PI, the first Zagreb, the second
Zagreb, the edge Wiener and the edge Szeged indices of some graph operations.
The aim of this section is to continue this program for computing the Wiener-type
invariants for five graph operations.

It is easy to see that Wλ(G) =
∑l

k=1 d(G, k)kλ, where l = diam(G) denotes
diameter of the graph G. Define α(k, r) =

∑k
i=1 ir. In the following simple lemma,

we compute Wλ for five classes of known graphs.

Lemma 2.2. The following statements are hold:
1) Wλ(Pn) = nα(n − 1, λ) − α(n − 1, λ + 1),
2) Wλ(Kn) =

(
n
2

)
,

3) Wλ(Sn) = (n − 1) +
(
n−1

2

)
2λ,

4) Wλ(Km,n) = mn + 2λ(
(

m
2

)
+

(
n
2

)
),

5) Wλ(Cn) =
{

nα(n
2 − 1, λ) + (n

2 )λ n
2 n is even

nα(n−1
2 , λ) n is odd

.

Proposition 2.3. Let G and H be connected graphs. Then Wλ(G+H) = |E(G)|+
|E(H)| + |V (G)||V (H)| + 2λ(|E(Ḡ)| + |E(H̄)|).
Proof. By Lemma 2.1, we have:

Wλ(G + H) =
2∑

k=1

d(G + H, k)kλ

= d(G + H, 1) + d(G + H, 2)2λ

= |E(G)| + |E(H)| + |V (G)||V (H)| + 2λ
(|E(Ḡ)| + |E(H̄)|) ,
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proving the result.

Corollary 2.4. The reciprocal Wiener index of G + H is computed as follows:

W−1(G + H) = |E(G)| + |E(H)| + |V (G)||V (H)| + 1
2

(|E(Ḡ)| + |E(H̄)|) .

Corollary 2.5. The Harary index of G + H is computed as follows:

W−2(G + H) = |E(G)| + |E(H)| + |V (G)||V (H)| + 1
4

(|E(Ḡ)| + |E(H̄)|) .

Corollary 2.6. The Tratch-Stankevich-Zefirov index of G + H is computed as
follows:

TSZ(G + H) = |E(G)| + |E(H)| + |V (G)||V (H)| + 4
(|E(Ḡ)| + |E(H̄)|).

Corollary 2.7.(See [11, Theorem 2]) Let G and H be graphs. Then WW (G+H) =
3
2 |V (G)|2 + 3

2 |V (H)|2 − 2|E(H)| − 2|E(G)| − 3
2 |V (G)| − 3

2 |V (H)| + |V (G)||V (H)|.
Corollary 2.8.(see [11, Corollary of Theorem 2].) Suppose G1, G2, ..., Gn are
graphs. Then

Wλ(G1 + G2 + · · · + Gn) = (1 − 2λ)

n∑
i=1

|E(Gi)| +
∑

1≤i<j≤n

|V (Gi)||V (Gj)| + 2λ

n∑
i=1

(|V (Gi)|
2

)
In particular,

WW (G1 + ... + Gn) =
n∑

i=1

(
3
(|Vi|

2

)
− 2|Ei|

)
+

1
2

n∑
i�=j,i,j=1

|Vi||Vj |

and WW (nG) = 1
2 (n2 + 2n)|V (G)|2 − 2n|E(G)| − 3n

2 |V (G)|, where nG denotes the
join of n copy of G.

Proof. By a simple calculation,

Wλ(G1 + G2 + · · · + Gn) =

n∑
i=1

|E(Gi)| +
∑

1≤i<j≤n

|V (Gi)||V (Gj)| + 2λ

[
n∑

i=1

|E(Ḡi)|
]

= (1 − 2λ)

n∑
i=1

|E(Gi)| +
∑

1≤i<j≤n

|V (Gi)||V (Gj)| + 2λ

n∑
i=1

(|V (Gi)|
2

)
,

as desired.

Consider a complete n-partite graph G = Km1,m2,...,mn containing v = |V (G)|
vertices, Figure 1. By definition, in this graph the set of vertices can be partitioned
into subsets V1, V2, ..., Vn of V such that for every i, 1 ≤ i ≤ n, there is no edge
between the vertices of Vi.
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Figure 1. The Complete n-Partite Graph.

By the previous corollary, one can see that

Wλ(Km1,m2,...,mn) =
∑

1≤i<j≤n

mimj + 2λ
n∑

i=1

(
mi

2

)
.

Proposition 2.9. Let G and H be graphs. Then Wλ(G ∨ H) = |E(G)||V (H)|2
+ |E(H)||V (G)|2 − 2|E(G)||E(H)| + 2λ

(|V (G)||E(H̄)| + |V (H)||E(Ḡ)| +
2|E(Ḡ)||E(H̄)|).
Proof. By Lemma 2.1 and definition of disjunction,

Wλ(G ∨ H) =
2∑

k=1

d(G ∨ H, k)kλ

= d(G ∨ H, 1) + d(G ∨ H, 2)2λ

= |E(G)||V (H)|2 + |E(H)||V (G)|2 − 2|E(G)||E(H)|
+ 2λ

(|V (G)||E(H̄)| + |V (H)||E(Ḡ)| + 2|E(Ḡ)||E(H̄)|) ,

proving the result.

Corollary 2.10. The reciprocal Wiener index of G ∨ H is computed as follows:

W−1(G ∨ H) = |E(G)||V (H)|2 + |E(H)||V (G)|2 − 2|E(G)||E(H)|
+

1
2

(|V (G)||E(H̄)| + |V (H)||E(Ḡ)| + 2|E(Ḡ)||E(H̄)|) .

Corollary 2.11. The Harary index of G ∨ H is computed as follows:

W−2(G ∨ H) = |E(G)||V (H)|2 + |E(H)||V (G)|2 − 2|E(G)||E(H)|
+

1
4

(|V (G)||E(H̄)| + |V (H)||E(Ḡ)| + 2|E(Ḡ)||E(H̄)|) .
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Corollary 2.12. The Tratch-Stankevich-Zefirov index of G ∨ H is computed as
follows:

TSZ(G ∨ H) = |E(G)||V (H)|2 + |E(H)||V (G)|2
− 2|E(G)||E(H)| + 4(|V (G)||E(H̄)|
+ |V (H)||E(Ḡ)| + 2|E(Ḡ)||E(H̄)|).

Corollary 2.13.(See [11, Theorem 4].) Let G and H be graphs. Then WW (G ∨
H) = 3

(|V (G)||V (H)|
2

)
+ 4|E(G)||E(H)| − 2|V (H)|2|E(G)| − 2|V (G)|2|E(H)|.

Proposition 2.14. Let G and H be graphs. Then the Wiener-type invariant
of the symmetric difference of G and H is: Wλ(G ⊕ H) = 2λ(2|E(G)||E(H)|
+ |V (H)||E(Ḡ)| + |V (G)||E(H̄)| + 2|E(H̄)||E(Ḡ)|) + |E(G)||V (H)|2 +
|E(H)||V (G)|2 − 4|E(G)||E(H)|.
Proof. By Lemma 2.1 and definition of symmetric difference of two graphs, we
have:

Wλ(G ⊕ H) =
2∑

k=1

d(G ⊕ H, k)kλ

= d(G ⊕ H, 1) + d(G ⊕ H, 2)2λ

= |E(G)||V (H)|2 + |E(H)||V (G)|2 − 4|E(G)||E(H)|
+ 2λ

(
2|E(G)||E(H)| + |V (H)||E(Ḡ)| + |V (G)||E(H̄)|

+ 2|E(H̄)||E(Ḡ)|) ,

proving the result.

Corollary 2.15. The reciprocal Wiener index of G ⊕ H is computed as follows:

W−1(G ⊕ H) = |E(G)||V (H)|2 + |E(H)||V (G)|2 − 4|E(G)||E(H)|
+

1
2
(2|E(G)||E(H)| + |V (H)||E(Ḡ)| + |V (G)||E(H̄)|

+ 2|E(H̄)||E(Ḡ)|).

Corollary 2.16. The Harary index of G ⊕ H is computed as follows:

W−2(G ⊕ H) = |E(G)||V (H)|2 + |E(H)||V (G)|2 − 4|E(G)||E(H)|
+

1
4

(
2|E(G)||E(H)| + |V (H)||E(Ḡ)| + |V (G)||E(H̄)|

+ 2|E(H̄)||E(Ḡ)|)
Corollary 2.17. The Tratch-Stankevich-Zefirov index of G ⊕ H is computed as
follows:

1
6
W3(G ⊕ H) +

1
2
W2(G ⊕ H) +

1
3
W1(G ⊕ H) =
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= |E(G)||V (H)|2 + |E(H)||V (G)|2 − 4|E(G)||E(H)| + 4(2|E(G)||E(H)|
+|V (H)||E(Ḡ)| + |V (G)||E(H̄)| + 2|E(H̄)||E(Ḡ)|)

Corollary 2.18.(See [11, Theorem 5].) Let G and H be connected graphs. Then
WW (G⊕H) = 3

(|V (G)||V (H)|
2

)
+8|E(G)||E(H)|−2|V (H)|2|E(G)|−2|V (G)|2|E(H)|.

Proposition 2.19. Let G and H be graphs. Then Wλ(G[H ]) = |V (H)|2Wλ(G) +
|V (G)||E(H)| + 2λ|V (G)||E(H̄)|.
Proof. Suppose d1(G[H ], k) and d2(G[H ], k) denote the number of 2-subsets {(a, b), (x, y)}
such that dG[H]((a, b), (x, y)) = k, a = x and a �= x, respectively. In the first case,
by Lemma 2.1 dG[H]((a, b), (x, y)) ≤ 2 and so,

Wλ(G[H ]) =
2∑

k=1

d1(G[H ], k)kλ +
dG∑
k=1

d2(G[H ], k)kλ

= d1(G[H ], 1) + 2λd1(G[H ], 2) + |V (H)|2Wλ(G)
= |V (G)||E(H)| + 2λ|V (G)||E(H̄)| + |V (H)|2Wλ(G),

proving the result.

Corollary 2.20. The reciprocal Wiener index of G[H ] is computed as follows:

W−1(G[H ]) = |V (H)|2W−1(G) + |V (G)||E(H)| + 1
2
|V (G)||E(H̄)|.

Corollary 2.21. The Harary index of G[H ] is computed as follows:

W−2(G[H ]) = |V (H)|2W−2(G) + |V (G)||E(H)| + 1
4
|V (G)||E(H̄)|.

Corollary 2.22. The Tratch-Stankevich-Zefirov index of G[H ] is computed as
TSZ(G[H ]) = |V (H)|2TSZ(G) + |V (G)||E(H)| + 4|V (G)||E(H̄)|.
Corollary 2.23.(See [11, Theorem 3].) Let G and H be graphs and G be connected.
Then WW (G[H ]) = |V (H)|2WW (G) + |V (G)|

2 (WW (2H) − |V (H)|2).

3 Bounds on Wiener-Type Invariants of Graphs

In this section some bounds on Wiener-type invariants of graphs are computed. We
also find necessary and sufficient conditions for sharpness of these bounds.

Proposition 3.1. Let G be a graph with exactly n vertices and m edges. If λ ≥ 0
then

2λ−1M1 + m(1 − 2λ) + lλ
((n

2

)
− 1

2
M1

)
≥ Wλ(G) ≥ 2λ−1M1 + m(1 − 2λ) + 3λ

((n

2

)
− 1

2
M1

)
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and if λ ≤ 0 then

2λ−1M1 + m(1 − 2λ) + lλ
((n

2

)
− 1

2
M1

)
≤ Wλ(G) ≤ 2λ−1M1 + m(1 − 2λ) + 3λ

((n

2

)
− 1

2
M1

)
.

Moreover, if G is triangle and quadrangle free then the equalities hold if and only
if diam(G) = 3.

Proof. Suppose λ ≥ 0. By definition and [23, Eqs. 4 and 5],

Wλ(G) =
l∑

k=1

d(G, k)kλ

= d(G, 1) + 2λd(G, 2) +
∑
k≥3

d(G, k)kλ

≥ m + 2λ(
1
2
M1 − m) + 3λ

∑
k≥3

d(G, k)

= 2λ−1M1 + m(1 − 2λ) + 3λ

((
n

2

)
− 1

2
M1

)
,

as desired. On the other hand,

Wλ(G) =
l∑

k=1

d(G, k)kλ

= d(G, 1) + 2λd(G, 2) +
∑
k≥3

d(G, k)kλ

≤ 2λ−1M1 + m(1 − 2λ) + lλ
((

n

2

)
− 1

2
M1

)
.

The second part is an immediate consequence of above inequalities.

Proposition 3.2. Let G and H be graphs and R and S defined as follows:

R =
1
2
|V (G)|M1(H)(2λ − dλ) +

1
2
|V (H)|M1(G)(2λ − dλ)

+4|E(G)||E(H)|(2λ − dλ) + dλ

(|V (G)||V (H)|
2

)
+(1 − 2λ)|V (G)||E(H)| + (1 − 2λ)|V (H)||E(G)|,

S =
1
2
|V (G)|M1(H)(2λ − 3λ) +

1
2
|V (H)|M1(G)(2λ − 3λ)

+4|E(G)||E(H)|(2λ − 3λ) + 3λ

(|V (G)||V (H)|
2

)
+(1 − 2λ)|V (G)||E(H)| + (1 − 2λ)|V (H)||E(G)|.
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If λ ≥ 0 then R ≥ Wλ(G × H) ≥ S and if λ ≤ 0 then S ≥ Wλ(G × H) ≥ R.
Moreover, if G × H is triangle and quadrangle free then the equalities hold if and
only if diam(G × H) = 3.

Proof. Suppose λ ≥ 0. By Lemma 2.1 and [8, Theorem 1], we have:

Wλ(G × H) ≥ 2λ−1M1(G × H) + 3λ

((
nG×H

2

)
− 1

2
M1(G × H)

)
+(1 − 2λ)mG×H

= 2λ−1 (|V (G)|M1(H) + |V (H)|M1(G) + 8|E(G)||E(H)|)
+ 3λ

((|V (G)||V (H)|
2

)
− 1

2
(|V (G)|M1(H) + 8|E(G)||E(H)|

)

+ (1 − 2λ) (|V (G)||E(H)| + |V (H)||E(G)|) − 1
2
3λ|V (H)|M1(G)

=
1
2
|V (G)|M1(H)(2λ − 3λ) +

1
2
|V (H)|M1(G)(2λ − 3λ)

+ 4|E(G)||E(H)|(2λ − 3λ) + 3λ

(|V (G)||V (H)|
2

)
+ (1 − 2λ)|V (G)||E(H)| + (1 − 2λ)|V (H)||E(G)|.

Let d denote the diameter of G × H . Then

Wλ(G × H) ≤ 1
2
|V (G)|M1(H)(2λ − dλ) +

1
2
|V (H)|M1(G)(2λ − dλ)

+ 4|E(G)||E(H)|(2λ − dλ) + dλ

(|V (G)||V (H)|
2

)
+ (1 − 2λ)|V (G)||E(H)| + (1 − 2λ)|V (H)||E(G)|.

We now assume that λ ≤ 0. Then,

Wλ(G × H) ≤ 1
2
|V (G)|M1(H)(2λ − 3λ) +

1
2
|V (H)|M1(G)(2λ − 3λ)

+ 4|E(G)||E(H)|(2λ − 3λ) + 3λ

(|V (G)||V (H)|
2

)
+ (1 − 2λ)|V (G)||E(H)| + (1 − 2λ)|V (H)||E(G)|

and,

Wλ(G × H) ≥ 1
2
|V (G)|M1(H)(2λ − dλ) +

1
2
|V (H)|M1(G)(2λ − dλ)

+ 4|E(G)||E(H)|(2λ − dλ) + dλ

(|V (G)||V (H)|
2

)
+ (1 − 2λ)|V (G)||E(H)| + (1 − 2λ)|V (H)||E(G)|,

which completes our argument.

Acknowledgement. We are greatly indebted to the referees for their corrections
and helpful remarks.
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