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MOMENT DECAY RATES OF

STOCHASTIC DIFFERENTIAL EQUATIONS

WITH TIME-VARYING DELAY

Svetlana Janković and Gorica Pavlović

Abstract

One of the most important questions, especially in applications, is how
to choose a decay function in the study of stability for a concrete equation.
Motivated by the fact that the coefficients of the considered equation mainly
suggest the choice of the decay function, the point of analysis in the paper
is to carry out the Lyapunov function approach and to state coercivity con-
ditions dependent on decay in the study of the pth moment stability with a
general decay rate for a certain stochastic differential equation with variable
time delay. Some criteria including the usual exponential decay are discussed,
particularly the ones with a concave decay, special cases of which are polyno-
mial and logarithmic decays. Some consequences and examples are given to
illustrate the theory.

1 Introduction

Stochastic differential delay equations (SDDE), as a special case of stochastic func-
tional differential equations, represent a mathematical formulation of dynamical
systems in science and engineering where some of the past states are included to
determine the present state. The significance of SDDEs has also become more evi-
dent in recent years due to their applications in modelling of real-life phenomena in
population dynamics, for instance. However, researchers hit upon enormous diffi-
culties in their attempt to solve and study even simple such equations. For example,
general criteria for the stability of the following SDDE with constant coefficients
dx(t) = [ax(t) + bx(t− τ)] dt + [cx(t) + dx(t− τ)] dw(t) have not been derived yet.
Moreover, SDDEs used in many applications are becoming more and more complex
and unsolvable in almost all cases. For that reason, the main interest in the field
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has been often referred to the existence and uniqueness of the solutions with a spe-
cial emphasis on stability problems. We refer the reader to monographs [2] by R.Z.
Has’minskii, [5] by G.S. Ladde and V. Lakshmikantham, [12, 14] by X. Mao and
[15] by S. Mohamed, among others, and the literature cited therein.

It is evident that there is numerous literature ion exponential stability in the
sense of pth mean or almost sure for SDDEs. We mention here [1, 7, 7] by K. Liu
et al., [3, 4] by S. Jankovic et al., [10] by J. Luo and [9, 11, 13, 17] by X. Mao, for
instance. However, it should be pointed out that some SDDEs are in fact stable but
with respect to a certain lower decay rate which is different from exponential decay,
for instance, polynomial or logarithmic one. For example, some illustrative examples
are given in [1, 6, 7, 8] justifying the investigation of mean square, pth mean or
almost sure stability with respect to an arbitrary decay rate which includes the
exponential rate as a special case. These examples gave a new impetus motivation
to formulate conditions dependent on decay functions guaranteeing the pth moment
stability for SDDEs considered in the paper.

It should also be pointed out that there are not many papers about SDDEs
referring to mean square, pth moment and almost sure stability with decay. We
call readers’ attention to [7, 8, 11, 18], for instance. It seems important, from the
theoretical point of view and even more for applications, to find some other more
applicable criteria to verify the required type of stability and thus to describe the
behavior of the solution with respect to the desired decay rate. The topic of the
paper are just some new criteria, based on the Lyapunov functions approach, for
the pth moment stability with decay of the solutions to a class of SDDEs with time-
varying lags. Note that in [7] similar problems are discussed under conditions that
are not comparable with the ones in the present paper.

The paper is organized as follows: In the remainder of this section, we introduce
some notations and notions needed in our investigation and we present SDDE which
will be the topic of our study. In Section 2, we state the main results – conditions
guaranteeing that the considered equation is pth moment stable with respect to an
arbitrary decay rate. Some criteria with a concave decay including the polynomial
and logarithmic decays as special cases are particularly discussed. The paper is
closed with Section 3, where some consequences and examples are given to illustrate
the usefulness of the theoretical considerations.

Throughout the paper, we assume that all random variables and processes are
given on a complete probability space (Ω,F , {Ft}t≥0, P ) with a natural filtration
{Ft}t≥0 satisfying the usual conditions (i.e., the filtration is right-continuous and
F0 contains all P-null sets). As usual, let | · | denote the Euclidean norm in Rd and
|| · || the matrix trace-norm, that is, ||A|| =

√
trace(AT A) for a matrix A, where

AT is the transpose of A. For a fixed τ > 0, denote that C([−τ, 0]; Rd) is the family
of Rd-valued continuous functions ϕ defined on [−τ, 0], equipped with the norm
||ϕ|| = sups∈[−τ,0] |ϕ(s)|. For p > 0, let Lp(Ω,F0, C([−τ, 0]; Rd)) be the family of
all C([−τ, 0];Rd)-valued F0-adapted random variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0}
satisfying E||ξ||p < ∞.

Suppose that there exist continuously differentiable functions ρi : R+ → R,
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i = 1, . . . , n, satisfying the following conditions,

ρi(t) ≤ t, ρ′i(t) ≥ 1, t ≥ 0. (1)

From here,
t + ρi(0) ≤ ρi(t), ρ−1

i (t) ≤ t− ρi(0), t ≥ 0, (2)

where ρ−1
i (·) is the inverse function of ρi(·). Likewise, let us just denote that

τ = max{−ρi(0), i = 1, . . . , n}.
The topic of our investigation is the following SDDE with time-varying lags,

dx(t) = F (x(t), x(ρ1(t)), . . . , x(ρn(t)), t) dt (3)
+ G(x(t), x(ρ1(t)), . . . , x(ρn(t)), t) dw(t), t ≥ 0,

with the initial condition x0 = ξ ∈ Lp(Ω,F0, C([−τ, 0], Rd)). The functions F :
Rd × Rd×n × R+ → Rd and G : Rd × Rd×n × R+ → Rd×m are Borel measurable,
w = {w(t),Ft, t ≥ 0} is an m-dimensional Brownian motion and x(t) is an unknown
stochastic process.

An Ft-adapted process x = {x(t),−τ ≤ t ≤ ∞} is said to be the solution to
Eq. (3) if it satisfies a.s. the initial condition for t ∈ [−τ, 0] and the corresponding
integral equation for every t ≥ 0.

Since our investigation is focused on stability problems, we assume with no
emphasis on conditions that there exists a unique global solution x(t; ξ), t ∈ [−τ,∞)
to Eq. (3) satisfying E supt∈[−τ,∞) |x(t; ξ)|p < ∞ for p ≥ 0 (for more details see [14],
for instance), as well as that all the Lebesgue and Ito integrals employed further
are well defined.

For the stability purpose, we usually assume that F (0, 0, . . . , 0, t) ≡ 0 and
G(0, 0, . . . , 0, t) ≡ 0, so that Eq. (3) admits a trivial solution x(t; 0) ≡ 0.

Before formulating our stability criteria, let us give the general definition of the
pth moment stability with a certain decay function.

Definition 1. Let the function λ ∈ C(R+; R+) be increasing and let λ(t) ↑ ∞ as
t →∞. Eq. (3) (or the trivial solution) is said to be pth moment stable with decay
λ(t) of order γ if there exists a pair of constants γ > 0 and c(ξ) > 0 such that

E|x(t; ξ)|p ≤ c(ξ) · λ−γ(t), t ≥ 0

holds for any ξ ∈ Lp(Ω,F0, C([−τ, 0], Rd)), or equivalently,

lim sup
t→∞

ln E|x(t; ξ)|p
ln λ(t)

≤ −γ.

Obviously, replacing the decay function λ(t) by et, 1 + t and ln(1 + t) leads to
the usual moment stability with exponential, polynomial and logarithmic decays,
respectively.

Since our investigation is based on the Lyapunov functions approach, we usually
introduce the following differential operator associated to Eq. (3).
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Let C2,1(Rd × R+; R+) denote the family of all functions V (x, t) : Rd × R+ →
R+ with continuous second-order and first-order partial derivatives in x and t,
respectively. For each V (x, t) ∈ C2,1(Rd × R+;R+), define an operator LṼ from
Rd ×Rd×n ×R+ to R by

LṼ (x, y1, y2, . . . , yn, t) (4)
:= Vt(x, t) + Vx(x, t)F (x, y1, y2, . . . , yn, t)

+
1
2

trace[GT (x, y1, y2, . . . , yn, t)Vxx(x, t)G(x, y1, y2, . . . , yn, t)],

where we denote that (y1, y2, . . . , yn) ∈ Rd×n, Vt = ∂V
∂t , Vx =

(
∂V
∂x1

, . . . , ∂V
∂xd

)
and

Vxx =
(

∂2V
∂xi∂xj

)
d×d

.

2 Main results

An important question is how to choose a decay function in the study of stability
for a certain equation. Clearly, the coefficients of the considered equation mainly
suggest our choice of the decay rate. For instance, if LṼ would be contracted by
terms dependent on a function λ(t), it seems to be sometimes appropriate to use
λ(t) as the decay rate. The above mentioned illustrative examples in [1, 6, 7, 8] just
explain a motivation to state all the assertions in this section.

Before stating our main results, let us first introduce some general assumptions
about decay rates, coercivity terms and Lyapunov functions. Precisely, we suppose
that there exist functions λ, θ and V satisfying the following conditions:

(H1) The decay function λ ∈ C1(R+; R+) is strictly increasing (λ′(t) > 0) and
λ(t) ↑ ∞ as t →∞ (λ(0) = 1 for the simplicity reason).

(H2) The function θ ∈ C(R+;R+) is such that θ(t) = o
(
λδ(t)

)
as t →∞ for an

arbitrary δ > 0.

(H3) For some constants p > 0 and c1, c2 > 0, the function V ∈ C2,1(Rd ×
R+;R+) is such that

c1|x|p ≤ V (x, t) ≤ c2|x|p, (x, t) ∈ Rd ×R+. (5)

In addition to the general assumption (H1), we require some particular condi-
tions for the decay rates λ(t) in the forthcoming assertions. In other words, we state
coercivity conditions which will play a key role in our stability results.

Theorem 1. Let the assumptions (H1), (H2) and (H3) hold for the functions λ,
θ and V , respectively, and let 0 < λ′(t) ≤ λ(t) for t ≥ 0. Also, let there exist
constants µ > 0, ν1, . . . , νn > 0 and λ0, λ1, . . . , λn ≥ 0, where 0 ≤ c2

c1

∑n
i=1 λi < λ0,

such that

LṼ (x, y1, . . . , yn, t) ≤ −λ0V (x, t) +
n∑

i=1

λiλ
−νi(t)V (yi, t) + θ(t) · λ−µ(t) (6)
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for all x, y1, . . . , yn ∈ Rd and t ≥ 0. Then, Eq. (3) is pth moment stable in the
sense that, for all ξ ∈ Lp(Ω,F0, C([−τ, 0], Rd)),

lim sup
t→∞

ln E|x(t; ξ)|p
ln λ(t)

≤ −
[
µ ∧ ν1 ∧ . . . ∧ νn ∧

(c1

c2
λ0 −

n∑

i=1

λi

)]
. (7)

Proof. For simplicity, we will further use the notation x(t) instead of x(t; ξ) to
denote the solution to Eq. (3) for a given initial condition ξ.

First, we extend the decay function λ(t) so that λ(t) = 1 for −τ ≤ t ≤ 0. If
we put u(t) = ln λ(t), then u(t) = 0 for −τ ≤ t ≤ 0 and 0 < u′(t) ≤ 1 for t ≥ 0.
Note that although λ′(t) and u′(t) are discontinuous in t = 0, we will understand
without special emphasis that λ′(0) = λ′(0+) and u′(0) = u′(0+) in the sequel.

Let us denote that γ = µ ∧ ν1 ∧ . . . ∧ νn ∧
(

c1
c2

λ0 −
∑n

i=1 λi

)
and let ε ∈ (0, γ)

be arbitrary. The application of the Itô formula to e(γ−ε)u(t)V (x(t), t) yields

e(γ−ε)u(t)V (x(t), t)

= V (x(0), 0) + E

∫ t

0

(γ − ε)e(γ−ε)u(s)u′(s)V (x(s), s) ds

+
∫ t

0

e(γ−ε)u(s)LṼ (x(s), x(ρ1(s)), . . . , x(ρn(s)), s) ds

+
∫ t

0

e(γ−ε)u(s)Vx(x(s), s)G(x(s), x(ρ1(s)), . . . , x(ρn(s)), s) dw(s).

By virtue of condition (6) and the fact that u′(t) ≤ 1, we come to the following
relation,

Ee(γ−ε)u(t)V (x(t), t)

≤ EV (x(0), 0) + (γ − ε− λ0)E
∫ t

0

e(γ−ε)u(s)V (x(s), s) ds

+
n∑

i=1

λiE

∫ t

0

e(γ−ε−νi)u(s)V (x(ρi(s)), s) ds +
∫ t

0

θ(s)λγ−ε−µ(s) ds.

Since γ − ε − µ < 0, the assumption (H2) yields that there exists δ small enough
such that θ(t) = o

(
λδ(t)

)
and

∫∞
0

θ(s)λγ−ε−µ(s) ds < ∞. Moreover, by applying
condition (5), we see that

c1Ee(γ−ε)u(t)|x(t)|p (8)
≤ Ee(γ−ε)u(t)V (x(t), t)

≤ c2E||ξ||p + [c2(γ − ε)− c1λ0)]E
∫ t

0

e(γ−ε)u(s)|x(s)|p ds

+c2

n∑

i=1

λiE

∫ t

0

e(γ−ε−νi)u(s)|x(ρi(s))|p ds +
∫ ∞

0

θ(s)λγ−ε−µ(s) ds.



120 Svetlana Janković and Gorica Pavlović

To estimate the integrals E
∫ t

0
e(γ−ε−νi)u(s)|x(ρi(s))|p ds, we use the properties (1)

and (2) of the functions ρi(t). If we put ρi(s) = v, then v = ρi(s) ≤ s ≤ t and
dv = ρ′i(s) ds ≥ ds. On the other hand, since 0 ≤ s = ρ−1

i (v) ≤ v − ρi(0) ≤ v + τ ,
we see that −τ ≤ v ≤ t. Moreover, since γ − ε− νi < 0, we derive

E

∫ t

0

e(γ−ε−νi)u(s)|x(ρi(s))|pds = E

∫ t

0

λγ−ε−νi(s)|x(ρi(s))|p ds (9)

≤ E

∫ t

−τ

λγ−ε−νi(v)|x(v)|p dv

≤ E||ξ||pτ + E

∫ t

0

e(γ−ε)u(v)|x(v)|p dv.

This estimate and (8) yield

Ee(γ−ε)u(t)|x(t)|p

≤ c(ξ, ε) +

[
c2

c1

(
γ − ε +

n∑

i=1

λi

)
− λ0

]
E

∫ t

0

e(γ−ε)u(s)|x(s)|p ds,

where c(ξ, ε) = c2
c1

(
1 + τ

∑n
i=1 λi

)
E||ξ||p + 1

c1

∫∞
0

θ(s)λγ−ε−µ(s) ds < ∞. Having in
mind that c2

c1

(
γ − ε +

∑n
i=1 λi

)− λ0 < 0, we get

Ee(γ−ε)u(t)|x(t)|p ≤ c(ξ, ε), t ≥ 0,

that is,

lim sup
t→∞

ln E|x(t)|p
u(t)

≤ −(γ − ε).

The required result (7) follows straightforwardly letting ε → 0. ♦
Note that although λ−νi(t) ≤ 1 for t ≥ 0, the presence of λ−νi(t) on the right-

hand side in (6) is of the basic interest for Theorem 1; on the contrary, the relation
(9) could not be proved. Similar reasoning holds for all the assertions in the sequel.

Theorem 2. Let the assumptions (H1), (H2) and (H3) hold for the functions λ, θ
and V , respectively, and let 0 < λ′(t) ≤ λ(t) and λ(t + s) ≤ λ(t) · λ(s) for t, s ≥ 0.
Also, let there exist constants µ > 0, ν1, . . . , νn ≥ 0 and λ1, . . . , λn ≥ 0, where
µ > (ν1 ∨ . . . ∨ νn) ≥ 0 and 0 ≤ c2

c1

∑n
i=1 λiλ

−νi(τ) < λ0, such that condition (6)
holds for all x, y1, . . . , yn ∈ Rd and t ≥ 0. Then,

lim sup
t→∞

ln E|x(t; ξ)|p
ln λ(t)

≤ −(µ ∧ α∗) (10)

for all ξ ∈ Lp(Ω,F0, C([−τ, 0], Rd)), where α∗ ∈
(
0, c1

c2
λ0 −

∑n
i=1 λiλ

−νi(τ)
)

is the
unique root of the equation

c2

(
α + λα(τ)

n∑

i=1

λiλ
−νi(τ)

)
− c1λ0 = 0. (11)
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Proof. As above, let us extend λ(t) so that λ(t) = 1 for −τ ≤ t ≤ 0. If we take
u(t) = ln λ(t), then 0 < u′(t) ≤ 1 and u(t + s) ≤ u(t) + u(s) for t, s ≥ 0.

Let us denote that

h(α) = c2

(
α + λα(τ)

n∑

i=1

λiλ
−νi(τ)

)
− c1λ0, α ≥ 0.

We see that h(0) = c2

∑n
i=1 λiλ

−νi(τ) − c1λ0 < 0, h
(

c1
c2

λ0 −
∑n

i=1 λiλ
−νi(τ)

)
=

c2

∑n
i=1 λiλ

−νi(τ) ·
(
λ

c1
c2

λ0−
∑n

i=1 λiλ
−νi (τ)(τ)− 1

)
> 0 and h′(α) > 0. Therefore,

there exists a unique root α∗ ∈
(
0, c1

c2
λ0 −

∑n
i=1 λiλ

−νi(τ)
)

of the equation h(α) =
0, that is, of Eq. (11).

For an arbitrary ε ∈ (0, µ − (ν1 ∨ . . . ∨ νn)), if we apply the Itô formula to
e(µ−ε)u(s)V (x(t), t), conditions (5) and (6) and the fact that u(t)′ ≤ 1, we derive

c1Ee(µ−ε)u(t)|x(t)|p (12)

≤ c2E||ξ||p +
[
c2(µ− ε)− c1λ0

]
E

∫ t

0

e(µ−ε)u(s)|x(s)|p ds

+c2

n∑

i=1

λiE

∫ t

0

e(µ−ε−νi)u(s)|x(ρi(s))|p ds +
∫ t

0

θ(s)λ−ε(s) ds.

As before, if we take v = ρi(s) and apply the procedure just as in (8), where we use
the fact that µ− ε− νi > 0, we come to the following estimate,

E

∫ t

0

e(µ−ε−νi)u(s)|x(ρi(s))|p ds

≤ E

∫ t

−τ

e(µ−ε−νi)u(v+τ)|x(v)|p dv

≤ E

∫ t

−τ

e(µ−ε−νi)(u(v)+u(τ))|x(v)|p dv

≤ λµ−ε−νi(τ)E
∫ t

−τ

e(µ−ε−νi)u(v)|x(v)|p dv

≤ λµ−ε−νi(τ)
(

E||ξ||p τ + E

∫ t

0

e(µ−ε)u(v)|x(v)|p dv

)
.

This estimate together with (12) yields

Ee(µ−ε)u(s)|x(t)|p (13)
≤ c(ξ, ε, µ)

+

[
c2

c1

(
µ− ε + λµ−ε(τ)

n∑

i=1

λiλ
−νi(τ)

)
− λ0

]
E

∫ t

0

e(µ−ε)u(s)|x(s)|p ds,
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where

c(ξ, ε, µ) (14)

=
c2

c1
E||ξ||p

(
1 + τλµ−ε(τ)

n∑

i=1

λiλ
−νi(τ)

)
+

1
c1

∫ ∞

0

θ(s)λ−ε(s) ds < ∞.

We can now distinguish two cases. First, let µ ≤ α∗. Since

c2

c1

(
µ− ε + λµ−ε(τ)

n∑

i=1

λiλ
−νi(τ)

)
− λ0 =

1
c1

h(µ− ε) <
1
c1

h(α∗) = 0,

it follows from (13) that

E|x(t)|p ≤ c(ξ, ε, µ) · e−(µ−ε)u(t), t ≥ 0

and, therefore, (10) holds letting ε → 0.

Let µ > α∗. Then, from (6),

LṼ (x, y1, . . . , yn, t) ≤ −λ0V (x, t) +
n∑

i=1

λiλ
−νi(t)V (yi, t) + θ(t) · λ−α∗(t)

for all x, y1, . . . , yn ∈ Rd and t ≥ 0. By putting α∗ instead of µ in (13), we see that

Ee(α∗−ε)u(s)|x(t)|p
≤ c(ξ, ε, α∗)

+

[
c2

c1

(
α∗ − ε + λα∗−ε(τ)

n∑

i=1

λiλ
−νi(τ)

)
− λ0

]
E

∫ t

0

e(α∗−ε)u(s)|x(s)|p ds,

where c(ξ, ε, α∗) is of the form (14) with α∗ instead of µ. However, because

c2

c1

(
α∗ − ε + λα∗−ε(τ)

n∑

i=1

λiλ
−νi(τ)

)
− λ0 =

1
c1

h(α∗ − ε) <
1
c1

h(α∗) = 0,

then
E|x(t)|p ≤ c(ξ, ε, α∗) · e−(α∗−ε)u(t), t ≥ 0.

What remains is to let ε → 0 to obtain the desired result (10). Thus, the proof
becomes complete. ♦

Especially, if λ(t) = et, the previous assertions refer to the conditions under
which Eq. (3) is pth moment exponentially stable, that is,

lim sup
t→∞

ln E|x(t; ξ)|p
t

≤ −γ.

However, the next theorems refer to the pth moment stability with concave decays
(λ′′(t) ≤ 0). Although they are not valid for the pth moment exponential stability,
their importance is evident because of polynomial and logarithmic decays, λ(t) =
1 + t, λ(t) = ln(1 + t), λ(t) = ln ln(1 + t), for instance.
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Theorem 3. Let the assumptions (H1), (H2) and (H3) hold for the functions λ, θ
and V , respectively. Moreover, let λ ∈ C2(R+; R+) and λ′′(t) ≤ 0 for t ≥ 0. Also,
let there exist constants µ > 0, ν1, . . . , νn > 0, η1, . . . , ηn ≥ 0 and λ0, λ1, . . . , λn ≥ 0,
where 0 ≤ c2

c1

∑n
i=1 λiλ

′ηi(0) < λ0, such that

LṼ (x, y1, . . . , yn, t) (15)

≤ −λ0V (x, t) +
n∑

i=1

λiλ
−νi(t)λ′ηi(t)V (yi, t) + θ(t) · λ−µ(t)

for all x, y1, . . . , yn ∈ Rd and t ≥ 0. Then, Eq. (3) is pth moment stable in the
sense that, for all ξ ∈ Lp(Ω,F0, C([−τ, 0], Rd)),

lim sup
t→∞

ln E|x(t; ξ)|p
ln λ(t)

(16)

≤ −
[
µ ∧ ν1 ∧ . . . ∧ νn ∧

( c1

c2λ′(0)
λ0 − 1

λ′(0)

n∑

i=1

λiλ
′ηi(0)

)]
.

Proof. As above, we extend λ(t) so that λ(t) = 1 for −τ ≤ t ≤ 0, and we introduce
u(t) = ln λ(t) for −τ ≤ t < ∞.

Let us take γ = µ ∧ ν1 ∧ . . . ∧ νn ∧
(

c1
c2λ′(0)λ0 − 1

λ′(0)

∑n
i=1 λiλ

′ηi(0)
)

and apply
the Itô formula and condition (15). Then, for an arbitrary ε ∈ (0, γ),

c1Ee(γ−ε)u(t)|x(t)|p (17)

≤ c2E||ξ||p + c2(γ − ε)E
∫ t

0

e(γ−ε)u(s)u′(s)|x(s)|p ds

−c1λ0E

∫ t

0

e(γ−ε)u(s)|x(s)|p ds

+c2

n∑

i=1

λiE

∫ t

0

e(γ−ε−νi)u(s)λ′ηi(s)|x(ρi(s))|p ds +
∫ ∞

0

θ(s)λγ−ε−µ(s) ds.

Since u′′(t) =
(
λ′(t)/λ(t)

)′ =
[
λ′′(t)λ(t) − λ′2(t)

]
/λ2(t) < 0 for t ≥ 0, then u′(t)

decreases and, therefore, u′(t) ≤ λ′(0) for t ≥ 0. Likewise, λ′(t) ≤ λ′(0)λ(t) for
t ≥ 0 and λ′(t) = 0 for t < 0. If we take v = ρi(s), then λ′(s) ≤ λ′(ρi(s)) and
e(γ−ε−νi)u(s) ≤ e(γ−ε−νi)u(ρi(s)). Therefore,

E

∫ t

0

e(γ−ε−νi)u(s)λ′ηi(s)|x(ρi(s))|p ds

≤ E

∫ 0

−τ

e(γ−ε−νi)u(v)λ′ηi(v)|x(v)|p dv + E

∫ t

0

e(γ−ε−νi)u(v)λ′ηi(v)|x(v)|p dv

≤ λ′ηi(0)E
∫ t

0

e(γ−ε)u(v)|x(v)|p dv.
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In view of (17), we see that

Ee(γ−ε)u(t)|x(t)|p

≤ c(ξ, ε) +

[
c2λ

′(0)
c1

(γ − ε) +
c2

c1

n∑

i=1

λiλ
′ηi(0)− λ0

]
E

∫ t

0

e(γ−ε)u(s)|x(s)|p ds,

where c(ξ, ε) = c2
c1

E||ξ||p + 1
c1

∫∞
0

θ(s)λγ−ε−µ(s) ds < ∞. On the other hand, since
c2λ′(0)

c1
(γ − ε) + c2

c1

∑n
i=1 λiλ

′ηi(0)− λ0 < 0, then

E|x(t)|p ≤ c(ξ, ε) · e−(γ−ε)u(t), t ≥ 0

and, therefore, the proof becomes complete letting ε → 0. ♦
Theorem 4. Let the assumptions (H1), (H2) and (H3) hold for the functions λ, θ
and V , respectively, and let λ ∈ C2(R+;R+), λ′′(t) ≤ 0 and λ(t + s) ≤ λ(t) · λ(s)
for t, s ≥ 0. Also, let there exist constants µ > 0, ν1, . . . , νn ≥ 0, η1, . . . , ηn ≥ 0 and
λ0, λ1, . . . , λn ≥ 0, where µ > (ν1∨. . .∨νn), and 0 ≤ c2

c1

∑n
i=1 λiλ

−νi(τ)λ′ηi(0) < λ0,
such that condition (15) holds for all x, y1, . . . , yn ∈ Rd and t ≥ 0. Then, for all
ξ ∈ Lp(Ω,F0, C([−τ, 0], Rd)),

lim sup
t→∞

ln E|x(t; ξ)|p
ln λ(t)

≤ −(µ ∧ α∗), (18)

where α∗ ∈
(
0, c1

c2λ′(0)λ0 − 1
λ′(0)

∑n
i=1 λiλ

−νi(τ)λ′ηi(0)
)

is the unique root of the
equation

c2

(
λ′(0) · α + λα(τ)

n∑

i=1

λiλ
−νi(τ)λ′ηi(0)

)
− c1λ0 = 0. (19)

Proof. Let us take

h(α) = c2

(
λ′(0) · α + λα(τ)

n∑

i=1

λiλ
−νi(τ)λ′ηi(0)

)
− c1λ0, α ≥ 0.

It is easy to check that h(0) < 0, h
(

c1
c2λ′(0)λ0 − 1

λ′(0)

∑n
i=1 λiλ

−νi(τ)λ′ηi(0)
)

> 0
and h′(α) > 0, so that the equation h(α) = 0, that is, Eq. (19), has a unique root
α∗ ∈

(
0, c1

c2λ′(0)λ0 − 1
λ′(0)

∑n
i=1 λiλ

−νi(τ)λ′ηi(0)
)
.

The requirement λ′′(t) < 0 implies that λ′(t) and u′(t) decrease and λ′(t) <
λ′(0)λ(t), u′(t) < λ′(0). This fact and the procedure used in the proof of Theorem
2 yield finally, for µ ≤ α∗ and arbitrary ε ∈ (

0, µ− (ν1 ∨ . . . ∨ νn)
)
, that

Ee(µ−ε)u(s)|x(t)|p

≤ c(ξ, ε, µ) +

[
c2

c1

(
λ′(0)(µ− ε) + λµ−ε(τ)

n∑

i=1

λiλ
−νi(τ)λ′η(0)

)
− λ0

]

×E

∫ t

0

e(µ−ε)u(s)|x(s)|p ds,
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where c(ξ, ε, µ) = c2
c1

E||ξ||p + 1
c1

∫∞
0

θ(s)λ−ε(s) ds < ∞. Since the term multiplying

the integral E
∫ t

0
e(µ−ε)u(s)|x(s)|p ds is equal to 1

c1
h(µ− ε) < 1

c1
h(α∗) = 0, it follows

that E|x(t)|p ≤ c(ξ, ε, µ) · e−(µ−ε)u(t), t ≥ 0. The proof holds now straightforwardly
by putting ε → 0.

For µ > α∗, we start from (15) with α∗ instead of µ and repeat completely the
procedure in the second part of the proof of Theorem 2. Finally, we deduce that
Ee(α∗−ε)u(s)|x(t)|p ≤ c(ξ, ε, α∗) for t ≥ 0, which completes the proof. ♦

Note that Theorem 1 and Theorem 3 contain conditions under which Eq. (3) is
absolutely pth moment stable with a certain decay, in the sense that the conditions
of these assertions do not depend on τ . Therefore, Eq. (3) is always pth moment
stable without regard to how large or small is τ .

3 Some consequences and examples

The application of the previous stability criteria could be endangered in many con-
crete cases because of the difficulties in finding Lyapunov functions V (x, t) satisfying
conditions (6) and (15). Motivated by papers [3, 4, 16], for p ≥ 2 we can state a
more effective and relatively easy way to verify criteria, in fact the consequences of
Theorems 1–4, by taking particularly V (x, t) ≡ |x|p. Then, in view of (4),

LṼ (x, y1, y2, . . . , yn, t) (20)

≤ p|x|p−2|xT F (x, y1, . . . , yn, t)|+ p(p− 1)
2

|x|p−2||G(x, y1, y2, . . . , yn, t)||2

for all x, y1, . . . , yn ∈ Rd and t ≥ 0, so that conditions (6) and (15) become, respec-
tively,

LṼ (x, y1, y2, . . . , yn, t) ≤ −λ0|x|p +
n∑

i=1

λiλ
−νi(t)|yi|p + θ(t)·λ−µ(t) (21)

LṼ (x, y1, y2, . . . , yn, t) ≤ −λ0|x|p+
n∑

i=1

λiλ
−νi(t)λ′ηi(t)|yi|p + θ(t)·λ−µ(t). (22)

In fact, Eq. (3) could be regarded as a stochastically perturbed system with
delay,

ẋ(t) = F (x(t), x(ρ1(t)), . . . , x(ρn(t)), t) dt t ≥ 0.

Moreover, if F (x, y1, . . . , yn, t) ≡ f(x, t) + h(y1, . . . , yn, t), the equation

dx(t) = [f(x(t), t) + h(x(ρ1(t)), . . . , x(ρn(t)), t) (23)
+G(x(t), x(ρ1(t)), . . . , x(ρn(t)), t) dw(t), t ≥ 0,

could be understood as a stochastic perturbation of the deterministic system

ẋ(t) = f(x(t), t), t ≥ 0, (24)
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where the perturbation depends on several states of the past with variable lags.
Note that the mean square exponential stability for Eq. (23) was earlier studied in
[11], for instance, under some other conditions.

The basic task of robustness analysis in stochastic control theory, among other
things, is focused on conditions guaranteeing that the stable system (24) would
remain stable in spite of random excitations transforming it in the stochastic system
(23). In connection with our considerations in the paper, the main question is: If
Eq. (24) is pth moment stable, what amount of stochastic perturbation can be
tolerated by this equation without losing the property of stability, that is, under
what assumptions would Eq. (23) remain stable? The following assertions refer to
such a problem. To prove them, we need the elementary inequalities: For p ≥ 2
and a, b ≥ 0,

ap−1b ≤ p− 1
p

ap +
1
p

bp, ap−2b2 ≤ p− 2
p

ap +
2
p

bp. (25)

Corollary 1. Let the decay function λ(t) satisfy the conditions in Theorem 1 and let
(H2) hold for the functions θ1(t) and θ2(t). Let also there exist constants µ1, µ2 > 0
and l0, li, l̄i, ρi, ρ̄i ≥ 0, i = 1, . . . , n, such that

xT f(x, t) ≤ −l0|x|2, (26)

|h(y1, y2, . . . , yn, t)| ≤
n∑

i=1

liλ
−ρi(t)|yi|+ θ1(t) λ−µ1(t), (27)

||G(x, y1, . . . , yn, t)||2 ≤
n∑

i=1

l̄iλ
−ρ̄i(t)|yi|2 + θ2(t)λ−µ2(t) (28)

for all x, y1, . . . , yn ∈ Rd and t ≥ 0, and let

l0 >
p− 1

2
+

n∑

i=1

[
li +

p− 1
2

l̄i

]
. (29)

Then, Eq. (23) is pth moment stable with decay λ(t) of order γ, where

γ = µ1p∧µ2p

2
∧ρ1∧ρ̄1∧. . .∧ρn∧ρ̄n∧

{
p

(
l0 −

n∑

i=1

[
li +

p− 1
2

l̄i

]
− p− 1

2

)}
. (30)

Proof. For V (x, t) ≡ |x|p, we find from (20) and (26), (27), (28) that

LṼ (x, y1, y2, . . . , yn, t)
= p|x|p−2

[
xT f(x, t) + xT h(y1, . . . , yn, t)

]

+
p(p− 1)

2
|x|p−2||G(x, y1, . . . , yn, t)||2

≤ −p l0|x|p + p|x|p−1

[
n∑

i=1

liλ
−ρi(t)|yi|+ θ1(t)λ−µ1(t)

]

+
p(p− 1)

2
|x|p−2

[
n∑

i=1

l̄iλ
−ρ̄i(t)|yi|2 + θ2(t)λ−µ2(t)

]
.
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By applying the inequalities (25), we compute finally that

LṼ (x, y1, y2, . . . , yn, t)

≤ −
(

p l0 − (p− 1)
n∑

i=1

[
liλ

−ρi(t) +
p− 2

2
l̄iλ

−ρ̄i(t)
]
− p(p− 1)

2

)
|x|p

+
n∑

i=1

[
liλ

−ρi(t) + (p− 1) l̄iλ
−ρ̄i(t)

] |yi|p

+θp
1(t)λ−µ1p(t) + (p− 1)θ

p
2
2 (t)λ−

µ2p
2 (t).

If we take νi = ρi ∧ ρ̄i, µ = µ1p ∧ µ2p
2 and θ(t) = p

(
θp
1(t) ∨ θ

p
2
2 (t)

)
, we derive that

(21) holds, or equivalently, (6) holds with

λ0 = p l0 − (p− 1)
n∑

i=1

[
li +

p− 2
2

l̄i

]
− p(p− 1)

2
, (31)

λi = li + (p− 1)l̄i, i = 1, . . . , n.

Thus, all the conditions of Theorem 1 are valid and, therefore, what remains is to
apply it to obtain the desired results. ♦
Corollary 2. Let the decay function λ(t) satisfy the conditions in Theorem 2 and let
(H2) hold for the functions θ1(t) and θ2(t). Let also there exist constants µ1, µ2 > 0
and l0, li, l̄i, ρi, ρ̄i ≥ 0, i = 1, . . . , n, such that conditions (26), (27), (28) hold and
let

p l0 >

n∑

i=1

[
li + (p− 1)l̄i

]
λ−νi(τ) + (p− 1)

n∑

i=1

[
li +

p− 2
2

l̄i

]
+

p(p− 1)
2

, (32)

where νi = ρi ∧ ρ̄i. Then, Eq. (23) is pth moment stable with decay λ(t) of
order γ, where γ = µ1p ∧ µ2p

2 ∧ α∗ and α∗ is the unique root of the equation
α + λα(τ)

∑n
i=1 λiλ

−νi(τ)− λ0 = 0, and λ0, λi are given with (31).

Proof. The proof follows straightforwardly by applying Theorem 2, where condi-
tion (32) is obtained from the condition

∑n
i=1 λiλ

−νi(τ) < λ0. ♦
Note that consequences analogous to Theorem 3 and Theorem 4 could be also

stated for Eq. (23).

Let us now give some examples to illustrate the above features explicitly.

Example 1 Let us investigate the pth moment stability, p ≥ 2, of the follow-
ing nonlinear one-dimensional SDDE with time-varying delays and dependent on
parameters a > 0 and q > 0,

dx(t) =
[
−a|x(t)|+ t · sinx(ρi(t))

(t + 1)3(ln(t + 1) + 1)
1
2 + |x(t)|

]
dt (33)

+

[
1− e−|x(ρ2(t))|

(t + 1)2 + x2(t)
+

cos t ·
√
|x(ρ1(t))|

(ln(t + 1) + 1)q + 1

]
dw(t), t ≥ 0,



128 Svetlana Janković and Gorica Pavlović

with an initial condition x0 = ξ ∈ Lp(Ω,F0, C([−τ, 0], R)). It is supposed here that
ρ1(t) and ρ2(t) satisfy conditions (1) and that τ = max{−ρ1(0),−ρ2(0)}.

It is easy to deduce that the Lipschitz and growth conditions hold for the coef-
ficients of this equation,

F (x, y1, y2, t) = −a|x|+ t sin y1

(t + 1)3(ln(t + 1) + 1)
1
2 + |x| ,

G(x, y1, y2, t) =
1− e−|y2|

(t + 1)2 + x2
+

cos t
√
|y1|

(ln(t + 1) + 1)q + 1
,

so that there exists a unique solution x(t; ξ), t ∈ [−τ,∞) of Eq. (33) satisfying
E supt∈[−τ,∞) |x(t; ξ)|p < ∞. The trivial solution also exists since F (0, 0, 0, t) ≡ 0,
G(0, 0, 0, t) ≡ 0.

Let us take V (x, t) = |x|p. Then, (15) holds with c1 = c2 = 1. In view of (20),
we have

LṼ (x, y1, y2, t) ≤ −ap |x|p +
p|x|p−1|y1|

(t + 1)2(ln(t + 1) + 1)
1
2

+ p(p− 1)
[ |x|p−2|y2|2

(t + 1)4
+
|x|p−2 cos2 t |y1|
(ln(t + 1) + 1)2q

]
,

where we used 1− e−x ≤ x and (a+ b)2 ≤ 2a2 +2b2. Having in mind conditions (6)
and (15), it is logical to take λ(t) = ln(t+1)+1. Then, λ′(t) = 1

t+1 , 0 < λ′(t) ≤ λ(t),
λ′′(t) < 0 and, moreover, λ(t + s) ≤ λ(t) · λ(s) for all t, s ≥ 0. Thus, the decay rate
λ(t) satisfies the conditions from all the assertions in Section 2.

In order to apply Theorems 1–4 to prove the pth moment stability of Eq. (33)
with respect to the decay rate λ(t) = ln(t + 1) + 1, we first need to verify that
conditions (21) and (22) hold. By applying the inequalities in (25), we see that

LṼ (x, y1, y2, t) (34)

≤ −[ap− (p− 1)(2p− 3)] |x|p + λ−
1
2 (t)λ′2(t) |y1|p

+2(p− 1)λ′4(t) |y2|p(p− 1)λ−2q(t) |y1|p + (p− 1) cos2p t λ−2q(t),

and since λ′(t) ≤ λ(t), then

LṼ (x, y1, y2, t)

≤ −[ap− (p− 1)(2p− 3)] |x|p + p λ−( 5
2∧2q)(t) |y1|p

+2(p− 1)λ−4(t) |y2|p + (p− 1) cos2p t λ−2q(t).

Therefore, condition (21) holds with θ(t) = (p − 1) cos2p t and µ = 2q, λ0 = ap −
(p− 1)(2p− 3), λ1 = p, λ2 = 2(p− 1), ν1 = 5

2 ∧ 2q, ν2 = 4.
The application of Theorem 1, precisely, condition c2

c1
(λ1 + λ2) < λ0, implies

that it must be

a >
(p + 1)(2p− 1)

p
. (35)
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Hence, Eq. (33) is pth moment stable with decay λ(t) in the sense that

lim sup
t→∞

ln E|x(t; ξ)|p
ln[ln(t + 1) + 1]

= lim sup
t→∞

ln E|x(t; ξ)|p
ln ln t

≤ −γ,

where, in view of (7),

γ = 2q ∧ 5/2 ∧ [
ap− (p + 1)(2p− 1)

]
/2. (36)

To apply Theorem 2, we must specify ρ1(t) and ρ2(t). Let ρ1(t) = t − e−t and
ρ2(t) = t − e−1

t+1 . Then, τ = e − 1 and λ(τ) = 2. Hence, c2
c1

[
λ1λ

−ν1(τ)λ′η1(0) +
λ2λ

−ν2(τ)λ′η2(0)
]

< λ0 yields

a > 2−( 5
2∧2q) +

(p− 1)(2p− 23
8 )

p
.

In view of (10), Eq. (33) is pth moment stable with γ = 2q ∧ α∗, where α∗ is the
unique root of the equation (11), that is, α∗ is such that

α∗ + 2α∗
[
p 2−( 5

2∧2q) +
p− 1

8

]
− ap + (p− 1)(2p− 3)] = 0.

Theorem 3 and Theorem 4 could be applied analogously since (22) follows from
(34),

LṼ (x, y1, y2, t)

≤ −[ap− (p− 1)(2p− 3)] |x|p + p λ−( 5
2∧2q)(t) |y1|p

+2(p− 1)λ−1(t) λ′3(t) |y2|p + (p− 1) cos2p t λ−2q(t),

where ν2 = 1, η1 = 0, η2 = 3 and θ(t), µ, l0, λ1, λ2, ν1 are as above.
Since λ′(0) = 1, the application of Theorem 3 yields to the same conditions (35)

and (36) as in Theorem 1. It is easy to deduce, however, that the application of
Theorem 4 requires stronger conditions than Theorem 2. ♦

Example 2 Let us consider the pth moment stability, p ≥ 2, of the following
two-dimensional SDDE with time-varying delays and dependent on parameters
a1, a2, α, β > 0,

dx1(t) =

[
−a1x1(t) +

e−αt
√

1 + x2
1(ρ1(t))

(t + 1)3
· x2(ρ2(t))
1 + x2

2(ρ2(t))

]
dt

+
ln(1 + |x2(ρ1(t))|)

t + 1
dw1(t)) (37)

dx2(t) =
[
−a2x2(t)− x1(ρ2(t))

(t + 1)2

]
dt

+
e−βtx

1
3
1 (ρ2(t))

(t + 1)2 + |x1(t)| dw1(t)− x2(ρ2(t))
(t + 1)3

dw2(t)
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with an initial condition x0 = ξ ∈ Lp(Ω,F0, C([−τ, 0], R)). It is easy to deduce the
existence of a unique solution x(t; ξ), as well as of the trivial solution.

If we take x(t) = (x1(t), x2(t))T , x(ρi(t)) = (x1(ρi(t)), x2(ρi(t)))T , i = 1, 2, and
denote that x = (x1, x2)T , yi = (y1i, y2i)T , respectively, we see that

F (x, y1, y2, t) =
[ −a1x1

−a2x2

]
+

[
e−αt

√
1+y2

11
(t+1)3 · y22

1+y2
22− y12

(t+1)2

]
≡ f(x, t) + h(y1, y2, t)

G(x, y1, y2, t) =




ln(1+|y21|)
t+1 0

e−βty
1
3
12

(t+1)2+|x1| − y22
(t+1)3


 .

Obviously, Eq. (37) could be understood as a stochastic perturbation of the
deterministic asymptotically stable system

[
dx1(t)
dx2(t)

]
=

[ −a1 0
0 −a2

]
·
[

x1(t)
x2(t)

]
.

To find conditions under which Eq. (37) remains stable in the sense of pth moment,
we will apply Corollary 1 and choose λ(t) = t + 1. Then,

xT f(x, t) ≤ −(a1 ∧ a2)|x|2,
|h(y1, y2, t)|2 ≤ 1

4
e−2αt(1 + y2

11)λ−6(t) + y2
12 λ−4(t)

≤ 1
4
|y1|2λ−6(t) + |y2|2 λ−4(t) +

1
4

e−2αtλ−6(t).

By using the elementary inequality (a + b + c)r ≤ (3r ∧ 1)(|a|r + |b|r + |c|r), r ≥
0, a, b, c ∈ R, we find that

|h(y1, y2, t)| ≤ 1
2
|y1|λ−3(t) + |y2|λ−2(t) +

1
2

e−αtλ−3(t).

Similarly,

||G(x, y1, y2, t)||2 ≤ y2
21λ

−2(t) + e−2βty
2
3
12λ

−4(t) + y2
22λ

−6(t)
≤ |y1|2λ−2(t) + |y2|2λ−4(t) + e−2βtλ−4(t).

It is now easy to apply condition (29) to conclude that Eq. (37) is pth moment
stable with polynomial decay if

a1 ∧ a2 >
3
2

p.

Then,

lim sup
t→∞

ln E|x(t; ξ)|p
ln(t + 1)

≤ −γ,

where, from (30), γ = 2 ∧ pα ∧ pβ ∧ p
(
a1 ∧ a2 − 3

2p
)
. ♦
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Let us close the paper with the following comments:

Note that all the previous assertions remain to be valid for SDDE with constant
delays, that is, if ρi(t) ≡ t− τi, τi = const > 0, τ = max{−τ1, . . . ,−τn}.

Moreover, all the assertions could be appropriately stated for stochastic dif-
ferential equations (without delay) by taking ρi(t) ≡ t and, to the authors’ best
knowledge, these assertions would represent new criteria to verify the pth moment
stability with decay for these equations.
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