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SOME CONDITIONS UNDER WHICH SUBSEQUENTIAL
CONVERGENCE FOLLOWS FROM (A,m) SUMMABILITY

İbrahim Çanak*, Ümit Totur, and Mehmet Dik

Abstract

In this paper, we obtain some conditions on a sequence under which sub-
sequential convergence [Math. Morav. 5, 19-56 (2001; Zbl 1047.40005)] of the
sequence follows from its (A, m) summability.

1 Introduction

Dik [1] introduced the concept of subsequential convergence, a generalization of
ordinary convergence, and proved several Tauberian type theorems to obtain subse-
quential convergence of a sequence out of its Abel summability. Later a number of
authors including Çanak et al.[3], Çanak and Totur [5] have investigated conditions
under which Abel summability implies subsequential convergence of a sequence.
Purpose of this work is to obtain some conditions on a sequence under which sub-
sequential convergence of the sequence follows from its (A,m) summability.

Now we give some definitions and notations.
Let u = (un) be a sequence of real numbers. Define

σ(m)
n (u) =

{
1

n+1

∑n
j=0 σ

(m−1)
j (u), m ≥ 1

un, m = 0

for each integer m ≥ 0 and for all nonnegative integers n. A sequence (un) is said
to be Cesàro summable to s if σ

(1)
n (u) → s as n → ∞. A sequence (un) is said to

be (A,m) summable to s if (1 − x)
∑∞

n=0 σ
(m)
n (u)xn → s as x → 1− and we write

un → s (A,m). If m = 0, then (A,m) summability reduces to Abel summability.
It is clear that un → s (A, 0) implies un → s (A,m) for each integer m ≥ 1.

Abel’s theorem states that if un → s as n → ∞, then un → s (A, 0). The
converse is not true, for the sequence (un) defined by un =

∑n
k=0(−1)k is not
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*Corresponding author
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convergent but it is Abel summable to 1/2. However, the converse of Abel’s theorem
is valid under some conditions called Tauberian conditions. Any theorem which
states that convergence of sequence follows from a summability method and some
Tauberian condition is said to be Tauberian theorem. If the Tauberian conditions
for the oscillatory behavior of (un) are considerably weakened, then we may not
obtain convergence of (un) out of Abel summability of (un), but we obtain a deeper
insight into the structure of (un). Several results of this kind are given in [1] and
suggest a new kind of convergence, namely the subsequential convergence.

A sequence u = (un) is subsequentially convergent [1] if there exists a finite
interval I(u) such that all accumulation points of u = (un) are in I(u) and every
point of I(u) is an accumulation point of u = (un). Equivalently, for every r ∈ I(u)
there exists a subsequence (un(r)) of (un) such that limn(r) un(r) = r. An example
of subsequentially convergent sequence is (sin(log n)).

Let L be any linear space of real sequences and A be a subclass of L. If

un = αn +
n∑

k=1

αk

k
, (1)

for some α = (αn) ∈ A, we say that the sequence (un) is regularly generated by the
sequence (αn) and (αn) is called a generator of (un).

The Kronecker identity

un − σ(1)
n (u) = V (0)

n (∆u), (2)

where V
(0)
n (∆u) = 1

n+1

∑n
k=0 k∆uk, is well known and used in the various steps of

proofs. Since arithmetic means of (un) can be also expressed in the form

σ(1)
n (u) = u0 +

n∑

k=1

V
(0)
k (∆u)

k
,

we may rewrite (2) as

un = V (0)
n (∆u) +

n∑

k=1

V
(0)
k (∆u)

k
+ u0.

A sequence (un) is slowly oscillating [1, 2] if

lim
λ→1+

lim
n

max
n+1≤k≤[λn]

|uk − un| = 0,

where [λn] denotes the integer part of λn.
Dik [2] proved that a sequence (un) is slowly oscillating if and only if the gener-

ator of (un) is slowly oscillating and bounded.
The following definition is a generalization of the concept of slow oscillation.
A sequence (un) is moderately oscillating [1, 2] if for λ > 1,

lim
n

max
n+1≤k≤[λn]

|uk − un| < ∞,
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where [λn] denotes the integer part of λn.
Dik [2] proved that the generator of u = (un) is bounded and (σ(1)

n (u)) is slowly
oscillating for a moderately oscillating sequence (un).

The fact that the bounded slowly oscillating sequences are subsequentially con-
vergent follows from the definition of subsequential convergence. The sequence
(sin(

∑n
k=1

log k
k )) is subsequential convergent, but not slowly oscillating. It is clear

from the definition of subsequential convergence that subsequential convergence im-
plies boundedness. However, the converse is not generally true. For instance, the
sequence ((−1)n) is bounded, but not subsequential convergent.

The theorem which reveals that the converse is true under some additional
condition is obtained by Dik [1] as follows.

Theorem 1.1. [1] Let (un) be a bounded sequence. If un− un−1 = o(1), then (un)
is subsequentially convergent.

The classical control modulo of the oscillatory behavior of (un) is denoted by
ω

(0)
n (u) = n∆un, where ∆un = un − un−1 and u−1 = 0. The general control

modulo of the oscillatory behavior of integer order m ≥ 1 of a sequence (un) is
defined inductively in [1, 2] by ω

(m)
n (u) = ω

(m−1)
n (u)− σ

(1)
n (ω(m−1)(u)).

For a sequence (un) and for each integer m ≥ 1 define

(n∆)mun = n∆((n∆)m−1un),

where (n∆)0un = un and (n∆)1un = n∆un. Define ∆2un = ∆(∆un) for a sequence
(un). It is proved in [4] that for each integer m ≥ 1, ω

(m)
n (u) = (n∆)mV

(m−1)
n (∆u),

where V
(m−1)
n (∆u) = σ

(1)
n (V (m−2)(∆u)).

We write un = O(1) to mean that (un) is a bounded sequence, and un = o(1)
to mean that (un) converges to zero.

2 Auxiliary Results

Throughout this section for any real sequence α = (αn), let µ = (µn) be defined by
µn = (n + 1)αn.

We will now provide some important results used in the next section.
By the following Lemma it is shown that the generator of ∆µ = (∆µn) is the

classical control modulo of α = (αn).

Lemma 2.1. The generator of ∆µ = (∆µn) is ω(0)(α) = (ω(0)
n (α)).

Proof. Since µn = (n + 1)αn, then

∆µn = αn + n∆αn. (3)

Taking the arithmetic means of both sides of (3), we have

σ(1)
n (∆µ) = σ(1)

n (αn + n∆αn).
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Replacing un by ∆µn in (2) we obtain that

∆µn − σ(1)
n (∆µ) = V (0)

n (∆2µ). (4)

From (3) and (4) we get V
(0)
n (∆2µ) = ω

(0)
n (α). This completes the proof.

The following Lemma shows that the generator of arithmetic means of the se-
quence whose generator is (∆µn) is α = (αn).

Lemma 2.2. If the generator of x = (xn) is ∆µn, then the generator of σ(1)(x) =
(σ(1)

n (x)) is α = (αn).

Proof. By (2) we have xn = V
(0)
n (∆x) +

∑n
k=1

V
(0)

k (∆x)

k . Since V
(0)
n (∆x) = ∆µn by

hypothesis, the identity above can be expressed as

xn = ∆µn + yn, (5)

where y = (yn) = (
∑n

k=1
∆µk

k ). Taking the arithmetic means of both sides of (5)
we obtain that

σ(1)
n (x) = σ(1)

n (∆µ) + σ(1)
n (y).

Then we have

σ(1)
n (x) = αn + σ(1)

n (y) = αn + σ(1)
n (z) + σ(1)

n (α), (6)

where z = (zn) = (
∑n

k=1
αk

k ). By (2) applied to the sequence
∑n

k=1
αk

k we have

zn − σ(1)
n (z) = V (0)

n (∆(z)) = σ(1)
n (α). (7)

Taking into consideration (6) and (7), we have σ
(1)
n (x) = αn +

∑n
k=1

αk

k . This
completes the proof.

Lemma 2.3. [5] For each integer m ≥ 1 and for all nonnegative integers n,

ω(m)
n (u) =

m−1∑

j=0

(−1)j

(
m− 1

j

)
n∆V (j)

n (∆u)

where
(

m− 1
j

)
=

(m− 1)(m− 2)...(m− j)
j!

.

Theorem 2.4. [5] Let un → s (A, 0). If (σ(1)
n (ω(m)(u))) is slowly oscillating for

some integer m ≥ 0, then un → s as n →∞.

Since sequence of arithmetic means of a slowly oscillating sequence is slowly
oscillating, we have the following corollary.

Corollary 2.5. [5] Let un → s (A, 0). If (ω(m)
n (u)) is slowly oscillating for some

integer m ≥ 0, then un → s as n →∞.

Corollary 2.6. [5] Let un → s (A, 0). If (ω(m)
n (u)) is bounded for some integer

m ≥ 0, then un → s as n →∞.
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3 Results

Denote by M and S the space of moderately oscillating sequences and slowly oscil-
lating sequences, respectively.

Throughout this section it will be assumed that µ = (µn) is defined by µn =
(n + 1)ω(m)

n (u).

Theorem 3.1. Let un → s (A, m) for some m ≥ 2. If the generator of (σ(m)
n (∆µ))

is moderately oscillating and ∆σ
(m−2)
n (u) = o(1), then (σ(m−2)

n (u)) is subsequen-
tially convergent.

Proof. It follows by Lemma 2.1 that V
(0)
n (∆2µ) = n∆ω

(m)
n (u). Thus we have

(V (0)
n (∆σ(m)(∆2µ))) = (σ(m−1)

n (ω(m+1)(u))) ∈M, (8)

and
(σ(m)

n (ω(m+1)(u))) = (ω(m+1)
n (σ(m)(u))) ∈ S. (9)

We here notice that the statement (un) is (A,m) summable to s is equivalent
to the statement that (σ(m)

n (u)) is Abel summable to s. Using (9) we obtain by
Corollary 2.5

σ(m)
n (u) → s, n →∞. (10)

This means that (σ(m−1)
n (u)) is Cesàro summable to s. Since every Cesàro summable

sequence is Abel summable, (σ(m−1)
n (u)) is Abel summable to s. Using (8) we obtain

by Theorem 2.4
σ(m−1)

n (u) → s, n →∞. (11)

Since the generator of a moderately oscillating sequence is bounded, it follows
from (8) that

V (0)
n (σ(m−1)(ω(m+1)(u))) = σ(m−1)

n (ω(m+2)(u)) = O(1). (12)

By Lemma 2.3, we have

σ(m−1)
n (ω(m+2)(u)) =

m+1∑

j=0

(−1)j

(
m + 1

j

)
n∆V (j+m−1)

n (∆u). (13)

It follows by (11) that
V (m−1)

n (∆u) = o(1). (14)

Therefore n∆V
(m−1)
n (∆u) = O(1) by (13). From (14) and the identity

n∆V (m−1)
n (∆u) = V (m−2)

n (∆u)− V (m−1)
n (∆u),

we obtain (V (m−2)
n (∆u)) = O(1). It follows by identity

σ(m−2)
n (u)− σ(m−1)

n (u) = V (m−2)
n (∆u)

that σ
(m−2)
n (∆u) = O(1). Since ∆σ

(m−2)
n (u) = o(1), we see by Theorem 1.1 applied

to the sequence (σ(m−2)
n (u)) that (σ(m−2)

n (u)) is subsequentially convergent.



138 İbrahim Çanak, Ümit Totur, and Mehmet Dik

Theorem 3.2. Let un → s (A,m) for some m ≥ 2. If the sequence whose generator
is (σ(m)

n (∆µ)) is moderately oscillating and ∆σ
(m−2)
n (u) = o(1), then (σ(m−2)

n (u))
is subsequentially convergent.

Proof. By hypothesis there exists a sequence x = (xn) in M such that ∆µn =
V

(0)
n (∆x). Thus

σ(1)
n (∆µ) = σ(1)

n (V (0)(∆x)) = V (1)
n (∆x) = V (0)

n (∆σ(1)(x)).

Let W
(m)
n (u) := ω

(m)
n (u) +

∑n
k=1

ω
(m)
k (u)

k . It follows by Lemma 2.1 and Lemma 2.2
that

σ(1)
n (∆µ) = V (0)

n

(
∆

(
W (m)(u)

))
= ω(m)

n (u). (15)

If taking arithmetic means of both sides in (15) is repeated (m − 1) times, we
have

σ(m)
n (∆µ) = V (0)

n (∆σ(m−1)(W (m))) = σ(m−1)
n (ω(m)(u)).

It follows from the identity above that

(σ(m−1)
n (W (m)(u))) ∈M.

Since the generator of the moderately oscillating sequence is bounded, we obtain
that

σ(m−1)
n (ω(m)(u)) = ω(m)

n (σ(m−1)(u)) = O(1). (16)

By the fact that arithmetic means of a bounded sequence is bounded, we obtain

σ(m)
n (ω(m)(u)) = ω(m)

n (σ(m)(u)) = O(1). (17)

We here notice that the statement (un) is (A,m) summable to s is equivalent
to the statement that (σ(m)

n (u)) is Abel summable to s. Using (17) we obtain by
Corollary 2.6

σ(m)
n (u) → s, n →∞. (18)

This means that (σ(m−1)
n (u)) is Cesàro summable to s. Since every Cesàro summable

sequence is Abel summable, (σ(m−1)
n (u)) is Abel summable to s. Using (16) we

obtain by Corollary 2.6
σ(m−1)

n (u) → s, n →∞. (19)

By Lemma 2.3,

σ(m−1)
n (ω(m)(u)) =

m−1∑

j=0

(−1)j

(
m− 1

j

)
n∆V (j+m−1)

n (∆u). (20)

Since σ
(m−1)
n (u) → s as n →∞, then

V (m−1)
n (∆u) = o(1). (21)
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Therefore n∆V
(m−1)
n (∆u) = O(1) by (20). From (21) and the identity

n∆V (m−1)
n (∆u) = V (m−2)

n (∆u)− V (m−1)
n (∆u),

we obtain (V (m−2)
n (∆u)) = O(1). It follows by identity

σ(m−2)
n (u)− σ(m−1)

n (u) = V (m−2)
n (∆u)

that σ
(m−2)
n (∆u) = O(1). Since ∆σ

(m−2)
n (u) = o(1), we see by Theorem 1.1 applied

to the sequence (σ(m−2)
n (u)) that (σ(m−2)

n (u)) is subsequentially convergent.

Theorem 3.3. Let un → s (A, m) for some m ≥ 2. If the sequence whose generator
is (V (m)

n (∆2µ)) is moderately oscillating and ∆σ
(m−2)
n (u) = o(1), then (σ(m−2)

n (u))
is subsequentially convergent.

Proof. Using (2) we have V
(m)
n (∆2µ) = V

(0)
n (∆σ(m)(∆µ)). The proof is completed

by the fact that (σ(m)
n (∆µ)) = (σ(m−1)

n (ω(m)(u))) ∈ M. The rest of the proof is as
in Theorem 3.1.

Same conclusions can be obtained if the class M in which the generators of
(σ(m)

n (∆µ)) belong for each integer m ≥ 0 is replaced by the class S or the class of
bounded sequences in Theorem 3.1 through Theorem 3.3.
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