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DETOUR INDEX OF A CLASS OF UNICYCLIC GRAPHS

Xuli Qi and Bo Zhou*

Abstract

The detour index of a connected graph is defined as the sum of detour
distances between all unordered pairs of vertices. We determine the n-vertex
unicyclic graphs whose vertices on its unique cycle all have degree at least
three with the first, the second and the third smallest and largest detour
indices respectively for n > 7.

1 Introduction

Let G be a simple connected graph with vertex set V(G). For u,v € V(G), the
distance d(u,v) or dg(u,v) between u and v in G is the length of a shortest path
connecting them [1], and the detour distance I(u,v) or lg(u, v) between v and v in G
is the length of a longest path connecting them [2, 3]. Note that d(u,u) = l(u,u) =0
for any u € V(G).

The Wiener index of the graph G is defined as [4, 5]

WG =Y dunv).

{u0}CV(G)

As one of the oldest topological indices, the Wiener index has found various applica-
tions in chemical research [6] and has also been studied extensively in mathematics
[7-10].

The detour index of the graph G is defined as [11-13]

w(@) = Z I(u,v).

{uv}CV(G)

This graph invariant has found applications in QSPR and QSAR studies, see the
work of Lukovits [13], Trinajsti¢ et al. [14], Riicker and Riicker [15], and Nikoli¢ et
al. [16]. For the computation aspect of the detour index, see the work of Lukovits
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and Razinger [17], Trinajsti¢ et al. [16], and Riicker and Riicker [15]. Related work
may be found in [19, 20].

In [21], Zhou and Cai established some basic properties of the detour index,
especially, they gave bounds for the detour index, determined the n-vertex unicyclic
graphs with the first, the second and the third smallest and largest detour indices
respectively for n > 5, and determined the n-vertex unicyclic graphs of cycle length
r with minimum and maximum detour indices respectively where 3 <r <n — 2.

A unicyclic graph is fully loaded if vertices on its unique cycle all have degree at
least three. In the present paper, in continuation of the study on the detour index,
we determine the n-vertex fully loaded unicyclic graphs with the first, the second
and the third smallest and largest detour indices respectively for n > 7.

2 Preliminaries

For a connected graph G with u € V(G), let W,,(G) = > d(u,v) and w,(G) =
veV(G)
> l(u,v). Let S, and P, be the n-vertex star and path, respectively.
veV(G)

Lemma 1. [7] Let T be an n-vertex tree different from S, and P,. Then

7’L3—7’l

(n—1)*=W(S,) < W(T) < W(P,) = c

We will also use the following lemmas.

Lemma 2. [21] Let T be an n-vertex tree with u € V(T'), where u is not the center
if T =S, and u is not a terminal vertex if T = P,. Let x and y be the center of
the star Sy, and a terminal vertex of the path P, respectively. Then

n(nfl).

=1 =Wi(Sa) < WalT) < Wy (Pa) = =

An n-vertex tree of diameter 3 is of the form Tj,.,, formed by attaching a and
b pendent vertices to the two vertices of Ps, respectively, where a + b =n — 2 and
a,b>1. Let S}, =T,.n—31 for n >4 and let S}/ = T,,.,—4,2 for n > 6.

Lemma 3. [21] Among the n-vertex trees with n > 6, S, and S) are respectively
the unique graphs with the second and the third smallest Wiener indices, which are
equal to n? —n — 2 and n? — 7, respectively.

Lemma 4. [21] Let T be an n-vertex tree with n > 6, uw € V(T), T # Sy, where u
is not a verter of mazimal degree if T = S! or T = S!. Let x and y be the vertices
of mazimal degrees in S], and S),, respectively. Then n = W5(S],) < W,(S)) =
n+1< W, (T).

Let C),, be the n-vertex cycle with n > 3.
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Lemma 5. [21] Let u be a vertex on the cycle C, with r > 3. Then w,(C,) =
13 —dr+¢,) and w(C,) = §r(3r? —4r +¢,) where e, = 1 if r is odd and £, =0
if r is even.

Let C.(T1,T5,...,T.) be the graph constructed as follows. Let the vertices of
the cycle C,. be labeled consecutively by vi,ve, ..., v,.. Let T1,Ts, ..., T, be vertex—
disjoint trees such that 7; and the cycle C. share exactly one common vertex v; for
i=1,2,...,7. Then any n-vertex unicyclic graph G with a cycle on r vertices is of

T

the form C,.(T1, Tz, ..., T,), where > |T;| = n, and |H| = |V (H)| for a graph H.
i=1

Lemma 6. [21] Let G = C.(T1,T5,...,T,). Suppose that trees T; and T; are
nontrivial stars. Let x € V(T;), y € V(T;) with x # v; and y # v;. If wy(G) <
wy(G), then w(G — vy + viy) < w(G).

Lemma 7. [21] Let G = C(Th, T2, ..., ;). Then

w(G) = ZW(Ti)+ > T W (Ty) + Ty - W (To) + T - 1Ty - e, (visv;)] -

1<i<j<r

For n > 6, let U,, be the set of n-vertex fully loaded unicyclic graphs. For
3<r <[%], let Uy, be the set of graphs in U, with cycle length r.

3 Fully loaded unicyclic graphs with small detour

indices
For 3 <r < [%], let S, = Co(T1,To,...,T;) with Ty = --- = T,_; = P5 and
T, = Sp—_2(r—1) With center v;..

Lemma 8. For3<r < |[%],

W(Sn 7‘) =

)

2 _ _ 3 2 . .
n? 4 3 QGT Lp 4 =3¢ J;” T ifr 4s odd,
2 3 2
7’L2 3r —6r—2n —3r +£1r +2r

5 if v is even.

Proof. Let u; # v; be the pendent vertex of T; = P, for ¢ = 1,2,...,7 — 1, and
let uj # vy, j =r,r+1,...,n —r, be the pendent vertices of T}, = S, _5(,_1). To
compute w(S,, ), consider the contributions of the pairs of vertices in the cycle, the
pairs of pendent vertices, and the pairs with one vertex in the cycle and the other
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a pendent vertex. It is easily seen that

T n—r

w(Spr) = Z U, v5) + Z l(ui,uj)—l—ZZl(vi,uj)

1<i<j<r 1<i<j<n—r i=1 j=1
r—1
n—2r
2+ g l(ur,ui)]
i=1

= w(C)+ Y, l(ui,uj)+2< ) >+(n—2r)

1<i<j<r

T

+ZZZ(UZ',U]‘) + Z Z_: l(’Ui,Uj)

i=1 j=1 i=1 j=r+1

= w(C)+ Z [Z(Ui,vj)+2]+2<n—22r>
_1<JS:71
2+Z(l(v7~,vi)+2)

=1

+(n —2r)

T

DD UCKHESEDY Z_j (i, v,) + 1]

i=1 j=1 i=1j=r+1

= w(C)+w(C)+ 2(;) + Q(n 22r)

+(n—2r)[2+ wy, (Cr) +2(r — 1)]
+2w(C) + 72 + (n = 2r)(w,, (Cr) +7)
= 4dw(Cp)+2(n —2r)w,, (Cr) + (n—1)(n—r).

Now the result follows from Lemma 5. ]

Proposition 1. Let G € Uy, with 3 < r < [5]. Then w(G) > w(Sy,,,) with
equality if and only if G = Sy, .

Proof. Let G = C.(T1, T, ..., T,) be a graph with the smallest detour index among
graphs in U, ,. We need only to show that G = 5, .

By Lemmas 1, 2 and 7, T; is a star with center v; for i = 1,2,...,r. Suppose that
T3], |T;] > 3 with ¢ # j. Let x € V(T;), y € V(T;) with x # v;, y # v;. Suppose
without loss of generality that w,(G) < wy(G). By Lemma 6, w(G — vy + v;y) <
w(@), a contradiction. Thus there can not be two trees of T, Ty, ..., T, with at
least three vertices in G, ie., G = S, ;. O

Let T, be the set of graphs C3(7T1,T5,T3) in U, with |T1| = |Tz| = 2. Let ¥,, be
the set of graphs C3(T1,T2,T3) in U,, with |T3| > |T3| > max{|T1]|,3}. Let @, be
the set of graphs in U,, with cycle length at least four. Then U, =T, UV,, U ®,,.

For n > 7, let B!, be the graph in I',, formed by attaching a path P, and n — 7
pendent vertices to the vertex of degree two in C3(Py, P2, P1), and for n > 8, let B}/
be the graph in I',, formed by attaching a star S5 at its center and n — 8 pendent
vertices to the vertex of degree two in Cs(Py, Ps, Py).
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Lemma 9. Among the graphs in Ty, B, forn > 7 and B)! for n > 8 are the unique
graphs respectively with the second and the third smallest detour indices, which are
equal to n? + 5n — 24 and n? 4 6n — 29, respectively.

Proof. The case n = 7 is trivial. Let G = C3(Ty,T»,T5) € T',, with n > 8. Note
that |T1| = |T2| = 2. By Lemma 7, we have

WG) = 1+1+W(T3) +2+2+8+2[2W,,(T3) +n — 4+ 4(n — 4)]
= 10n — 26 4+ W (Ts) + 4W,, (Ts),

which, together with Lemmas 3 and 4, implies that B], and B! are the unique
graphs in I',, with the second and the third smallest detour indices, which are equal
to n? 4+ 5n — 24 and n? + 6n — 29, respectively. O

Let S, (a,b,c) = C5(T1,T2,T3) with |T1| = a, |T2| =0b, |T5] = ¢, a+b+c=n,
and a,b,c > 2, where Ty (T», T3, respectively) is a star with center vy (v, vs,
respectively).

Lemma 10. Among the graphs in U,,, S, (2,3,n—5) for n > 8 is the unique graph
with the smallest detour index, which is equal to n®> + 6n — 35, and Cs(Ps, P3, Ss)
with vo being a terminal vertex of P3 and vs being the center of Ss for n = 8,
S9(3,3,3) forn =19, and S,(2,4,n — 6) for n = 10,11 are the unique graphs with
the second smallest detour index, which is equal to 82 for n =8, 102 forn =9, and
n? +8n — 53 for n = 10, 11.

Proof. For n > 8, let G = C5(T1,T5,T3) € ¥,, with ¢ > b > max{a,3}, where
Ty | =a, |Ta| =b, |[T3] =c,and a + b+ ¢ =n.

Suppose first that G = S, (a,b,¢) and G # S,(2,3,n — 5). It is easily seen
that wg(G) < wy(G) for pendent vertices x € V(T3) and y € V(T1) U V(T). By
Lemma 6, we have

w(Sp(a,b,c)) > w(Sn(2,b,a+c—2)) > w(Sn(2,3,n —5)),

and at least one of the two inequalities is strict. If G # S, (a,b,c), then by Lem-
mas 1, 2 and 7, we have w(G) > w(Sy,(a,b,¢)) > w(S,(2,3,n —5)) = n? + 6n — 35.
Thus S,,(2,3,n — 5) for n > 8 is the unique graph in ¥,, with the smallest detour
index, which is equal to n? + 6n — 35.

Now we determine the graphs with the second smallest detour index in ¥,, for
8 < n < 11. It is trivial if n = 8. Suppose that n = 9,10,11. Let G € ¥,
with G # S,(2,3,n — 5). Let G; be the graph obtained from S,,(2,3,n — 5) by
moving a pendent vertex at ve to the other pendent vertex, and G, the graph
obtained from S,,(2,3,n—5) by moving a pendent vertex at v3 to one other pendent
vertex. If in G, T} = P, and T, = S3 with vy its center, then by Lemma 7,
w(G) = 13n—41+ W (T3) +5W,, (T3), which, by Lemmas 1, 2, 3 and 4, is minimum
when T3 is not the star with center vs if and only if T5 = S/, _5 with v3 its vertex of
maximal degree, i.e., G = Gy. If (a,b) = (2,3), then by Lemmas 1, 2 and 7, w(G) >
min{w(G1),w(Ga)} = n? + 7Tn — 38, and thus w(G) > 106 > 102 = w(S59(3,3,3))
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if n =9, and w(G) > n? + 8n — 53 = w(S,(2,4,n — 6)) if n = 10,11. Suppose
that (a,b) # (2,3). By Lemmas 1, 2 and 7, w(G) w(Sy(a,b,c)) with equality
if and only if G = S, (a,b,c). If n =9, then (a,b,¢) = (3,3,3). If n = 10, then
(a,b,c) =(2,4,4),(3,3,4). If n =11, then (a,b,¢) = (2,4,5),(3,3,5), (3,4,4).
Note that w(S10(3,3,4)) = 129 > 127 = w(S10(2,4 4)) and w(511(3,4,4)) =
160 > w(511(3,3,5)) = 158 > w(S11(2,4,5)) = 156. The result follows easily. O

Proposition 2. Among the graphs in U,,

(i) Sp3 for n > 6 is the unique graph with the smallest detour index, which is
equal to n? + 4n — 21;

(it) Bh forn =17, Sp,(2,3,n—5) for 8 <n <10, S$11(2,3,6) and Bj; for n =11,
and Bl for n > 12 are the unique graphs with the second smallest detour
index, which is equal to 60 for n =7, n? +6n — 35 for 8 < n < 10, 152 for
n =11, and n? 4+ 5n — 24 for n > 12;

(#it) Bg for n =8, B} and S9(3,3,3) for n =9, B}, for n = 10, S11(2,4,5) for
n =11, and S,(2,3,n —5) for n > 12 are the unique graphs with the third
smallest detour index, which is equal to 80 for n =8, 102 for n =9, 126 for
n =10, 156 for n = 11, and n® + 6n — 35 for n > 12.

Proof. If r is odd with 3 <7 < | %] — 1, then by Lemma 8,

1 9
W(Snr41) —w(Spr) = —5(97"2 —6nr+4n—3) = —5(7" —r)(r —712),

where 7| = *= (n—3)(n=1) < "_(g_g) =1<3, rp= nty/(n=3)(n-1) > n+373 =

3 3
%n —-1> L%J —1, and thus r1 < r < 7y, implying that w(S, r+1) > w(Sp,r). If r is
even with 4 <r < | %] — 1, then by Lemma 8,

1
w(Snr+1) —w(Spr) = 75(97"2 +2r —6nr+2n—2) = fg(r —1r3)(r —ry),

3n—1—+/(3n—4)2+3 3n—1 3n—4)2+3
where r3 = == ;n)+<3n1(3n4) %<4r4—n+(9n)+>
3"71;& = %n -3> L%J 1, and thus r3 < r < r4, implying that w(S, r4+1) >

w(Sn,r). It follows that w(S,,,) is increasing with respect to r € {3,4,...,[2]}.
By Proposition 1 and Lemma 8, S, 3 for n > 6 is the unique graph in U,, with the
smallest detour index, which is equal to n? + 4n — 21, proving (i). Moreover, S, 4
for n > 8 is the unique graph in ®,, with the smallest detour index, which is equal
to n? + 11n — 60.

Now we prove (i7). The case n = 7 is trivial. For n > 8, the graphs in U,, with
the second smallest detour index are just the graphs in U, \ {S, 3} = (I'n, \{Sn 3s})U
U, U ®,, with the smallest detour index, which, by Lemmas 9 and 10, is equal to
min{w(BY),w(Sn(2,3,n—5)),w(Sn4)} = min{n?+5n—24,n2+6n—35,n>+11n—
60}, i.e., n? +6n — 35 for 8 <n < 10, n? +5n— 24 = n? 4+ 6n — 35 = 152 for n = 11,
and n? + 5n — 24 for n > 12. Then (ii) follows.

From (7) and (i) and by Lemmas 9 and 10, we find that the graphs in U,, for n >
8 with the third smallest detour index are just the graphs in U, \ {Sy 3, S1(2,3,n —
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5} =T \{Sn3}) U(T,\{5.(2,3,n—5)} Ud, for 8 <n <10, Uy \ {S11,3, B4,
511(2,3,6)} = (Fll \ {511737331}) U (\1111 \ {511(2,3,6)} U (I>11 for n = 11 and
U, \{Sn3, B} = (T \{Sn3,B,})UT, U®, for n > 12 with the smallest detour
index, which is equal to
min{w(Bg),w(Cs(Pz, P3,S3)),w(Ss,4)} = min{80, 82,92} = 80 for n = 8,
min{w(B}),w(S9(3,3,3)),w(Se 4)} = min{102,102,120} = 102 for n = 9,
S10(2,4,4)),w(S10.4)} = min{126,127, 150} = 126 for n = 10,
w(

min{w(B],),w(
min{w(B;),w(511(2,4,5)),w(S11,4)} = min{158, 156, 182} = 156 for n = 11,
and
min{w(B.)),w(Sn(2,3,n —5)),w(Sn.4)}
= min{n? + 6n — 29,7 4+ 6n — 35,n* + 11n — 60}
= n®+6n—35
for n > 12. Now (iii) follows easily. O

4 Fully loaded unicyclic graphs with large detour
indices

For 3 <r <[], let P, = Cp(T1,T3,...,T;) with Ty = --- = T,y = P5 and

T, = P, _(r—1) With a terminal vertex v;.

Lemma 11. For 3 <r < |[%],

W(Pn,r) = {

Proof. To compute w(P,_ ), consider the contributions of the pairs of vertices in
its subgraph G = C.(Pa, Py, ..., P,), the pairs of vertices in the subgraph P, _a,
(obtained from P, , by deleting vertices of G1), and the pairs with one vertex in
(1 and the other vertex in P,,_o,. It is easily seen that

[n3 + (=312 +12r — 10)n + 7r3 — 2472 + 17r] if r is odd,
[n3 + (=3r2 + 12r — 13)n + 7r3 — 2472 + 20r] if r is even.

= o=

W(Pnyr) = w(Gi)+W(Pu—2)

n—2r

>

j=1
= 4w(C,)+2r* —r + W (P o)

+2(n — 2r)w,, (C)) + 10 4 (—4r® 4+ 4r — 2)n + 41 — 8r? + 4r
= 4w(Cy)+W(Pu—2r) +2(n — 2r)w,, (C,)

+rn? 4 (—4r? + 4r — 2)n 4 4r° — 6r% + 3r.

r—1
GHGHL+D G+ 1+ 0) + 5+ 1+ vy, 0:) + 1)

i=1

Now the result follows from Lemmas 1 and 5. O
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Proposition 3. Let G € U,, with 3 < r < [5]. Then w(G) < w(Py,,) with
equality if and only if G = P, .

Proof. Let G = C,.(T1,T5,...,T,) be a graph with the largest detour index among
graphs in U, .. We need only to show that G = P, ;.

By Lemmas 1, 2 and 7, T; is a path with v; as one of its terminal vertices for
eachi=1,2,...,r. Suppose that |T;|, [T;| > 3 with ¢ # j. Let « # v; and y # v; be
terminal vertices of T; and T}, respectively. Suppose without loss of generality that
wz(G) > wy(G). Let z be the neighbor of y in G. Then for G/ = G—zy+zy € U, -,
we have

w(@) -w(G@) = Wy G') - wy(G)
G

(
— W@+ —2—w,(G)
= w(G)+1-lg(z,y)+n—2—w,(G)
= wW(G) —wy(G)+n—-1—lg(z,y) >0

and thus w(G’) > w(G), a contradiction. Thus there can not be two trees of
Ty,T5,...,T, with at least three vertices in G, i.e., G = P, ,. O

For even n, let S” ,_, = Cn;Z (Tl,TQ, e 7Tn;2>, where T} = P, with a center
n,t5=
v, and T; = Py fori # 1, and let 5 ,_ = Cs (TI,TQ, - ,Tylf), where T1 = S,
n,t5= p

with a pendent vertex vy, and T; = P for i # 1. For even n and integer i with
=232 et Q a2 (1,i) = Cuz (Tl,TQ, o T%z) where Tj = P; with
a terminal vertex vy, T; = P3 with a terminal vertex v;, and T; = P» for j # 1,4.

Lemma 12. Among the graphs in U n,ns2 with even n > 8, Q 771 2(1,2) is the

unique graph with the second largest detour index, which is equal to 15 L (3n3 —6n2 +
40n — 80) for n =0 (mod 4), and 5(3n% — 6n? + 36n — 88) for n =2 (mod 4).

Proof. For any graph Canz (Tl,TQ, e ,Tanz) eU, ns2s there are at most two
trees T; and T); with three vertices. By Proposition 3, the graphs in U, n_2 with the
second largest detour index are just the graphs in U n, 252 \{P =2 } with the largest
detour index. Except P, =2, there are three graphs S sz, S;L n2 and S” n2

U, n—2 with exactly one tree (Th) with four vertices. Slmllarly to the proof of

Lemma 9, we have w (S” 2) (S;”TJ“) > w (S %2), where w (S” 2> is
equal to 7=(3n3 —6n? 4+ 32n — 80) for n =0 (mod 4) and 1% (3n® — 6n* + 28n — 88)
for n = 2 (mod 4). Let G = CnT—Q (Tl,TQ,...,TnT—2> be a graph in Un,nT—2 with
exactly two trees of at least three vertices. Suppose without loss of generality that
|Ty| = |T;| = 3 for 2 < i < [%42]. Then T} and T; are both paths on three vertices.

For fixed 4, by Lemmas 1, 2 and 7, w(G) is maximum if and only if v; is a terminal
vertex of T} and v; is a terminal vertex of T;, i.e., if and only if G = Qn)%(l, i).
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It is easily seen that

n—2

w(Qn’%(l,i» - w(c¥(P2,P2,...,P2))+4+ —(i-1)

+2 (1424 (54 2(v1,v)))
j=2
11n — 20
= W(C%(PQ,Pz,..,PQ))+4OJU1(C%)+”7_

2 "

which is decreasing with respect to i € {2,3,...,|®2|}. Thus Qn)%(l, 2) is the
unique graph with the largest detour index among the graphsin U, n2 with exactly
two trees of at least three vertices, which is equal to {5 (3n—6n?+40n—80) forn = 0
(mod 4), and 5 (3n® —6n?+36n—288) for n = 2 (mod 4). Since w (Qn’%(l, 2)) >

w (SZ n_2 ), the result follows easily. O
Proposition 4. (1) If n is odd with n > 7, then among the graphs in U,

(1.1) P, nt is the unique graph with the largest detour index, which is equal to
2=(3n® — 3n? +13n — 45) forn > 7 and n =1 (mod 4), and = (3n® — 3n* +
17n —41) forn > 7 and n =3 (mod 4);

(1.2) Py3 form =9, and Sn7anl forn =7 and n > 11 are the unique graphs with
the second largest detour index, which is equal to 56 forn =7, 124 forn =9,
25(3n®=3n?—3n+3) forn > 11 andn =1 (mod 4), and 75(3n*—3n?+n+7)
forn > 11 and n =3 (mod 4);

(1.3) C3(P2, P53, Py) with va a terminal vertex of Py and vs a terminal vertex of Py
formn =9, and P, n_s for n > 11 are the unique graphs with the third largest

detour index, which is equal to 122 for n =9, %(Sng —9n? + 89n — 275) for
n>11 and n =1 (mod 4), and & (3n — In? + 85n — 287) for n > 11 and

n =3 (mod 4).
(2) If n is even with n > 6, then among the graphs in U,

(2.1) Py n is the unique graph with the largest detour index, which is equal to
+(3n* —8n) forn > 6 and n = 0 (mod 4), and 15(3n® — 4n) for n > 6
and n =2 (mod 4);

(2.2) Pn,anz is the unique graph with the second largest detour index, which is
equal to 15(3n® — 6n* + 48n — 128) for n > 8 and n = 0 (mod 4), and
2(3n® — 6n* + 44n — 136) for n > 8 and n =2 (mod 4);

(2.3) Qs3(1,2) forn =8, Pigg for n =10, and Qnyanz(lﬂ) for n > 12 are the
unique graphs with the third largest detour index, which is equal to 87 for
n =8, 169 for n = 10, & (3n® — 6n% + 40n — 80) for n > 12 and n = 0

16
(mod 4), and % (3n® — 6n? + 36n — 88) for n > 12 and n =2 (mod 4).
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Proof. 1If r is odd with 3 <r < [ 5| — 1, then by Lemma 11,

2[w(Pyyi1) —w(Puyr)] = (2=2rn+7r* —8r+1
> (2-2r)-2(r+ 1)+ 7% —8r+1
= 3-8 +5>0,

and thus w(Pp r11) > w(P,,). If riseven with4 <r < |3]—1, then by Lemma 11,

2w(Pprt1) —w(Puy)] = (A—2rn+ % —10r
(4—2r)-2(r+1)+ 7 — 10r
= 3r2—6r+8>0,

v

and thus w(P, y4+1) > w(Py,r). It follows that w(P, ) is increasing with respect to
re{3,4,...,%]}.

Suppose that n is odd. By the above property of w(P, ,), Proposition 3 and
Lemma 11, P, »1 is the unique graph in U,, with the largest detour index, which
is equal to 15 (3n® —3n? + 13n — 45) for n > 7 and n = 1 (mod 4), and 5 (3n® —
3n? +17n —41) for n > 7 and n = 3 (mod 4). Then (1.1) follows.

Since U7 = {Pr 3, S7,3}, we have from (1.1) the result in (1.2) for n = 7. Suppose

that n > 9. Note that Umanl \ {Pnanl} = {Snanl} By the above discussion,

P, n_s is the unique graph in U,, whose cycle length is at most % with the largest
detour index, and then the graphs in U,, with the second largest detour index are

just the graphs S, n1 and P, n_s with larger detour index.

Since w (SnnT—l) —w (PnnT—s) is negative for n = 9 and positive for n > 11,
P, 3 for n =9 and Snvanl for n > 11 are the unique graphs in U,, with the second

largest detour index, which is equal to 124 for n = 9, & (3n3 — 3n? — 3n + 3) for
n > 11 and n = 1 (mod 4), and 15(3n® —3n? + n+7) for n > 11 and n = 3

(mod 4). It also follows that Pn7nT—3 for n > 11 is the unique graph in U, with the

third largest detour index, which is equal to %(3713 —9n? +89n — 275) for n = 1
(mod 4), and 15(3n® — 9n? + 85n — 287) for n = 3 (mod 4). We are left with the
case n = 9. Note that the third largest detour index of graphs in Ug is equal to
the largest detour index of graphs in (T'g \ {Po3}) U Ug U (P9 \ {Py4}). By direct
checking, the largest detour index of graphs in I'g \ {Py 3} is 118, in ®g \ {Po 4} is
120, and in ¥y is 122, which is achieved uniquely by the graph C5(Pa, Ps, Py) with
vo a terminal vertex of P3 and w3 a terminal vertex of P4, and thus this graph is
the unique graph in Ug with the third largest detour index, which is equal to 122.
Then (1.2) and (1.3) follow.

Now suppose that n is even. By the above property of w(P, ), Proposition 3
and Lemma 11, P, = is the unique graph in U,, with the largest detour index, which
is equal to 7=(3n® — 8n) for n > 6 and n =0 (mod 4), and 15(3n® — 4n) for n > 6
and n = 2 (mod 4), while p, n2 is the unique graph with the second largest detour

index, which is equal to =(3n3 — 6n% + 48n — 128) for n > 8 and n = 0 (mod 4),

L1
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and 15(3n® — 6n? + 44n — 136) for n > 8 and n =2 (mod 4). Then (2.1) and (2.2)
follow.

Now we prove (2.3). From (2.1) and (2.2) and by Lemma 12 and the property
of w(P,,), we find that the graphs in U,, with the third largest detour index are

just the graphs in U, \ {Pn,g , Pn,anz} with the largest detour index, which is equal
to w(Qs,3(1,2)) = 87 for n = 8 and max {w (Qnyanz‘(l,Z)) W (PL7nT—AL)} for even

7

n > 10. By Lemma 11, we have

(P nze) =

75(3n® —12n? 4 136n — 512) ifn=0 (mod 4),
= (3n® — 12n? 4+ 140n — 496) ifn=2 (mod 4).

Since w(Q10,4(1,2)) < w(Pio,3) for n =10 and w (Qn7nT4(1, 2)) > w <Pn7nT—4) for
even n > 12, (2.3) follows easily. O
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