
Faculty of Sciences and Mathematics, University of Nǐs, Serbia
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BINOMIAL SYMMETRIES INSPIRED

BY BRUCKMAN’S PROBLEM

Wenchang Chu and Ying You

Abstract

The partial fraction decomposition method is employed to establish two
general algebraic identities, which contain consequently several binomial iden-
tities and their q–analogues as special cases.

1 Introduction and Motivation

Recently, Gould and Quaintance [3] published a short paper devoted to a problem
posed by Bruckman, who asked to show the binomial identity

n∑

k=1

(−1)k

(
n

k

)(
n + k

k

)
k

(1− 2k)(k + m)
=

1 + 2n

1 + 2m
,

where both m and n are natural numbers subject to m ≤ n.
By utilizing telescoping technique and partial fraction expansion of Lagrange

interpolation, Gould and Quaintance [3] not only proved Bruckman’s identity, but
also extended it in two different manners.

After having read carefully their paper, we find that partial fraction method can
further be employed to derive two general symmetric relations. In the 2nd section,
we shall prove the first relation (cf. Theorem 1) which is symmetric with respect
to two indeterminate x and y. Then the second relation (cf. Theorem 4) will be
established in the 3rd section, which is symmetric with respect to two sets of free
parameters {βi}m

i=0 and {γj}n
j=0. Both symmetric relations contain not only the

formulae of Gould and Quaintance [3] as special cases, but also several q-binomial
symmetries.
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2 Symmetry with respect to x and y

For the rational function defined by

f(x) =
1

x + γ0

n∏

i=1

x + αi

x + γi
,

it can be decomposed into the following partial fractions

f(x) =
n∑

k=0

Ak

x + γk
,

where the coefficients {Ak} are determined by

Ak = lim
x→−γk

(x + γk)f(x) =
∏n

i=1(αi − γk)∏n
j=0
j 6=k

(γj − γk)
.

This leads us to the following identity

1
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(γj − γk)
,

where the initial term corresponding to k = 0 has been singled out. Multiplying
across the last equation by x+ γ0 and then replacing γ0 by −y, we can easily check
that the resulting equality is equivalent to the following symmetric relation with
respect to x and y.

Theorem 1. Let x and y be two indeterminate and {αk, γk}n
k=1 complex numbers

with {γk}n
k=1 being distinct. Then there holds the algebraic identity

n∑

k=1
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.

We remark that for γk = k with k = 1, 2, · · · , n, this identity reduces equivalently
to the binomial symmetry due to Gould [2, Equation Z.14]. Instead, specializing
the parameters by αk = −k and γk = k in Theorem 1 and observing that
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,

we recover the following binomial identity, which corrects a sign error appeared in
the paper by Gould and Quaintance.

Corollary 2 (Gould and Quaintance [3, Equation 3.3]).
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When x = m and y = −1/2 with m = 1, 2, · · · , n, the first binomial fraction on
the right hand side vanishes. In this case, the last identity reduces to Bruckman’s
binomial formula [3, Equation 1.4] anticipated at the beginning of this paper.

Furthermore, the q–analogue of Corollary 2 can be derived from Theorem 1. For
this sake, recall the shifted factorial of x based on q

(x; q)0 = 1 and (x; q)n = (1− x)(1− qx) · · · (1− qn−1x) for n = 1, 2, · · ·
and the Gaussian binomial coefficient[

n

k

]
=

(q; q)n

(q; q)k(q; q)n−k
.

Then letting αk = −qk and γk = −q−k in Theorem 1 and then keeping in mind
n∏

i=1
i6=k

αi − γk

γi − γk
=⇒

n∏

i=1
i 6=k

1− qk+i

1− qk−i
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n

k
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k

]
q(
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2 ),

we find, under some routine simplification, the following q–analogue of Corollary 2.

Corollary 3.
n∑

k=1

(−1)k

[
n

k

][
n + k

k

]
(1− qk)(x− y)

(1− qkx)(1− qky)
q(

n−k
2 ) = q(

n
2) (q/y; q)n

(qy; q)n
yn−q(

n
2) (q/x; q)n

(qx; q)n
xn.

In particular for y = q−1/2 and x = qm with m = 1, 2, · · · , n, this corollary
provides the following q-analogue of Bruckman’s binomial formula

n∑

k=1

(−1)k

[
n

k

][
n + k

k

]
(1− qk)(1− q1/2)

(1− qm+k)(1− q
1
2−k)

q(
k−n

2 ) =
1− qn+1/2

1− qm+1/2
qn2/2.

3 Symmetry with respect to βi and γj

For the polynomial P (x) of degree ≤ m in x, define another rational function

g(x) =
P (x)∏m

j=1(x− βj)

∏n
i=1(x− αi)∏n
=0 (x− γ)

.

Decomposing it into the partial fractions

g(x) =
m∑

k=1

Ak

x− βk
+

n∑

k=0

Bk

x− γk
,

and evaluating the coefficients Ak and Bk respectively by

Ak = lim
x→βk

(x− βk)g(x) =
P (βk)∏m

j=1
j 6=k

(βk − βj)

∏n
i=1(βk − αi)∏n
=0(βk − γ)

,

Bk = lim
x→γk

(x− γk)g(x) =
P (γk)∏m

j=1(γk − βj)

∏n
i=1(γk − αi)∏n
=0
6=k

(γk − γ)
;
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we get the following identity

P (x)∏m
j=1(x− βj)

∏n
i=1

(x− αi)∏n
=0 (x− γ)

=
m∑

k=1

P (βk)
(x− βk)

∏m
j=1
j 6=k

(βk − βj)

∏n
i=1

(βk − αi)∏n
=0(βk − γ)

+
n∑

k=0

P (γk)
(x− γk)

∏m
j=1(γk − βj)

∏n
i=1

(γk − αi)∏n
=0
6=k

(γk − γ)
.

Replacing x by β0 and then absorbing the left member in the first sum on the right
hand side, we get another symmetric relation with respect to βi and γj .

Theorem 4. Let P (x) be a polynomial of degree ≤ m in x and {βi}m
i=0 ∪ {γj}n

j=0

distinct complex numbers. There holds the equality
m∑

k=0

P (βk)∏m
j=0
j 6=k

(βk − βj)

∏n
i=1

(βk − αi)∏n
=0(βk − γ)

+
n∑

k=0

P (γk)∏m
j=0(γk − βj)

∏n
i=1

(γk − αi)∏n
=0
6=k

(γk − γ)
= 0.

Similarly, Theorem 4 contains several interesting consequences.
Firstly for αk = −k and γk = k, it becomes the following identity which is

equivalent to the generalized Bruckman series due to Gould and Quaintance [3,
Equation 3.7].

Corollary 5. Let P (x) be a polynomial of degree ≤ m and {βi}m
i=0 distinct complex

numbers. There holds the identity
n∑

k=0

(−1)k

(
n

k

)(
n + k

k

)
P (k)∏m

j=0(βj − k)
=
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(
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n

)
(
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n

) P (βk)
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∏m
j=0
j 6=k

(βj − βk)
.

Then for βk = β + k and γk = γ + k, it reduces to another binomial symmetry.

Corollary 6. Let P (x) be a polynomial of degree ≤ m. There holds the identity
m∑

k=0

(−1)k

β − γ + k

(
m

k

)
P (β + k)(
γ−β+n−k

n

)
n∏

i=1

(β + k − αi)

=
n∑

k=0

(−1)k

β − γ − k

(
n

k

)
P (γ + k)(
β−γ+m−k

m

)
n∏

i=1

(γ + k − αi).

A slightly different setting with βk = β + k and γk = γ − k will lead Theorem 4
to the following binomial symmetry.

Corollary 7. Let P (x) be a polynomial of degree ≤ m. There holds the identity
m∑

k=0

(−1)k

β − γ + k

(
m

k

)
P (β + k)(
β−γ+n+k

n

)
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=
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(
n

k

)
P (γ − k)(
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m

)
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(γ − k − αi).
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In particular, one can check the limiting case β → γ of this corollary is equivalent
to Gould [2, Equation Z.16].

Finally, the q-analogues of these three symmetric relations are produced as fol-
lows.

Corollary 8 (αk = q−k and γk = qk in Theorem 4). Let P (x) be a polynomial of
degree ≤ m. There holds the identity

n∑

k=0

(−1)k

[
n

k

][
n + k

k

]
q(

n−k
2 )P (qk)∏m

j=0(qk − βj)
=

m∑

k=0

(qβk; q)n

(q/βk; q)n

q(
n
2)P (βk)

(1− βk)βn
k

∏m
j=0
j 6=k

(βk − βj)
.

Corollary 9 (βk = qkβ and γk = qkγ in Theorem 4). Let P (x) be a polynomial of
degree ≤ m. There holds the identity

m∑

k=0

(−1)kq(
m+n−k

2 )

βm+n(q; q)m

[
m

k

]
P (qkβ)
qkβ − γ

∏n
i=1

(αi − qkβ)
(q1−kγ/β; q)n

=
n∑
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(−1)kq(
m+n−k

2 )

γm+n(q; q)n

[
n

k

]
P (qkγ)
β − qkγ

∏n
i=1

(αi − qkγ)
(q1−kβ/γ; q)m

.

Corollary 10 (βk = qkβ and γk = q−kγ in Theorem 4). Let P (x) be a polynomial
of degree ≤ m. There holds the identity

m∑

k=0

(−1)kq(
m−k

2 )

βm(q; q)m

[
m

k

]
P (qkβ)
qkβ − γ

∏n
i=1

(αi − qkβ)
(q1+kγ/β; q)n

=
n∑

k=0

(−1)kq(
m+k

2 )

γm(q; q)n

[
n

k

]
P (q−kγ)
β − q−kγ

∏n
i=1

(αi − q−kγ)
(q1+kβ/γ; q)m

.

From the formulae displayed in this paper, one sees that partial fraction method
is indeed powerful tool to treat binomial identities. For the application to trigono-
metric identities, the interested reader can consult a recent paper by Chu [1].
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