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GLOBAL APPROXIMATION PROPERTIES OF
MODIFIED SMK OPERATORS

M. Ali Özarslan and Oktay Duman

Abstract

In this paper, introducing a general modification of the classical Szász-
Mirakjan-Kantorovich (SMK) operators, we study their global approximation
behavior. Some special cases are also presented.

1 Introduction

As usual, for n ∈ N and x ∈ [0,∞), the classical Szász-Mirakjan (SM) operators
and the Szász-Mirakjan-Kantorovich (SMK) operators are defined respectively by

Sn(f ;x) := e−nx
∞∑

k=0

(nx)k

k!
f

(
k

n

)

and

Kn(f ; x) := ne−nx
∞∑

k=0

(nx)k

k!

∫

In,k

f(t)dt (1.1)

where In,k =
[

k

n
,
k + 1

n

]
and f belongs to an appropriate subspace of C[0,∞)

for which the above series is convergent. Assume now that (un) is a sequence of
functions such that, for a fixed a ≥ 0,

0 ≤ un(x) ≤ x for every x ∈ [a,∞) and n ∈ N. (1.2)

In recent years, in order to get more powerful approximations some modifications
of the above operators have been introduced as follows (see [7, 9]):

Dn(f ; x) := e−nun(x)
∞∑

k=0

(nun(x))k

k!
f

(
k

n

)
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and

Ln(f ;x) := ne−nun(x)
∞∑

k=0

(nun(x))k

k!

∫

In,k

f(t)dt. (1.3)

In particular, considering a non-trivial sequence (un) defined by

un(x) := u[1]
n (x) =

−1 +
√

4n2x2 + 1
2n

, x ∈ [0,∞), n ∈ N,

the authors have shown in [7] that the operators Dn have a better error estimation
on the interval [0,∞) than the operators Sn while in [9] it was shown by considering

un(x) := u[2]
n (x) = x− 1

2n
, x ∈ [

1
2
,∞), n ∈ N

that the operators Ln enable better error estimation on [1/2,∞) than the operators
Kn. Some applications of this idea to other well-known positive linear operators
may be found in the papers [1, 2, 6, 8, 11, 12, 13, 14, 15].

Let p ∈ N0 := {0, 1, ...} and define the weight function µp as follows:

µ0(x) := 1 and µp(x) :=
1

1 + xp
for x ≥ 0 and p ∈ N. (1.4)

Then, we consider the following (weighted) subspace Cp[0,∞) of C[0,∞) generated
by µp :

Cp[0,∞) := {f ∈ C[0,∞) : µpf is uniformly continuous and bounded on [0,∞)}

endowed with the norm

‖f‖p := sup
x∈[0,∞)

µp(x) |f(x)| for f ∈ Cp[0,∞).

If A is a subinterval of [0,∞), then by ‖f‖p|A we denote the restricted norm to A,
i.e.,

‖f‖p|A := sup
x∈A

µp(x) |f(x)| .

We also consider the following Lipschitz classes:

∆2
hf(x) : = f(x + 2h)− 2f(x + h) + f(x),

ω2
p(f, δ) : = sup

h∈(0,δ]

∥∥∆2
hf

∥∥
p
,

ω1
p(f, δ) : = sup {µp(x) |f(t)− f(x)| : |t− x| ≤ δ and t, x ≥ 0}
Lip2

pα : =
{
f ∈ Cp[0,∞) : ω2

p(f ; δ) = O(δα) as δ → 0+
}

,

where h > 0 and 0 < α ≤ 2.
In the present paper we study the global approximation behavior of the operators

Ln given by (1.3). More precisely, we prove the following result.
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Theorem 1.1. Let (un) be a sequence of functions satisfying (1.2) for a fixed a ≥ 0.
Assume that u′n(x) exists and u′n 6= 0 on [a,∞). Then, for every p ∈ N0, n ∈ N,
f ∈ Cp[0,∞) and x ∈ [a,∞), there exists an absolute constant Mp > 0 such that

µp(x) |Ln (f ; x)− f(x)| ≤ Mpω
2
p

(
f,

√
(un(x)− x)2 +

un(x)
n

+
1

3n2

)

+ω1
p(f ; x− un(x) +

1
2n

),

where µp is the same as in (1.4). Particularly, if f ∈ Lip2
pα for some α ∈ (0, 2],

then

µp(x) |Ln (f ; x)− f(x)| ≤ Mp

(
(un(x)− x)2 +

un(x)
n

+
1

3n2

)α
2

+ω1
p(f ; x− un(x) +

1
2n

)

holds.

Remark. If the sequence (un) in Theorem 1.1 also satisfies

lim
n→∞

un(x) = x for every x ∈ [a,∞), (1.5)

then we can get that

lim
n→∞

µp(x) |Ln (f ; x)− f(x)| = 0 for every x ∈ [0,∞)

holds true provided that f ∈ Cp[0,∞) or f ∈ Lip2
pα for some α ∈ (0, 2]. Further-

more, we will see that our operators Ln map Cp[0,∞) into Cp[a,∞) (see Lemma
2.5). Hence, if the convergence in (1.5) is uniform on [a,∞), then we have

lim
n→∞

‖Lnf − f‖p|[a,∞) = 0.

2 Auxiliary Results

In this section, we will get some lemmas which are quite effective in proving our
Theorem 1.1. Throughout the paper we use the following test functions

ei(y) = yi, i = 0, 1, 2, 3, 4,

and the moment function
ψx(y) = y − x.

Now, by the definition (1.3), we first get the following two results.

Lemma 2.1. For the operators Ln, we have

(i) Ln(e0;x) = 1,
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(ii) Ln(e1; x) = un(x) +
1
2n

,

(iii) Ln(e2; x) = u2
n(x) +

2un(x)
n

+
1

3n2
,

(iv) Ln(e3; x) = u3
n(x) +

9u2
n(x)
2n

+
7un(x)

2n2
+

1
4n3

.

We should note that the proof of Lemma 2.1 can be obtained from the papers
[9] and [10].

Lemma 2.2. For the operators Ln, we have

(i) Ln(ψx;x) = un(x)− x +
1
2n

,

(ii) Ln(ψ2
x;x) = (un(x)− x)2 +

2un(x)− x

n
+

1
3n2

,

(iii) Ln(ψ3
x;x) = (un(x)− x)3 +

3 (3un(x)− x) (un(x)− x)
2n

+
7un(x)− 2x

2n2
+

1
4n3

.

Now we get the next result.

Lemma 2.3. Let (un) be a sequence of functions satisfying (1.2) for a fixed a ≥ 0.
For the operators Ln, we have

Ln(em;x) =
m∑

j=0

cm,ju
j
n(x)nj−m

: = um
n (x) +

m2

2n
um−1

n (x) + ... +
2 (2m − 1)

(m + 1)nm−1
un(x) +

n−m

m + 1
,

where cm,j’s are positive coefficients.

Proof. Since

∫

In,k

tmdt =
1

(m + 1) nm+1

{
(k + 1)m+1 − km+1

}

=
1

(m + 1) nm+1

m∑

j=0

(
m + 1

j

)
kj ,
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we get

Ln(em; x) =
∞∑

k=0

pk,n(x)
∫

In,k

tmdt

=
1

(m + 1)

m∑

j=0

(
m + 1

j

)
1

nm−j

{
e−nun(x)

∞∑

k=0

(
k

n

)j (nun(x))k

k!

}

=
1

m + 1

m∑

j=0

(
m + 1

j

)
1

nm−j
Dn(ej ;x)

=
n−m

m + 1
+

n−m

m + 1

m∑

j=1

(
m + 1

j

)
njDn(ej ; x).

Also, by Lemma 2.4 of [6], we know that

Dn(ej ; x) =
j∑

i=1

bj,iu
i
n(x)ni−j := uj

n(x) +
j(j − 1)

2n
uj−1

n (x) + ... + n1−jun(x),

where bj,i’s are positive coefficients. Then, we may write that

Ln(em;x) =
n−m

m + 1
+

n−m

m + 1

m∑

j=1

(
m + 1

j

)
nj

j∑

i=1

bj,iu
i
n(x)ni−j

=
n−m

m + 1
+

n−m

m + 1

m∑

i=1




m∑

j=i

(
m + 1

j

)
bj,i


niui

n(x)

=
n−m

m + 1
+ um

n (x) +
m2

2n
um−1

n (x) + ... +
n1−m

m + 1




m∑

j=1

(
m + 1

j

)
un(x)

= um
n (x) +

m2

2n
um−1

n (x) + ... +
2 (2m − 1)

(m + 1)nm−1
un(x) +

1
(m + 1) nm

.

Hence, we obtain that

Ln(em; x) =
m∑

j=0

cm,ju
j
n(x)

: = um
n (x) +

m2

2n
um−1

n (x) + ... +
2 (2m − 1)

(m + 1)nm−1
un(x) +

1
(m + 1) nm

,

which completes the proof.

We now give some useful estimations for the operators Ln.

Lemma 2.4. Let (un) be a sequence of functions satisfying (1.2) for a fixed a ≥ 0.
Then, for the operators Ln, we have
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(i) Ln(ψ2
x;x) ≤ (un(x)− x)2 +

un(x)
n

+
1

3n2
,

(ii) Ln(ψ3
x;x) ≤ 5

2

{
(un(x)− x)2 +

un(x)
n

+
1

3n2

}
.

Proof. (i) By (1.2) and Lemma (ii), we easily get

Ln(ψ2
x;x) = (un(x)− x)2 +

un(x)
n

+
un(x)− x

n
+

1
3n2

≤ (un(x)− x)2 +
un(x)

n
+

1
3n2

.

(ii) Since 0 ≤ un(x) ≤ x for every x ∈ [a,∞) and n ∈ N, it follows from Lemma 2.2
(iii) that

Ln(ψ3
x;x) = (un(x)− x)3 +

6un(x)(un(x)− x)
2n

+
3(un(x)− x)2

2n

+
5un(x)

2n2
+

un(x)− x

n2
+

1
4n3

≤ 3(un(x)− x)2

2n
+

5un(x)
2n2

+
1

4n3

≤ 5(un(x)− x)2

2
+

5un(x)
2n

+
5

6n2
,

whence the result.

Lemma 2.5. Let (un) be a sequence of functions satisfying (1.2) for a fixed a ≥ 0.
Assume that u′n(x) exists and u′n(x) 6= 0 on [a,∞). Then, for the operators Ln,
there exists a constant Mp ≥ 0 such that

µp(x)Ln

(
1
µp

;x
)
≤ Mp. (2.1)

Furthermore, for all f ∈ Cp[0,∞), we have

‖Ln(f)‖p|[a,∞) ≤ Mp ‖f‖p , (2.2)

which guarantees that Ln maps Cp[0,∞) into Cp[a,∞).

Proof. For p = 0, (2.1) follows immediately. Assume now that p ≥ 1. By (1.2) ,
(1.3) and (1.4), we get

µp(x)Ln

(
1
µp

; x
)

= µp(x) {Ln(e0;x) + Ln(ep; x)}

= µp(x)
{

1 + up
n(x) +

p2

2n
up−1

n (x) + ... +
2 (2p − 1)

(p + 1)np−1
un(x) +

n−p

m + 1

}

≤ µp(x)
{

xp +
p2

2n
xp−1 + ... +

2 (2p − 1)
(p + 1)np−1

x +
(

1 +
n−p

m + 1

)}
.



Global Approximation Properties of Modified SMK Operators 53

Now, since p ≥ 1, we can find a constant Cp depending on p such that the inequalities

xp

1 + xp
≤ Cp,

p2xp−1

2n(1 + xp)
≤ Cp, ...,

2 (2p − 1)
(p + 1)np−1

x

1 + xp
≤ Cp,

(
1 +

n−p

m + 1

)
1

1 + xp
≤ Cp

hold for every x ∈ [a,∞) and n ∈ N. So, letting Mp := (p + 1)Cp, we may write
that

µp(x)Ln

(
1
µp

; x
)
≤ Mp,

which gives (2.1). On the other hand, for all f ∈ Cp[0,∞) and every x ∈ [a,∞), it
follows that

µp(x) |Ln(f ;x)| ≤ µp(x)
∞∑

k=0

pk,n(x)
∫

In,k

|f(t)| dt

= µp(x)
∞∑

k=0

pk,n(x)
∫

In,k

µp(t) |f(t)| 1
µp(t)

dt

≤ ‖f‖p µp(x)Ln

(
1
µp

; x
)

≤ Mp ‖f‖p .

Now taking supremum over x ∈ [a,∞), the last inequality implies (2.2).

Lemma 2.6. Let (un) be a sequence of functions satisfying (1.2) for a fixed a ≥ 0.
Assume that u′n(x) exists and u′n(x) 6= 0 on [a,∞). Then, for the operators Ln,
there exists a constant Mp ≥ 0 such that

µp(x)Ln

(
ψ2

x

µp
; x

)
≤ Mp

{
(un(x)− x)2 +

un(x)
n

+
1

3n2

}
.

Proof. For p = 0 the result follows from Lemma 2.4 (i). Now let p = 1. Then, using
Lemma 2.4 (i)-(ii) we can write that

µ1(x)Ln

(
ψ2

x

µ1
; x

)
= µ1(x)

{
(1 + x)Ln

(
ψ2

x; x
)

+ Ln(ψ3
x; x)

}

≤ (un(x)− x)2 +
un(x)

n
+

1
3n2

+
5

2 (1 + x)

{
(un(x)− x)2 +

un(x)
n

+
1

3n2

}

≤ 7
2

{
(un(x)− x)2 +

un(x)
n

+
1

3n2

}
.
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Finally, assume that p ≥ 2. Then, we get from Lemma 2.3 that

Ln

(
ψ2

x

µp
;x

)

= Ln(ep+2; x)− 2xLn(ep+1;x) + x2Ln(ep;x)

= up+2
n (x) +

(p + 2)2

2n
up+1

n (x) + ... +
2

(
2p+2 − 1

)

(p + 3)np+1
un(x) +

1
(p + 3) np+2

−2x

{
up+1

n (x) +
(p + 1)2

2n
up

n(x) + ... +
2

(
2p+1 − 1

)

(p + 2)np
un(x) +

1
(p + 2) np+1

}

+x2

{
up

n(x) +
p2

2n
up−1

n (x) + ... +
2 (2p − 1)

(p + 1)np−1
un(x) +

1
(p + 1) np

}
,

which implies that

Ln

(
ψ2

x

µp
; x

)
= (un(x)− x)2up

n(x)

+
un(x)

n

{
(p + 2)2

2
up

n(x) + ... +
2

(
2p+2 − 1

)

(p + 3)np

}

−2xun(x)
n

{
(p + 1)2

2
up−1

n (x) + ... +
2

(
2p+1 − 1

)

(p + 2)np−1

}

+
x2un(x)

n

{
p2

2
up−2

n (x) + ... +
2 (2p − 1)

(p + 1)np−2

}

+
1
np

{
1

(p + 3) n2
− 2x

(p + 2) n
+

x2

(p + 1)

}
.

Therefore, since 0 ≤ un(x) ≤ x for every x ∈ [a,∞) and n ∈ N, we have

µp(x)Ln

(
ψ2

x

µp
; x

)

≤ (un(x)− x)2
(

xp

1 + xp

)

+
un(x)

n

{
(p + 2)2

2

(
xp

1 + xp

)
+ ... +

2
(
2p+2 − 1

)

(p + 3)np

(
1

1 + xp

)}

+
un(x)

n

{
p2

2

(
xp

1 + xp

)
+ ... +

2 (2p − 1)
(p + 1)np−2

(
x2

1 + xp

)}

+
1

3n2

{
3

(p + 3) n2

(
1

1 + xp

)
+

3
(p + 1)

(
x2

1 + xp

)}
.

Thus, since p ≥ 2, it is possible to find a constant Mp depending on p such that

µp(x)Ln

(
ψ2

x

µp
;x

)
≤ Mp

{
(un(x)− x)2 +

un(x)
n

+
1

3n2

}
,
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whence the result.

Now, for p ∈ N, consider the space

C2
p [0,∞) := {f ∈ Cp[0,∞) : f ′′ ∈ Cp[0,∞)} .

Then we have the following result.

Lemma 2.7. Let (un) be a sequence of functions satisfying (1.2) for a fixed a ≥ 0
and let g ∈ C2

p [0,∞). Assume that u′n(x) exists and u′n 6= 0 on [a,∞). For the

operators Ln, if Ωn(f ;x) := Ln(f ;x)− f

(
un(x) +

1
2n

)
+ f(x), then there exists a

positive constant Mp such that, for all x ∈ [a,∞) and n ∈ N, we have

µp(x) |Ωn (g;x)− g(x)| ≤ Mp ‖g′′‖p

{
(un(x)− x)2 +

un(x)
n

+
1

3n2

}
.

Proof. By, the Taylor formula, using ψx(y) = y − x, we may write that

g(y)− g(x) = ψx(y)g′(x) +

y∫

x

ψt(y)g′′(t)dt, y ∈ [0,∞).

Then, since Ωn (ψx(y); x) = 0, we get

|Ωn(g; x)− g(x)| = |Ωn (g(y)− g(x); x)|

=

∣∣∣∣∣∣
Ωn




y∫

x

ψt(y)g′′(t)dt; x




∣∣∣∣∣∣

=

∣∣∣∣∣∣
Ln




y∫

x

ψt(y)g′′(t)dt; x




−
un(x)+ 1

2n∫

x

ψt

(
un(x) +

1
2n

)
g′′(t)dt

∣∣∣∣∣∣∣
.

Therefore, we obtain that

|Ωn(g; x)− g(x)| ≤ Ln




∣∣∣∣∣∣

y∫

x

ψt(y)g′′(t)dt

∣∣∣∣∣∣
;x




+

∣∣∣∣∣∣∣

un(x)+ 1
2n∫

x

ψt

(
un(x) +

1
2n

)
g′′(t)dt

∣∣∣∣∣∣∣
.
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Since ∣∣∣∣∣∣

y∫

x

ψt(y)g′′(t)dt

∣∣∣∣∣∣
≤ ‖g′′‖p ψ2

x(y)
2

(
1

µp(x)
+

1
µp(y)

)

and
∣∣∣∣∣∣∣

un(x)+ 1
2n∫

x

ψt

(
un(x) +

1
2n

)
g′′(t)dt

∣∣∣∣∣∣∣
≤ ‖g′′‖p

2µp(x)

(
un(x)− x +

1
2n

)2

,

it follows from Lemmas 2.4-2.6 that

µp(x) |Ωn(g;x)− g(x)| ≤ ‖g′′‖p

2

{
Ln(ψ2

x; x) + µp(x)Ln

(
ψ2

x

µp
; x

)}

+
‖g′′‖p

2

(
un(x)− x +

1
2n

)2

≤ Mp ‖g′′‖p

{
(un(x)− x)2 +

un(x)
n

+
1

3n2

}
.

Lemma is proved.

3 Proof of Theorem 1.1

In this section we prove our main result Theorem 1.1.
We first consider the modified Steklov means (see [4, 5]) of a function f ∈

Cp[0,∞) as follows:

fh(y) :=
4
h2

h/2∫

0

h/2∫

0

{2f(y + s + t)− f(y + 2(s + t))} dsdt,

where h > 0 and y ≥ 0. In this case, it is clear that

f(y)− fh(y) =
4
h2

h/2∫

0

h/2∫

0

∆2
s+tf(y)dsdt,

which guarantees that
‖f − fh‖p ≤ ω2

p(f ; h). (3.1)

Furthermore, we have

f ′′h (y) =
1
h2

(
8∆2

h/2f(y)−∆2
hf(y)

)
,

which implies

‖f ′′h ‖p ≤
9
h2

ω2
p(f ; h). (3.2)
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Then, combining (3.1) with (3.2) we conclude that the Steklov means fh corre-
sponding to f ∈ Cp[0,∞) belongs to C2

p [0,∞).
Now let p ∈ N0, f ∈ Cp[0,∞) and x ∈ [a,∞) be fixed. Assume that, for h > 0,

fh denotes the Steklov means of f. For any n ∈ N, the following inequality holds:

|Ln(f ; x)− f(x)| ≤ Ωn (|f(y)− fh(y)| ; x) + |f(x)− fh(x)|
+ |Ωn (fh; x)− fh(x)|+

∣∣∣∣f
(

un(x) +
1
2n

)
− f(x)

∣∣∣∣ .

In the following, Mp denotes a positive constant depending on p which may assume
different values in different formulas. Since fh ∈ C2

p [0,∞), it follows from Lemma
2.7 that

µp(x) |Ln(f ;x)− f(x)| ≤ ‖f − fh‖p

{
µp(x)Ωn

(
1
µp

; x
)

+ 1
}

+Mp ‖f ′′h ‖p

{
(un(x)− x)2 +

un(x)
n

+
1

3n2

}

+µp(x)
∣∣∣∣f(un(x) +

1
2n

)− f(x)
∣∣∣∣

≤ ‖f − fh‖p

{
µp(x)Ln

(
1
µp

;x
)

+ 3
}

+Mp ‖f ′′h ‖p

{
(un(x)− x)2 +

un(x)
n

+
1

3n2

}

+µp(x)
∣∣∣∣f(un(x) +

1
2n

)− f(x)
∣∣∣∣ .

By (2.1), (3.1) and (3.2), the last inequality yields that

µp(x) |Ln(f ; x)− f(x)| ≤ Mpω
2
p(f ; h)

{
1 +

1
h2

(
(un(x)− x)2 +

un(x)
n

+
1

3n2

)}

+ω1
p(f ; x− un(x) +

1
2n

).

Thus, choosing h =

√
(un(x)− x)2 +

un(x)
n

+
1

3n2
, the first part of the proof is

completed. The remain part of the proof can be easily obtained from the definition
of the space Lip2

pα.

4 Concluding Remarks

In this section, we give some special cases of Theorem 1.1 by choosing some appro-
priate function sequences (un).

For example, if we take a = 0 and

un(x) = x, x ∈ [0,∞), n ∈ N,



58 M. Ali Özarslan and Oktay Duman

then our operators in (1.3) turn out to be the classical SMK operators Kn defined
by (1.1). In this case, we get the following global approximation result for these
operators.

Corollary 4.1. For every p ∈ N0, n ∈ N, f ∈ Cp[0,∞) and x ∈ [0,∞), there exists
an absolute constant Mp > 0 such that

µp(x) |Kn (f ; x)− f(x)| ≤ Mpω
2
p

(
f,

√
x

n
+

1
3n2

)
+ ω1

p

(
f ;

1
2n

)
.

Also, if f ∈ Lip2
pα for some α ∈ (0, 2], then

µp(x) |Kn (f ; x)− f(x)| ≤ Mp

(
x

n
+

1
3n2

)α
2

+ ω1
p

(
f ;

1
2n

)
.

Now, if take a = 0 and

un(x) := u[1]
n (x) =

−1 +
√

4n2x2 + 1
2n

, x ∈ [0,∞), n ∈ N,

then our operators Ln in (1.3) turn out to be

L[1]
n (f ; x) := ne−(−1+

√
4n2x2+1)/2

∞∑

k=0

(−1 +
√

4n2x2 + 1
)k

2kk!

∫

In,k

f(t)dt.

Then we have

Corollary 4.2. For every p ∈ N0, n ∈ N, f ∈ Cp[0,∞) and x ∈ [0,∞), there exists
an absolute constant Mp > 0 such that

µp(x)
∣∣∣L[1]

n (f ; x)− f(x)
∣∣∣ ≤ Mpω

2
p


f,

√
(
u

[1]
n (x)− x

)2

+
u

[1]
n (x)
n

+
1

3n2




+ω1
p

(
f ; x− u[1]

n (x) +
1
2n

)
.

Also, if f ∈ Lip2
pα for some α ∈ (0, 2], then

µp(x)
∣∣∣L[1]

n (f ;x)− f(x)
∣∣∣ ≤ Mp

((
u[1]

n (x)− x
)2

+
u

[1]
n (x)
n

+
1

3n2

)α
2

+ω1
p

(
f ;x− u[1]

n (x) +
1
2n

)
.

Furthermore, if we choose a = 1
2 and

un(x) := u[2]
n (x) = x− 1

2n
, x ∈ [

1
2
,∞), n ∈ N,
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then the operators in (1.3) reduce to the following operators (see [9]):

L[2]
n (f ;x) := ne

1−2nx
2

∞∑

k=0

(2nx− 1)k

2kk!

∫

In,k

f(t)dt.

Then, we know from [9] that the operators L
[2]
n preserve the test functions e0 and

e1. Hence, we get the next result.

Corollary 4.3. For every p ∈ N0, n ∈ N, f ∈ Cp[0,∞) and x ∈ [ 12 ,∞), there exists
an absolute constant Mp > 0 such that

µp(x)
∣∣∣L[2]

n (f ;x)− f(x)
∣∣∣ ≤ Mpω

2
p

(
f,

√
x

n
+

1
12n2

)
+ ω1

p

(
f ;

1
n

)
.

Also, if f ∈ Lip2
pα for some α ∈ (0, 2], then

µp(x)
∣∣∣L[2]

n (f ;x)− f(x)
∣∣∣ ≤ Mp

(
x

n
+

1
12n2

)α
2

+ ω1
p

(
f ;

1
n

)
.

Finally, taking a = 1√
3

and

un(x) := u[3]
n (x) :=

√
3n2x2 + 2−√3

n
√

3
, x ∈ [

1√
3
,∞), n ∈ N, (4.1)

we get the following positive linear operators:

L[3]
n (f ; x) := ne(

√
3−√3n2x2+2)/

√
3
∞∑

k=0

(√
3n2x2 + 2−√3

)k

3k/2k!

∫

In,k

f(t)dt. (4.2)

In this case, observe that the operators L
[3]
n preserve the test functions e0 and e2.

Hence, we get the following result.

Corollary 4.4. For every p ∈ N0, n ∈ N, f ∈ Cp[0,∞) and x ∈ [ 1√
3
,∞), there

exists an absolute constant Mp > 0 such that

µp(x)
∣∣∣L[3]

n (f ; x)− f(x)
∣∣∣ ≤ Mpω

2
p


f,

√
(
u

[3]
n (x)− x

)2

+
u

[3]
n (x)
n

+
1

3n2




+ω1
p

(
f ; x− u[3]

n (x) +
1
2n

)
.

Also, if f ∈ Lip2
pα for some α ∈ (0, 2], then

µp(x)
∣∣∣L[3]

n (f ; x)− f(x)
∣∣∣ ≤ Mp

((
u[3]

n (x)− x
)2

+
u

[3]
n (x)
n

+
1

3n2

)α
2

+ω1
p

(
f ;x− u[3]

n (x) +
1
2n

)
.
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[7] O. Duman and M.A. Özarslan, Szász-Mirakjan type operators providing a better
error estimation, Appl. Math. Lett. 20 (2007), 1184–1188.
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M. Ali Özarslan:
Eastern Mediterranean University, Faculty of Arts and Sciences, Department of
Mathematics, Gazimagusa, Mersin 10, Turkey
E-mail: mehmetali.ozarslan@emu.edu.tr

Oktay Duman:
TOBB Economics and Technology University, Faculty of Arts and Sciences,
Department of Mathematics, Söğütözü 06530, Ankara, Turkey
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