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QUASICONFORMAL HARMONIC MAPPINGS

AND CLOSE-TO-CONVEX DOMAINS

David Kalaj

Abstract

Let f = h + g be a univalent sense preserving harmonic mapping of the
unit disk U onto a convex domain Ω. It is proved that: for every a such that
|a| < 1 (resp. |a| = 1) the mapping fa = h + ag is an |a| quasiconformal
(a univalent) close-to-convex harmonic mapping. This gives an answer to a
question posed by Chuaqui and Hernández (J. Math. Anal. Appl. (2007)).

1 Introduction and notation

A planar harmonic mapping is a complex-valued harmonic function w = f(z),
z = x + iy, defined on some domain Ω ⊂ C. When Ω is simply connected, the
mapping has a canonical decomposition f = h+ g, where h and g are analytic in Ω.
Since the Jacobian of f is given by |h′|2−|g′|2, by Lewy’s theorem ([14]), it is locally
univalent and sense preserving if and only if |g′| < |h′|, or equivalently if h′(z) 6= 0
and the second dilatation µ = g′

h′ has the property |µ(z)| < 1 in Ω. A univalent
harmonic mapping is called k−quasiconformal (0 ≤ k < 1) if |µ(z)| ≤ k. For the
general definition of quasiconformal mappings see [1]. Following the first pioneering
work by O. Martio ([16]), the class of quasiconformal harmonic mappings (QCH)
has been extensively studied by various authors in the papers [6], [7], [8], [17], [13],
[10], [18], [15].

In this short note, by using some results of Clunie and Sheil-Small ([4]) we
improve a result by Chuaqui and Hernández ([2]) and answer a question posed
there. In addition, for a given harmonic diffeomorphism (quasiconformal harmonic
mapping) we produce a large class of harmonic diffeomorphisms (quasiconformal
harmonic mappings). The main result (Theorem 2.1) can be considered as a partial
extension of the fundamental theorem of Choquet-Rado-Kneser ([3] and [5]) which
states that: if Ω is a bounded convex domain and φ : S1 → ∂Ω is a homeomorphism,
then the harmonic extension f of φ to the unit disk U is univalent.
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Following Kaplan ([9]), an analytic mapping f : U→ U is called close-to-convex
if there exists a univalent convex function φ defined in U such that

Re
f ′(z)
φ′(z)

> 0, z ∈ U.

A domain Ω is close-to-convex if C \ Ω can be represented as a union of non
crossing half-lines. Let f be analytic in U. Then f is close-to-convex if and only if
f is univalent and f(U) is a close-to-convex domain. It is evident that for F (z) =
f◦φ−1, F ′(z) = f ′(z)

φ′(z) . Therefore if f is close-to-convex, then according to Lemma 2.3
F is univalent; that is f is also univalent.

A harmonic mapping f : U → C is close-to-convex if it is injective and f(U) is
a close-to-convex domain.

2 The main result

The aim of this paper is to prove the following theorem.

Theorem 2.1. Let f = h+ g be a univalent sense preserving harmonic mapping of
the unit disk U onto a convex domain Ω. Then for every a such that |a| < 1 (resp.
|a| = 1) the mapping fa = h+ag is an |a| quasiconformal close-to-convex harmonic
mapping ((resp. a univalent) close-to-convex harmonic mapping).

Theorem 2.1 gives an answer to the question posed by Chuaqui and Hernández in
[2], where they proved Theorem 2.1 for every a such that |a| = 1 (see [2, Theorem 3],
the convex case) under the condition |µ(z)| = | g′h′ | < 1

3 , and asked if this is the best
possible condition. It is shown that, no restriction is needed on the dilatation µ.
This result can be considered as an extension of Choquet-Rado-Kneser theorem
mentioned in the introduction of this paper.

The proof of Theorem 2.1 depends on the following proposition which we prove
for the sake of completeness.

Proposition 2.2. [4] If f = h+g : U→ Ω is a univalent sense preserving harmonic
mapping of the unit disk onto a convex domain Ω, then

(i) for every ε ∈ U the mapping

Fε = h(z) + εg(z) (2.1)

is close-to-convex;
(ii) for every z1, z2 ∈ U, z1 6= z2

|g(z1)− g(z2)| < |h(z1)− h(z2)|. (2.2)

Let us first prove the following lemma.

Lemma 2.3. If f is an analytic mapping defined in a convex domain Ω, such that
for some α ∈ [0, 1]

αRe f ′(z) + (1− α)Im f ′(z) > 0, z ∈ Ω,

then f is univalent sense preserving.
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Proof. For z1, z2 ∈ Ω, z1 6= z2, we have

f(z2)− f(z1) =
∫ z2

z1

f ′(z) dz = (z2 − z1)
∫ 1

0

f ′(z1 + t(z2 − z1))dt.

Therefore
f(z2)− f(z1)

z2 − z1
=

∫ 1

0

f ′(z1 + t(z2 − z1))dt.

Since
αa + (1− α)b ≤ (α2 + (1− α)2)1/2(a2 + b2)1/2 ≤ (

a2 + b2
)1/2

,

it follows that

|f(z2)− f(z1)
z2 − z1

|

≥
∫ 1

0

αRe f ′(z1 + t(z2 − z1)) + (1− α)Im f ′(z1 + t(z2 − z1))dt > 0.

This implies that f is univalent.

Proof of Proposition 2.2. Since f is convex, then for every ε = eiϕ the mapping
e−iϕ/2f = e−iϕ/2h + eiϕ/2g is convex. On the other hand

Gε := e−iϕ/2h− eiϕ/2g = e−iϕ/2f − 2Re(eiϕ/2g).

It follows that Gε(U) is convex in direction of real axis. Now we show that Gε

is injective. Since f is univalent, it follows that

Gε ◦ f−1(w) = e−iϕ/2w + p(w),

where p is a real function. Let w1 = eiϕ/2ω1 and w2 = eiϕ/2ω2 be two points such
that

w1 + eiϕ/2p(w1) = w2 + eiϕ/2p(w2),

i.e.
ω1 + q(ω1) = ω2 + q(ω2),

where q(ω) = p(eiϕ/2ω). It follows that

Imω1 = Im ω2 = v0 (2.3)

and
Re ω1 + q(ω1) = Re ω2 + q(ω2).

According to Lewy’s theorem

G′ε := e−iϕ/2h′ − eiϕ/2g′ 6= 0.
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Therefore Gε ◦ f−1 is locally univalent. Write ω = u + iv. Then the function
u → u + q(u + iv0) is locally univalent. Since it is a real function, it follows that it
is univalent. As

u1 + q(u1 + iv0) = u2 + q(u2 + iv0),

it follows that u1 = u2 and consequently w1 = w2.
This means that Gε is convex in direction of real axis and univalent. In particular

Fε = h + εg is close-to-convex for |ε| = 1. According to a Kaplan’s theorem ([9,
Eqs. (16′)]); this is equivalent to the fact that for 0 < r < 1 and θ1 < θ2 < θ1 + 2π

arg
(
h′(reiθ1) + εg′(reiθ1)

)− arg
(
h′(reiθ2) + εg′(reiθ2)

) ≤ π + θ2 − θ1. (2.4)

As the expression on the left-side of (2.4) is well-defined harmonic function in ε

for |ε| < 1 (because h′(w) 6= 0 and Re (1 + ε g′(w)
h′(w) ) > 0), according to the maximum

principle the inequality (2.4) continues to hold when |ε| ≤ 1. We proved that Fε,
|ε| ≤ 1, is close-to-convex. According to the introduction and Lemma 2.3 it is
univalent.

To prove (ii) we argue by contradiction. Assume there exist an A: |A| ≥ 1 and
z1, z2 ∈ U, z1 6= z2 such that

g(z1)− g(z2)
h(z1)− h(z2)

= A.

Hence for ε = −1/A we have

h(z1)− h(z2) + ε(g(z1)− g(z2)) = 0.

This contradicts (i).

Proof of Theorem 2.1. Assume that fa is not univalent. Then for some distinct
points z1, z2 ∈ U

fa(z1) = fa(z2).

It follows that,
h(z1)− h(z2) = a(g(z2)− g(z1)).

This contradicts (2.2). The second dilatation µa of fa is equal to aµ. Thus fa is |a|
quasiconformal if |a| < 1.

To continue we need the following lemma.

Lemma 2.4. [4, Lemma 5.15] Suppose G and H are analytic in U with |G′(0)| <
|H ′(0)| and that H + εG is close-to-convex for |ε| = 1. Then H + G is harmonic
close-to-convex.

First of all |a||g′(0)| < |h′(0)|. By Proposition 2.2 h + εag is close-to-convex for
every |ε| = 1. Therefore fa = h + ag is close-to-convex.
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[18] M. Pavlović, Boundary correspondence under harmonic quasiconformal home-
omorfisms of the unit disc, Ann. Acad. Sci. Fenn., Vol 27, (2002) 365-372.

University of Montenegro, Faculty of Natural Sciences and Mathematics, Cetinjski
put b.b. 81000, Podgorica, Montenegro

E-mail: davidk@t-com.me


