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WARPED PRODUCT CR-SUBMANIFOLDS

OF LP-COSYMPLECTIC MANIFOLDS

Siraj Uddin

Abstract

In this paper, we study warped product CR-submanifolds of LP-cosymplectic
manifolds. We have shown that the warped product of the type M = NT ×
fN⊥ does not exist, where NT and N⊥ are invariant and anti-invariant sub-
manifolds of an LP-cosymplectic manifold M̄ , respectively. Also, we have
obtained a characterization result for a CR-submanifold to be locally a CR-
warped product.

1 Introduction

The geometry of warped product was introduced by Bishop and O’Neill [1]. These
manifolds appear in differential geometric studies in natural way and these are
generalization of Riemannian product manifolds and then it was studied by many
geometers in different known spaces [2, 5]. Recently, B.Y. Chen has introduced
the notion of CR-warped product in Kaehler manifolds and showed that there exist
no proper warped product CR-submanifolds in the form M = N⊥ × fNT in a
Kaehler manifold [3]. Later on, Hasegawa and Mihai proved that warped product
CR-submanifolds N⊥ × fNT in Sasakian manifolds are trivial where NT and N⊥
are φ−invariant and anti-invariant submanifolds of Sasakian manifold respectively
[5].

Matsumoto [7] introduced the notion of a Lorentzian almost paracontact man-
ifold. Then Mihai and Rosca [8] introduced the same notion and obtained several
results in this manifold. Submanifolds of a Lorentzian almost paracontact manifold
have been studied by Prasad and Ojha and defined a class of Lorentzian almost
paracontact manifold as an LP-cosymplectic manifold in [9].

In view of the physical applications of these manifolds, the question of exis-
tence or non existence of warped product submanifolds assumes significance. In the
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present paper, we have shown that the warped product in the form M = NT×fN⊥ is
trivial where NT is an invariant submanifold tangent to ξ and N⊥ is an anti-invariant
submanifold of an LP-cosymplectic manifold M̄ . On the other hand we have ob-
tained a characterization result for the warped product of the type M = N⊥× fNT

when ξ is tangent to N⊥. Also, we have shown that there is no warped product
M = N1 × fN2 when ξ is tangent to N2, where N1 and N2 are submanifolds of an
LP-cosymplectic manifold.

2 Preliminaries

Let M̄ be a n-dimensional Lorentzian almost paracontact manifold with the almost
paracontact metric structure (φ, ξ, η, g), that is, φ is a (1, 1) tensor field, ξ is a
contravariant vector field, η is a 1−form and g is a Lorentzian metric with signature
(−, +,+, · · · ,+) on M̄ , satisfying [7]:

φ2 = X + η(X)ξ, η(ξ) = −1, φξ = 0, η ◦ φ = 0, rank(φ) = n− 1 (2.1)

g(φX, φY ) = g(X,Y ) + η(X)η(Y ), η(X) = g(X, ξ), (2.2)

Φ(X, Y ) = g(φX, Y ) = g(X,φY ) = Φ(Y, X), (2.3)

for all X, Y ∈ TM̄ , where Φ is the fundamental 2−form defined as above.
A Lorentzian almost contact metric structure on M̄ is called a Lorentzian para-

cosymplectic structure if ∇̄φ = 0, where ∇̄ denotes the Riemannian connection with
respect to g. The manifold M̄ in this case is called a Lorentzian para-cosymplectic
(in brief, an LP-cosymplectic) manifold. From formula ∇̄φ = 0, it follows that
∇̄Xξ = 0.

Let M be a submanifold of a Lorentzian almost paracontact manifold M̄ with
Lorentzian almost paracontact structure (φ, ξ, η, g). Let the induced metric on M
also be denoted by g. Then Gauss and Weingarten formulae are given by

∇̄XY = ∇XY + h(X, Y ) (2.4)

∇̄XN = −ANX +∇⊥XN, (2.5)

for any X, Y in TM and N in T⊥M , where TM is the Lie algebra of vector field
in M and T⊥M is the set of all vector fields normal to M . ∇⊥ is the connection
in the normal bundle, h the second fundamental form and AN is the Weingarten
endomorphism associated with N. It is easy to see that

g(ANX, Y ) = g(h(X, Y ), N). (2.6)

For any X ∈ TM , we write

φX = PX + FX, (2.7)

where PX is the tangential component and FX is the normal component of φX.
Similarly for N ∈ T⊥M , we write

φN = BN + CN, (2.8)
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where BN is the tangential component and CN is the normal component of φN .
The covariant derivatives of the tensor fields φ, P and F are defined as

(∇̄Xφ)Y = ∇̄XφY − φ∇̄XY, ∀ X, Y ∈ TM̄ (2.9)

(∇̄XP )Y = ∇XPY − P∇XY, ∀ X,Y ∈ TM (2.10)

(∇̄XF )Y = ∇⊥XFY − F∇XY, ∀ X,Y ∈ TM. (2.11)

Moreover, for an LP-cosymplectic manifold we have

(∇̄XP )Y = AFY X + Bh(X, Y ), (2.12)

(∇̄XF )Y = Ch(X,Y )− h(X,PY ). (2.13)

For submanifolds tangent to the structure vector field ξ, there are different
classes of submanifolds. We mention the following.

(i) A submanifold M tangent to ξ is called an invariant submanifold if F is
identically zero, that is, φX ∈ TM for any X ∈ TM . On the other hand M
is said to be an anti-invariant submanifold if P is identically zero, that is,
φX ∈ T⊥M , for any X ∈ TM .

(ii) A submanifold M tangent to ξ is called a contact CR-submanifold if it admits
a pair of differentiable distributions D and D⊥ such that D is invariant and
its orthogonal complementary distribution D⊥ is anti-invariant i.e., TM =
D ⊕D⊥ ⊕ 〈ξ〉 with φ(Dx) ⊆ Dx and φ(D⊥x ) ⊂ T⊥x M , for every x ∈ M .

Let M be an m−dimensional CR-submanifold of an LP-cosymplectic manifold
M̄ . Then, F (TxM) is a subspace of T⊥x M . Thus it follows that TxM ⊕ F (TxM)
is invariant with respect to φ. Then for every x ∈ M , there exists an invariant
subspace νx of TxM̄ such that

TxM̄ = TxM ⊕ F (TxM)⊕ νx.

3 Warped and Doubly Warped Product Subman-
ifolds

Let (N1, g1) and (N2, g2) be two semi-Riemannian manifolds and f , a positive dif-
ferentiable function on N1. The warped product of N1 and N2 is the manifold
N1 × fN2 = (N1 ×N2, g), where

g = g1 + f2g2. (3.1)

We recall the following general formula on a warped product [1].

∇XV = ∇V X = (X ln f)V, (3.2)

where X is tangent to N1 and V is tangent to N2.
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Let M = N1 × fN2 be a warped product manifold, this means that N1 is
totally geodesic and N2 is totally umbilical submanifold of M , respectively.

Doubly warped product manifolds were introduced as a generalization of warped
product manifolds by B. Ünal [10]. A doubly warped product manifold of N1 and
N2, denoted as f2N1 × f1N2 is endowed with a metric g defined as

g = f2
2 g1 + f2

1 g2 (3.3)

where f1 and f2 are positive differentiable functions on N1 and N2 respectively.
In this case formula (3.2) is generalized as

∇XZ = (X ln f1)Z + (Z ln f2)X (3.4)

for each X ∈ TN1 and Z ∈ TN2 [10].
If neither f1 nor f2 is constant we have a non trivial doubly warped product

M = f2N1 × f1N2. Obviously in this case both N1 and N2 are totally umbilical
submanifolds of M .

We now consider a doubly warped product of two semi-Riemannian manifolds
N1 and N2 embedded into an LP-cosymplectic manifold M̄ such that the structure
vector field ξ is tangential to the submanifold M = f2N1 × f1N2.

Theorem 3.1. There does not exist a proper doubly warped product submanifold
in LP-cosymplectic manifolds.
Proof. Let M = f2N1 × f1N2 be a doubly warped product submanifold of an LP-
cosymplectic manifold M̄ , where N1 and N2 are submanifolds of M̄ . We have using
Gauss formula and the fact that M̄ is LP-cosymplectic, for any U ∈ TM

∇Uξ = 0. (3.5)

Thus in case ξ ∈ TN1 and U ∈ TN2 equation (3.4) and (3.5) imply that (ξ ln f1)U +
(U ln f2)ξ = 0, which shows that f2 is constant. Similarly, for ξ ∈ TN2 and
U ∈ TN1, we have (ξ ln f2)U + (U ln f1)ξ = 0, showing that f1 is constant. This
completes the proof. ¤

In above theorem we see that f2 is constant if the structure vector field ξ is
tangent to N1 and f1 is constant if the structure vector field ξ is tangent to N2.
The following corollary is an immediate consequence of the above theorem.

Corollary 3.1. There does not exist a warped product submanifold N1× fN2 of an
LP-cosymplectic manifold M̄ such that ξ is tangent to N2.

Thus the only remaining case to study is the warped product submanifold
N1× fN2 with structure vector field ξ tangential to N1, we first obtain some useful
formulae for later use.

Lemma 3.1. Let M = N1 × fN2 be a proper warped product submanifold of an
LP-cosymplectic manifold M̄ such that ξ is tangent to N1, where N1 and N2 are
submanifolds of M̄ . Then
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(i) ξ ln f = 0,

(ii) AFZX = −Bh(X,Z),

(iii) g(h(X,Y ), FZ) = −g(h(X, Z), FY ),

(iv) g(h(X,Z), FW ) = −g(h(X, W ), FZ)

for any X, Y ∈ TN1 and Z, W ∈ TN2.

Proof. The first part of the lemma is an immediate consequence of the fact that
∇̄Uξ = 0, for U ∈ TM and using formula (2.4) and separating the tangential and
normal parts. Now, for any X ∈ TN1 and Z ∈ TN2, then formula (2.12) gives

(∇̄XP )Z = AFZX + Bh(X,Z). (3.6)

Also, we have

(∇̄XP )Z = ∇XPZ − P∇XZ = (X ln f)PZ − P (X ln f)Z = 0, (3.7)

for any X ∈ TN1 and Z ∈ TN2. Part (ii) follows by equations (3.6) and (3.7). Parts
(iii) and (iv) follow by taking the product in (ii) by Y and W respectively. ¤

4 CR-Warped Product Submanifolds

Throughout this section the structure vector field ξ is either tangent to the invariant
submanifold NT or tangent to the anti-invariant submanifold N⊥. There are two
types of warped product in an LP-cosymplectic manifold M̄ , namely NT ×fN⊥ and
N⊥ × fNT are called CR-warped product submanifolds with ξ tangent to NT and
N⊥, respectively. The following theorem is dealt with the case when ξ is tangent to
NT .

Theorem 4.1. There does not exist a proper warped product submanifold NT×fN⊥
where NT is an invariant and N⊥ is an anti-invariant submanifolds of an LP-
cosymplectic manifold M̄ such that ξ is tangent to NT .

Proof. Let M = NT × fN⊥ be a warped product CR-submanifold of an LP-
cosymplectic manifold M̄ with ξ ∈ TNT then from equations (2.2), (2.4) and the
fact that M̄ is an LP-cosymplectic, we have

g(∇XZ,W ) = g(∇ZX, W ) = g(∇̄ZX, W ) = g(φ∇̄ZX, φW )

for any X ∈ TNT and Z ∈ TN⊥. Using (3.2), we get

(X ln f)g(Z,W ) = g(∇̄ZφX, φW ) = g(∇ZφX + h(Z, φX), φW ),

or

(X ln f)g(Z, W ) = g(h(Z, φX), φW ) + (φX ln f)g(Z, φW ) = g(h(Z, φX), φW ).
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That is,
(X ln f)g(Z, W ) = g(h(Z, φX), φW ). (4.1)

Again, we have
g(h(Z, φX), φW ) = g(∇̄φXZ, φW ). (4.2)

Making use of equations (2.3), (2.5), (2.6) and (2.10) we deduce from (4.2) that

g(h(Z, φX), φW ) = −g(h(φX, W ), φZ). (4.3)

Interchanging Z and W in (4.1) and then adding the resulting equation in (4.1), we
get

2(X ln f)g(Z,W ) = g(h(Z, φX), φW ) + g(h(φX, W ), φZ).

Using (4.3), we obtain
(X ln f)g(Z,W ) = 0, (4.4)

for all X ∈ TNT and Z, W ∈ TN⊥. As N⊥ 6= {0} anti-invariant submanifold
then equation (4.4) and Lemma 3.1 (i) imply that f is constant on NT , proving the
result. ¤

Now, the other case i.e., N⊥ × fNT with ξ is tangent to N⊥.

Lemma 4.1. Let M = N⊥ × fNT be a warped product submanifold of an LP-
cosymplectic manifold M̄ . Then

g(h(X,φY ), φZ) = −(Z ln f)g(X,Y ), (4.5)

for any X, Y ∈ TNT and Z ∈ TN⊥.

Proof. For any X,Y ∈ TNT and Z ∈ TN⊥, by formula (3.2) we have

g(∇̄XY, Z) = g(∇XY, Z) = −g(∇XZ, Y ) = −(Z ln f)g(X, Y ). (4.6)

Now, for any X,Y ∈ TNT and Z ∈ TN⊥, consider

g(∇̄XY, Z) = g(φ∇̄XY, φZ)

= g(∇̄XφY, φZ)

= g(h(X,φY ), φZ),
i.e,

g(∇̄XY, Z) = g(h(X, φY ), φZ). (4.7)

Thus equation (4.5) follows by (4.6) and (4.7). This completes the proof of the
lemma. ¤

Theorem 4.2. Let M be a CR-submanifold of an LP-cosymplectic manifold M̄ .
Then M is locally a contact CR-warped product if and only if

AφZX = −Z(µ)φX, X ∈ D, Z ∈ D⊥ ⊕ 〈ξ〉 (4.8)
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for some function µ on M satisfying W ′(µ) = 0 for each W ′ ∈ D.

Proof. If M = N⊥ × fNT is CR-warped product submanifold, then on applying
Lemma 4.1, we obtain (4.8). In this case µ = ln f .

Conversely, suppose M is CR-submanifold of M̄ and satisfying

AφZX = −Z(µ)φX,

then
g(h(X, X), φZ) = g(AφZX, X) = −Z(µ)g(φX, X) = 0

i.e., h(X, Y ) ∈ ν the orthogonal complementary distribution of φ(D⊥ ⊕ 〈ξ〉). On
the other hand, for any X ∈ TNT and Z, W ∈ TN⊥ we have

g(∇W Z, φX) = g(∇̄W Z, φX).

As g is Lorentzian and M̄ is LP-cosymplectic, the above equation takes the form

g(∇W Z, φX) = −g(∇̄W φZ, X).

Thus, on using (2.5) and (2.6) we get

g(∇W Z, φX) = g(AφZW, X) = g(h(X, W ), φZ).

Also, by (2.4) we have

g(h(X, W ), φZ) = g(∇̄XW,φZ)

= −g(∇̄XφZ, W )

= g(AφZX, W ).

Using (4.8) in above, we get

g(∇W Z, φX) = −(Zµ)g(φX, W ) = 0.

This means that D⊥ ⊕ 〈ξ〉 is integrable and its leaves are totally geodesic in M .
Also, we have

g(∇XY,Z) = g(∇̄XY,Z) = −g(∇̄XZ, Y ) = −g(∇̄XφZ, φY )

= g(AφZX, φY ) = −Z(µ)g(φX, φY ) = −Z(µ)g(X,Y )

i.e.,
g(∇XY, Z) = −Z(µ)g(X, Y ) (4.9)

for any X, Y ∈ D and Z ∈ D⊥ ⊕ 〈ξ〉. Now, by Gauss formula

g(h′(X, Y ), Z) = g(∇XY, Z)
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where h′ denotes the second fundamental form of the immersion of NT into M . On
using (4.9), the last equation gives

g(h′(X,Y ), Z) = −Z(µ)g(X, Y )

which shows that each leaf of NT of D is totally umbilical in M . Moreover the
fact that W ′µ = 0 for all W ′ ∈ D, implies that the mean curvature vector on NT

is parallel along NT i.e., each leaf of D is an extrinsic sphere in M . Hence by
virtue of a result in [6] which states that -”If the tangent bundle of a Riemannian
manifold M splits into an orthogonal sum TM = E0 ⊕ E1 of non trivial vector sub
bundles such that E1 is spherical and its orthogonal complement E0 is auto par-
allel, then the manifold M is locally isometric to a warped product M0×fM1”, we
get that, M is locally a warped N⊥×fNT of a holomorphic submanifold NT and
a totally real submanifold N⊥ of M . Here NT is a leaf of D and N⊥ is a leaf of
D⊥⊕〈ξ〉 and f is a warping function. ¤
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