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COMMON FIXED POINT THEOREM

FOR FOUR MAPPINGS SATISFYING

GENERALIZED WEAK CONTRACTIVE CONDITION

Mujahid Abbas and Dragan -Dorić

Abstract

Contractive conditions introduced in [Q. Zhang and Y. Song, Fixed point
theory for generalized ϕ-weak contraction, Appl. Math. Lett. 22(2009), 75-78]
and [D. -Dorić, Common fixed point for generalized (ψ, ϕ)-weak contractions,
Applied Mathematics Letters, 22(2009), 1896-1900] are employed to obtain
a new common fixed point theorem for four maps. Our result substantially
generalizes comparable results in the literature.

1 Introduction and preliminaries

Alber and Guerre-Delabriere [1] defined weakly contractive maps on a Hilbert space
and established a fixed point theorem for such map. Afterwards, Rhoades [8] us-
ing the notion of weakly contractive maps, obtained a fixed point theorem in a
complete metric space. Dutta and Choudhury [5] generalized the weak contractive
condition and proved a fixed point theorem for a selfmap, which in turn generalizes
Theorem 1 in [8] and the corresponding result in [1]. The study of common fixed
points of mappings satisfying certain contractive conditions has been at the center
of vigorous research activity. The area of common fixed point theory, involving
four single valued maps, began with the assumption that all of the maps are com-
muted. Introducing weakly commuting maps, Sessa [9] generalized the concept of
commuting maps. Then Jungck generalized this idea, first to compatible mappings
[11] and then to weakly compatible mappings [12]. There are examples that show
that each of these generalizations of commutativity is a proper extension of the pre-
vious definition. On the other hand, Beg and Abbas [3] obtained a common fixed
point theorem extending weak contractive condition for two maps. In this direction,
Zhang and Song [13] introduced the concept of a generalized ϕ-weak contraction
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condition and obtained a common fixed point for two maps. Recently, -Dorić [4]
proved a common fixed point theorem for generalized (ψ,ϕ)-weak contractions.

The purpose of this paper is to obtain a common fixed point theorem for four
maps that satisfy contractive condition which is more general than that given in
[13]. Our result extend, unify and generalize the comparable results in [3], [4], [5]
and [13].

Throughout this paper X is nonempty set, (X, d) is a metric space and f : X →
X is selfmapping on X. A point x ∈ X is called fixed point of f if f(x) = x. To
state our result we need definition of weakly compatible pair of maps.

Definition 1.1. Let f and g be selfmappings on X.

(1) A point u ∈ X is coincidence point of f and g if fu = gu,

(2) A pair of f and g is called weakly compatible pair if they commute at coinci-
dence points.

We also use two classes of functions,

Φ = {ϕ | ϕ : [0,∞) → [0,∞) is lower semi continuous, ϕ(t) > 0 for all t > 0,
ϕ(0) = 0},

Ψ = {ψ | ψ : [0,∞) → [0,∞) is continuous and nondecreasing with ψ(t) = 0 if and
only if t = 0}.

2 Main theorem

Following is the main result of this paper.

Theorem 2.1. Suppose that f, g, S and T are selfmaps of a complete metric space
(X, d), f(X) ⊆ T (X), g(X) ⊆ S(X) and that the pairs {f, S} and {g, T} are weakly
compatible. If

ψ(d(fx, gy)) ≤ ψ(M(x, y))− ϕ(M(x, y)) (1)

for each x, y ∈ X, where ϕ ∈ Φ, ψ ∈ Ψ and where

M(x, y) = max{d(Sx, Ty), d(fx, Sx), d(gy, Ty),
1
2
(d(Sx, gy) + d(fx, Ty))} (2)

then f , g, S and T have a unique common fixed point in X provided one of the
ranges f(X), g(X), S(X) and T (X) is closed.

Proof. Let x0 be an arbitrary point in X. Choose a point x1 ∈ X such that
y0 = fx0 = Tx1. This can be done, since the range of T contains the range of f.
Similarly, a point x2 ∈ X can be chosen such that y1 = gx1 = Sx2 as g(X) ⊆ S(X).
Continuing this process, we obtain a sequence {yn} in X such that y2n = fx2n =
Tx2n+1 and y2n+1 = gx2n+1 = Sx2n+2.

First, we show that {yn} is a Cauchy sequence in X. Consider two cases.
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1. If for some n, yn = yn+1, then yn+1 = yn+2. If not, then for n = 2m, where
m ∈ Z+, we have

M(x2m+2, x2m+1) = max{d(Sx2m+2, Tx2m+1), d(fx2m+2, Sx2m+2),
d(gx2m+1, Tx2m+1),
1
2
(d(Sx2m+2, gx2m+1) + d(fx2m+2, Tx2m+1))}

= max{d(y2m+1, y2m), d(y2m+2, y2m+1), d(y2m+1, y2m),
1
2
(d(y2m+1, y2m+1) + d(y2m+2, y2m))}

= max{d(y2m+2, y2m+1),
1
2
d(y2m+2, y2m)}

= d(y2m+2, y2m+1).

From (1)

ψ(d(yn+2, yn+1)) = ψ(d(y2m+2, y2m+1))
= ψ(d(fx2m+2, gx2m+1))
≤ ψ((M(x2m+2, x2m+1))− ϕ(M(x2m+2, x2m+1))
= ψ((d(y2m+2, y2m+1))− ϕ(d(y2m+2, y2m+1))
< ψ(d(y2m+2, y2m+1)),

which is a contradiction. Hence we must have yn+1 = yn+2, when n is even. By sim-
ilar arguments we can show that this equality holds also when n is odd. Therefore,
in any case for all those n for which yn = yn+1 holds, we always obtain yn+1 = yn+2.
Repeating above process inductively, one obtains yn = yn+k, for all k ≥ 1. There-
fore, in this case {yn} turns out to be eventually a constant sequence and hence a
Cauchy one.

2. If yn 6= yn+1, for every positive integer n, then for n = 2m+1, for some m ∈ Z+,

M(x2m+2, x2m+1) = max{d(Sx2m+2, Tx2m+1), d(fx2m+2, Sx2m+2),
d(gx2m+1, Tx2m+1),
1
2
(d(Sx2m+2, gx2m+1) + d(fx2m+2, Tx2m+1))}

= max{d(y2m+1, y2m), d(y2m+2, y2m+1), d(y2m+1, y2m),
1
2
(d(y2m+1, y2m+1) + d(y2m+2, y2m))}

= max{d(y2m+1, y2m), d(y2m+2, y2m+1),
1
2
(d(y2m, y2m+1) + d(y2m+1, y2m+2))}

= max{d(y2m+1, y2m), d(y2m+2, y2m+1)}.
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Now if M(x2m+2, x2m+1) = d(y2m+2, y2m+1), then

ψ(d(yn+1, yn)) = ψ(d(fxn+1, gxn+2))
≤ ψ(M(xn+1, xn))− ϕ(M(xn+1, xn))
= ψ(M(x2m+2, x2m+1))− ϕ(M(x2m+2, x2m+1))
= ψ(d(y2m+2, y2m+1))− ϕ(d(y2m+2, y2m+1))
= ψ(d(yn+1, yn))− ϕ(d(yn+1, yn))
< ψ(d(yn+1, yn)),

gives a contradiction. Therefore

M(x2m+2, x2m+1) = d(y2m+1, y2m). (3)

Hence from (1), we obtain

ψ(d(yn+1, yn)) = ψ(d(fxn+1, gxn+2))
≤ ψ(M(xn+1, xn))− ϕ(M(xn+1, xn))
= ψ(M(x2m+2, x2m+1))− ϕ(M(x2m+2, x2m+1))
= ψ(d(y2m+1, y2m))− ϕ(d(y2m+1, y2m))
= ψ(d(yn, yn−1))− ϕ(d(yn, yn−1))
< ψ(d(yn, yn−1)).

Following the similar arguments to those given above, we conclude the same in-
equality when n is taken as even integer. Consequently, we have

ψ(d(yn+1, yn)) < ψ(d(yn, yn−1)), for all n ≥ 0

which further implies that d(yn+1, yn) ≤ d(yn, yn−1). Therefore {d(yn+1, yn)} is
monotone decreasing sequence which is bounded below by 0. By theorem of mono-
tone and bounded sequence there exists r ≥ 0 such that d(yn+1, yn) → r as n →∞.
From equation (2), for x = xn+1 and y = xn we obtain,

lim
n→∞

ψ(M(xn+1, xn)) = ψ(r). (4)

Now (1), (4) and lower semicontinuity of ϕ give

lim sup
n→∞

ψ(d(yn+1, yn)) ≤ lim sup
n→∞

ψ(M(xn+1, xn))− lim inf
n→∞

ϕ(M(xn+1, xn))

which implies that ψ(r) ≤ ψ(r)− ϕ(r). Therefore r = 0, and

lim
n→∞

d(yn+1, yn) = 0. (5)

Because of (5), to show {yn}n≥1 to be a Cauchy sequence in X, it is sufficient to
show that {y2n}n≥1 is Cauchy in X. If not, there is an ε > 0, and there exists



Common fixed point theorem for four mappings satisfying generalized... 5

even integers 2mk and 2nk with 2mk > 2nk > k such that d(y2mk
, y2nk

) ≥ ε and
d(y2mk−2, y2nk

) < ε. Now (5) and inequality

ε ≤ d(y2mk
, y2nk

)
≤ d(y2nk

, y2mk−2) + d(y2mk−1, y2mk−2) + d(y2mk−1, y2mk
)

implies that
lim

k→∞
d(y2mk

, y2nk
) = ε. (6)

Also, (5) and inequality

d(y2mk
, y2nk

) ≤ d(y2mk
, y2mk+1) + d(y2mk+1, y2nk

)

gives that ε ≤ limk→∞ d(y2mk+1, y2nk
), while (5) and inequality

d(y2mk+1, y2nk
) ≤ d(y2mk+1, y2mk

) + d(y2mk
, y2nk

)

yields limk→∞ d(y2mk+1, y2nk
) ≤ ε. Hence

lim
k→∞

d(y2mk+1, y2nk
) = ε. (7)

By the similar way we obtain

lim
k→∞

d(y2mk
, y2nk−1) = lim

k→∞
d(y2nk−1, y2mk+1) = ε. (8)

Now from definition of M (equation (2)) and from (5), (6), (7), (8) we have

M(x2nk
, x2mk+1) = max{d(Sx2nk

, Tx2mk+1), d(fx2nk
, Sx2nk

),
d(gx2mk+1, Tx2mk+1),
1
2
(d(Sx2nk

, gx2mk+1) + d(fx2nk
, Tx2mk+1))}

= max{d(y2nk−1, y2mk
), d(y2nk

, y2nk−1),

d(y2mk+1, y2mk
),

1
2
(d(y2nk−1, y2mk+1) +

d(y2nk
, y2mk

))}.
Thus

lim
k→∞

M(x2nk
, x2mk+1) = max

{
ε, 0, 0,

1
2
(ε + ε)

}
= ε.

Putting x = x2nk
and y = x2mk+1 in (1) we obtain

ψ(d(y2nk
, y2mk+1)) = ψ(d(fx2nk

, gx2mk+1))
≤ ψ(M(x2nk

, x2mk+1))− ϕ(M(x2nk
, x2mk+1))

which, on taking limit as k →∞, implies that

ψ(ε) ≤ ψ(ε)− ϕ(ε). (9)
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As (9) is a contradiction with ε > 0, it follows that {y2n}n≥1 is a Cauchy sequence
in X. Since X is complete, there exists, a point z ∈ X such that limn→∞ yn = z.

The second step of proof is to show that z is the fixed point for maps f and S.
It is clear that

lim
n→∞

y2n = lim
n→∞

fx2n = lim
n→∞

Tx2n+1 = z,

and
lim

n→∞
y2n+1 = lim

n→∞
gx2n+1 = lim

n→∞
Sx2n+2 = z.

Assuming S(X) is closed, there exists u ∈ X such that z = Su. We claim that
fu = z. If not, then

M(u, x2n+1) = max{d(Su, Tx2n+1), d(fu, Su), d(gx2n+1, Tx2n+1),
1
2
(d(Su, gx2n+1) + d(fu, Tx2n+1))}

= max{d(z, Tx2n+1), d(fu, z), d(gx2n+1, Tx2n+1),
1
2
(d(z, gx2n+1) + d(fu, Tx2n+1))}

→ d(fu, z)

as n →∞. From (1),

ψ(d(fu, gx2n+1)) ≤ ψ(M(u, x2n+1))− ϕ(M(u, x2n+1)),

which, on taking limit as n →∞ implies that

ψ(d(fu, z)) ≤ ψ(d(fu, z))− ϕ(d(fu, z)),

a contradiction with d(fu, z) > 0. Hence fu = z. Therefore fu = Su = z. Since
the maps f and S are weakly compatible, we have fz = fSu = Sfu = Sz. Next we
claim that fz = z. If not, then

M(z, x2n+1) = max{d(Sz, Tx2n+1), d(fz, Sz), d(gx2n+1, Tx2n+1),
1
2
(d(Sz, gx2n+1) + d(fz, Tx2n+1))}

= max{d(fz, Tx2n+1), d(fz, fz), d(gx2n+1, Tx2n+1),
1
2
(d(fz, gx2n+1) + d(fz, Tx2n+1))}

→ d(fz, z) (n →∞)

and again by (1)

ψ(d(fz, gx2n+1)) ≤ ψ(M(z, x2n+1))− ϕ(M(z, x2n+1)),

which, on taking limit as n →∞ gives the contradiction

ψ(d(fz, z)) ≤ ψ(d(fz, z))− ϕ(d(fz, z)).
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Therefore fz = z.
The next step is to show that z is also fixed point for maps g and T . Since

f(X) ⊆ T (X), there is some v in X such that fz = Tv. Then fz = Tv = Sz = z.
We claim that gv = z. If gv 6= z, then from (1) we have

d(z, gv) = d(fz, gv) ≤ ψ(M(z, v))− ϕ(M(z, v)),

where

M(z, v) = max{d(Sz, Tv), d(fz, Sz), d(gv, Tv),
1
2
(d(Sz, gv) + d(fz, Tv))}

= d(gv, z).

Thus
ψ(d(z, gv)) ≤ ψ(d(z, gv))− ϕ(d(z, gv))

gives a contradiction. Therefore z = gv. Hence gv = Tv = z. By weak compatibility
of mappings g and T we obtain gz = gTv = TTv = Tz. Finally, we claim that
gz = z. If gz 6= z, then by (1)

ψ(d(z, gz)) = ψ(d(fz, gz)) ≤ ψ(M(z, z))− ϕ(M(z, z)),

where

M(z, z) = max{d(Sz, Tz), d(fz, Sz), d(gz, Tz),
1
2
(d(Sz, gz) + d(fz, Tz))}

= d(z, gz).

Therefore
ψ(d(z, gz)) ≤ ψ(d(z, gz))− ϕ(d(z, gz))

gives a contradiction. Hence, fz = gz = Sz = Tz = z. Similar analysis is valid for
the case in which T (X) is closed, as well as for the cases in which f(X) or g(X) is
closed, since f(X) ⊆ T (X) and g(X) ⊆ S(X).

As uniqueness of common fixed point z easily follows from the inequality (1),
the proof is completed. ¤

Now we give an example to support our result.

Example 2.1. Let X = [0, 1] with the usual metric. Define f, g, S and T on X by

fx =

{
1
2 , 0 ≤ x < 1
1, x = 1

, gx =

{
1
2 , 0 ≤ x ≤ 1

2

1, 1
2 < x ≤ 1

,

Sx =





0, 0 ≤ x < 1
2

1
2 , x = 1

2
2
3 , 1

2 < x ≤ 2
3

1, 2
3 < x ≤ 1

, Tx =





1, 0 ≤ x < 1
2

1
2 , x = 1

2
1
10 , 1

2 < x ≤ 2
3

0, 2
3 < x ≤ 1
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and ϕ,ψ : [0,∞) → [0,∞) by ϕ(t) = 1
10 t2 and ψ(t) =

√
t. Then ϕ ∈ Φ and

ψ ∈ Ψ. Obviously, f(X) ⊆ T (X) and g(X) ⊆ S(X). Furthermore the pairs {f, S},
and {g, T} are weakly compatible and satisfy (1). Thus f, g, S, and T satisfy the
conditions given in Theorem 2.1 and 1

2 is the unique common fixed point of f, g, S,
and T.

Special cases of the theorem 2.1 give results obtained earlier in different papers.

Corolary 2.1. ( [4]) Let (X, d) be a complete metric space and let f, g : X → X be
two mappings such that

ψ(d(fx, gy)) ≤ ψ(M(x, y))− ϕ(M(x, y)), for all x, y ∈ X,

where ϕ ∈ Φ, ψ ∈ Ψ and

M(x, y) = max{d(x, y), d(fx, x), d(gy, y),
1
2
(d(x, gy) + d(fx, y))}.

Then there exists a unique point u ∈ X such that u = fu = gu.

Proof. If we take S and T as identity maps on X, then from Theorem 2.1 follows
that f and g have a unique common fixed point.

Corolary 2.2. ( [13]) Let (X, d) be a complete metric space and let f, g : X → X
be two mappings such that for all x, y ∈ X

d(fx, gy) ≤ M(x, y)− ϕ(M(x, y)),

where ϕ ∈ Φ and

M(x, y) = max{d(x, y), d(fx, x), d(gy, y),
1
2
(d(x, gy) + d(fx, y))}.

Then f and g have a unique common fixed point.

Proof. If we take S and T as identity maps on X and ψ(t) = t for t ∈ [0,∞), then
from Theorem 2.1 follows that f and g have a unique common fixed point.

Corolary 2.3. ( [4]) Let (X, d) be a complete metric space and let f : X → X be
a mapping such that for all x, y ∈ X

ψ(d(fx, fy)) ≤ ψ(M(x, y))− ϕ(M(x, y)),

where ϕ ∈ Φ and

M(x, y) = max{d(x, y), d(fx, x), d(fy, y),
1
2
(d(x, fy) + d(fx, y))}.

Then f has a unique fixed point in X.
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Example 2.2. Let X = [0, 1] ∪ [ 32 , 2] with the usual metric and let self map f on
X be defined as follows:

fx =

{
3
4 , 0 ≤ x ≤ 1
1
4 , 3

2 ≤ x ≤ 2
.

If we take ψ(t) = t and ϕ(t) = 1
4 t for t ∈ [0,∞), then all conditions of Corollary

2.3 are satisfied and f has a unique fixed point 3
4 . Note that if we take x = 1 and

y = 3
2 , then for any choice of functions ψ and φ, mapping f does not satisfy the

contractive condition given in [5].

Corolary 2.4. ([13]) Let (X, d) be a complete metric space and let f : X → X be
a mapping such that for all x, y ∈ X

d(fx, fy) ≤ M(x, y)− ϕ(M(x, y)),

where ϕ ∈ Φ and

M(x, y) = max{d(x, y), d(fx, x), d(fy, y),
1
2
(d(x, fy) + d(fx, y))}.

Then f has a unique fixed point in X.
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