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BROWDER AND WEYL SPECTRA OF UPPER
TRIANGULAR OPERATOR MATRICES

B. P. Duggal

Abstract

A C
0 B
operator. The relationship between the spectra of Mc and My, and their
various distinguished parts, has been studied by a large number of authors in
the recent past. This paper brings forth the important role played by SVEP,
the single—valued extension property, in the study of some of these relations.
Operators M¢c and M) satisfying Browder’s, or a-Browder’s, theorem are char-
acterized, and we prove necessary and sufficient conditions for implications of
the type “My satisfies a-Browder’s (or a-Weyl’s) theorem <= M¢ satisfies
a-Browder’s (resp., a-Weyl’s) theorem” to hold.

Let M¢c = < ) € B(X & X) be an upper triangulat Banach space

1. Introduction

Let B(X) denote the algebra of operators (equivalently, bounded linear transfor-
mations) on a Banach space X. For A, B,C € B(X), let Mo denote the upper

triangular operator and let My = A @ B. The spectrum, and certain

0 B
distinguished parts thereof, of the operators M and My has been studied by a
number of authors in the recent past; see references. Of particular interest here
is the relationship between the spectral, the Fredholm, the Browder and the Weyl
properties.

Given a Banach space operator T, let o(T), 04(T), 0p(T), 0e(T), 00(T), 0ap(T)
and 04, (T) denote (respectively) the spectrum, the approximate point spectrum,
the Browder spectrum, the (Fredholm) essential spectrum, the Weyl spectrum, the
essential Browder approximate point spectrum and the essential Weyl approximate
point spectrum of T'. Recall that T is said to have SVEP, the single—valued extension
property, at a point A (in the complex plane C) if for every neighbourhood Oy of
A the only analytic function f from O, into the Banach space satisfying (T —
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)f(1r) = 0 is the function f = 0; T has SVEP if it has SVEP at every A\. Let
(T)={A€o(T): T does not have SVEP at A}. It is known that

1=

0x(Mp) = 0,(A) Uo,(B) = 0,(Mc) U{o.(A) No,(B)}
where o, =0 or o, or og;

ow(Moy) C 0y (A) Uow(B) = ow(Mc) U{ow(A) Now(B)};
if 0p(Mc) = 0w(A)Uow(B), then o(M¢) = o(My), and
Oaw(Mo) C 041 (A) U gw(B) = 0auw(Me) U{ZE(A) UE(A™)}

(see [4, 9, 10, 11, 19, 20]). Again, letting SP(T') denote the spectral picture of T,
Po(T) = {\ € isoo(T) : 0 < dim(T — X\)71(0) < 0o}, PHT) = {\ € isoc,(T) : 0 <
dim(T — X\)71(0) < oo}, it is known that: if either SP(A) or SP(B) has no pseudo
holes, then acco(My) C 04(My) = acco(Mc) C oy (Me) [19, Theorem 2.3]; if
additionally the isolated points of o(A) are eigenvalues of A and o(A) \ 0, (A) =
Po(A), then O'(M()) \ O'w(Mo) = Po(Mo) — O'(Mc> \ O'w<Mc) = Po(Mc> [19,
Theorem 2.4]. If {Z(4) N Z(B*)} UE(4*) = 0, then acco(My) C 04,(My) =
acco(M¢) C 0w (Mc); and acco,(My) C 04w(Mo) = accoq(Me) C 0qw(Me)
[11, Proposition 4.1]. Again, if 0,(A*) has empty interior, isolated points of o,(A)
are eigenvalues of A and 04(A) \ 0aw(4) = PE(A), then o4(Mp) \ oaw(Mo) =
P(Mp) = 04 (Mc) \ 0aw(Mc) = P§(Mc) [6, Theorem 3.3].

In current terminology, an operator T satisfying acco(T) C 04,(T)
(resp., accoa(T) C 04,(T)) is said to satisfy Browder’s theorem, or Bt (resp.,
a-Browder’s theorem, or a — Bt); if T satisfies o(T) \ 0, (T) = Po(T) (resp.,
0a(T) \ 0aw(T) = P§(T)), then T said to satisfy Weyl’s theorem, or Wt (resp.,
a-Weyl’s theorem, or a — Wt). In this paper, we introduce most of our notation and
terminology in Section 2, Section 3 is devoted to proving a number of complemen-
tary results, and Sections 4 and 5 are devoted to proving our main results. We start
Section 4 by characterizing operators My and M¢ satisfying Bt: much of the work
here is an extension of the characterizations known to hold for single linear opera-
tors T satisfying acco(T) C 0, (T). A natural progression here leads us to consider
conditions under which M, satisfies Bt = M satisfies Bt, and vice versa. Next,
we characterize operators My and M satisfying a — Bt, and this is followed by a
consideration of conditions ensuring M satisfies a — Bt = M satisfies a — Bt
(and wice versa). We consider Wt and a — Wt for the operators My and M¢ in
Section 5. Here we prove a necessary and sufficient for the equivalence My satisfies
Wt <= M¢ satisfies Wt for operators M¢ such that o, (Mc) = 04 (A) U 0, (B),
which is then applied to deduce a number of known results. For operators My and
My such that 04, (Mo) = 04w (Mc), we prove a sufficient condition for the implica-
tions My satisfies a — Wt = M¢ satisfies a — Wt and M¢ satisfies a — Wit = M
satisfies a — Wt, once again applying the ensuing theorem to deducing some known
results.

Almost all our results extend, with evident minor changes, to the case in which
A is a Banach space operator in B(X), B is a Banach space operator in B())) and
C' is a Banach space operator in B(Y,X). We shall, however, restrict ourselves to
operators My and M¢c € B(X @ X).
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2. Notation and terminology

In the following, the diagonal operator M, and the upper triangular operator Mg
will be defined as in the introduction, and T' € B()) shall denote a general Banach
space operator. With C denoting the complex plane, o(T") = dim(7~(0)), 8(T) =
dim(Y/TY) and ind(T) = «(T) — B(T), let

O, (T)={A € C:T— X is upper semi-Fredholm},

O (T) = {\ € &, (T) : ind(T — X) < 0},

&_(T)={re C:T— X is lower semi—Fredholm},
(T)

O(T) =2, (T)NP_(T), and

®%(T) = {\ € ®(T) : ind(T — \) = 0}.
Then the upper semi—Fredholm spectrum osp (T'), the lower semi~Fredholm spec-
trum ogp_(T), the (Fredholm) essential spectrum o.(T), the Weyl spectrum o,,(T),

the Weyl essential approzimate point spectrum oq.,(T") and the Weyl essential sur-
jectivity spectrum o, (T) of T are the sets

osp, (T) = (A€ o(T) : A ¢ B,(T)}, osp (T) = A€ a(T): A ¢ o (T},
0o (T)={N€a(T): N¢g &(T)}, 0,(T)={Nca(T): ¢ T},
Oaw(T) = {N € 0a(T) : AN ¢ ®L(T)}, 050(T) ={N€0s(T): A ¢ F(T)}.
Here 0,(T) and o4(T) denote the approximate point spectrum and the surjectivity
spectrum of T', respectively. The ascent asc(T) of T and the descent dsc(T") of
T are, respectively, the least non—negative integers n and m such that 7-"(0) =
7=+ (0) and T™Y = T™+1Y); if no such integer n (resp., m) exists, then asc(T) =
oo (resp., dsc(T) = 00). It is easily verified, see [22, Exercise 7, Page 293], that
asc(A — ) <ase(Me — A) < asc(A — N) +asc(B — \);
dsc(B — ) < dsc(Mg — A) < dsc(A —A) +dse(B — )

for every A € C. The Browder spectrum op(T) and the Browder essential approxi-
mate point spectrum oq,(T) of T are the sets

op(T)={r€co(T): X\ ¢ &(T) or one of asc(T — ) and dsc(T — ) is infinite};
oab(T) ={A€0o(T): A ¢ &, (T) or asc(T — A) is infinite}.

Let 0, (T) denote o(T) or a distinguished part thereof; let acco,.(T), isoo.(T),
Ro(T) and Po(T) denote the accumulation points of o,(T), the isolated points
of 0,(T), the finite rank poles of (the resolvent of) T and the isolated points of
o(T) which are eigenvalues of T of finite multiplicity, respectively. (Recall that
A € isoo(T) is a pole if and only if asc(T — A) = dsc(T — \) < o0.) Let

R(T) ={A €i8004(T) : A € D4 (T),asc(T — \) < oo}
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and
PHT) = {X €is00,(T) : 0 < a(T — A) < o0}

In keeping with current terminology, [1, 11, 14, 15, 19], we say that T satisfies :

Browder’s theorem, or Bt, if acco(T') C 0, (T);
a-Browder’s theorem, or a — Bt, if accoq(T) C 040 (T);
Weyl’s theorem, or Wt, if o(T') \ 0., (T) = Po(T);

a-Weyl’s theorem, or a — Wt, if 04(T) \ 04w (T) = P§(T).

Remark 2.1. Calling the conditions above “theorems” is a bit of a misnomer:

it would be more appropriate to call these conditions “Browder’s condition”, “a-
Browder’s condition” etc.

It is well known, [1, 2, 14, 15], that T satisfies Bt <= T* satisfies Bt, T satisfies
a — Bt = T satisfies Bt, T satisfies a — Wt = T satisfies Wt = T satisfies
Bt and T satisfies a — Wt = T satisfies a — Bt. The one sided implications here
are strict (in the sense that the reverse implication in general fails). A necessary
and sufficient condition for T to satisfy Bt (resp., a — Bt) is that T has SVEP on
{Ae o) : XN ¢ 0u(T)} (resp., on {\ € 0,(T) : A ¢ 04u(T)}); a necessary and
sufficient condition for T to satisfy Wt (resp., a — Wt) is that T satisfies Bt and
Po(T) C Ro(T) (vesp., T satisfies a — Bt and P§(T) C RE(T)). (See [2, 12, 13, 1].)

The quasinilpotent part Hy(T — \) and the analytic core K(T — \) of (T — )
are defined by

Ho(T =\ ={y €Y lim ||(T - X"yl =0}
and

K(T — X\) ={y € Y : there exists a sequence {y,} CY and § >0
for which y = yo, (T' = A)(Yn+1) =yn and |lya|| < 0"|ly|| for all n=1,2,..}.

Hy(T — X) and K(T — \) are (generally) non-closed hyperinvariant subspaces of T
such that (T'— X\)"9(0) C Ho(T — A) for all ¢ =0,1,2,..., and (T — N)K(T — \) =
K(T — \); also, if A € isoo(T), then Y = Ho(T — ) @ K(T — \) [21].

Given a subset 0,+(T) of 0,(T), we shall denote the complement of o,:(T) in
0.(T) by 0,¢(T)¢: thus 0, (T)¢ = o(T) \ 0w(T) and 4, (T)¢ = 04(T) \ Caw(T).
Any further notation, incidental or otherwise, will be introduced on an as and when
required basis.



Browder and Weyl spectra of upper triangular operator matrices 115

3. Some Complementary Results

We start by gathering together some technical results, all known, which will be
used in the sequel, often without further reference. The following implications
hold [17, Chapter IV, Article 38]: asc(T — \) < oo = a(T — ) < (T — \);
dse(T — \) <00 = B(T — A\) < (T — N\); if (T —X) = 8(T — )N, then either
of asc(T — A) < oo and dsc(T — A) < oo = asc(T — A) = dsc(T — N) < oo. If
A € &, (T), then T has SVEP at A\ <= asc(T — A) < oo and T* has SVEP at
A <= dsc(T — \) < oo [1, Theorems 3.16, 3.17]. From this it follows that if both
T and T* have SVEP at A\ € ®4(T), then A € ®°(T) and \ € Ro(T). If A € ®°(T)
and either of asc(T — A) and dsc(T — A) is finite (equivalently, either T' or T* has
SVEP at A), then A € Ro(T). Again, if A € ®4(T) and T has SVEP at A, then
A€ RE(T) [1, Theorem 3.23]. If Ho(T — A) is closed, or Ho(T — A\) N K(T — \) is
closed, then (Ho(T—A)NK(T — ) = {0} and) T" has SVEP at A [1, Theorem 2.31];
analogously, if Ho(T — A) + K(T — )) is norm dense in Y, then T* has SVEP at A
[1, Theorem 2.32]. If A € isoo(T'), then Y = Ho(T — X\) @ K(T — X) [21]; hence, if
A € isoo(T), then dimHy(T — ) < 0o <= codimK(T — X) < oco. If A € & (T),
then T — X is essentially semi-regular (i.e., there exist two T-invariant subspaces
M and N of Y such that Y = M @ N, M is finite dimensional and (7" — A)|ps is
nilpotent) and T (resp., T*) has SVEP at A if and only if Ho(T — \) = M (resp.,
K(T —X\) = N) [1, Theorems 3.14, 3.15].
For an operator P € B(Y) and o,(T) a subset of o(T), let

So,(r)(P) ={A € a(T)\ 0(T) : P does not have SVEP at \};

let
S(T)={A€o(T):T does not have SVEP at \}.

A straightforward argument then proves that the following relations hold:

(1). o(Mp) = 5(A) Ua(B) = a(Mc) U{o(4) Na(B)} = 0(Mc) U {8y, (ay(47) N
SGS(B)(B)}-

(IT). 0e(Mo) = 0c(A)Uoe(B) = 0.(Mc)U{oc(A)Noe(B)}, and if Sy _(ar.)(A*)N
Sge(]\/[c)(B) = @, then Ue(MO) = O'E(Mc).

(III) O'b(MQ) = O’b(A) U Ub(B) = Ub(Mc) U {O’b(A> M O’b(B))} = O'b(Mc) U
{So, (M) (A7) NV Soy(a1e) (B)}-

(IV). 0w (My) C 04(A) Uoy(B) = 0uw(Me) U{ow(A) Now(B)} = ou,(Mp) U
{ow(A) Now(B)}.

(V). 0w (A)Uoyw (B) is asubset of the sets o, (Mo )U{Ss,, (re) (A)USe, (hie) (A¥)},
ow(Mc) U{Ss, (me)(B) U Sq, (ne) (B}, 0w(Me) U{Ss, (ve) (A) U So, (re)(B)},
and O’w(Mc) U {Sow(Mc)(A*) U Sow(JVIc)(B*)}'
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Remark 3.1. (i) Let »(T) and r,(T) denote the spectral radius r(T') = sup{|}| :
A € o(T)} and the Weyl spectral radius 7,(T) = sup{|A| : A € 0,(T)}. Then
(I) taken alongwith the equality part of (IV) implies that r(M¢) = r(Mp) and
rw(Mc) = rw(Mp). Suppose now that Ro(Mg) = 0. Let OF denote the boundary
of F C C. Then X € do(My) implies A € do,,(M¢). To see this, start by observing
that both My and Mg have SVEP at ); in particular, both A and B have SVEP
at A. If A ¢ do,(Mc), then A € ®°(A) N ®%(B). Thus, A € ®°(My); since
My has SVEP at A\, A € Ro(My) — a contradiction since Ro(Mpy) = 0. Hence
0o(My) = doyw(Mc), which implies that r(My) = r,(Mc). We have proved the
following improved version of [20, Corollary 6]: if Ro(Mo) = 0, then r,(Mc) =
T(MC) = T(M()) = ’I“w(MQ).

(ii) If either of the sets So—w(Mc)(A) @] Sgw(Mc)(A*), So—w(Mc)(A) @] Sgw(Mc)(B),
Sgw(Mc)(A*) U Sow(Mc)(B*) and Saw(Mc)(B) U Saw(Mc)(B*) is the empty set, then
(V) implies that 0., (My) = 04 (A)Uoyw(B) = 04 (Mc). In particular, if one of A and
B is either polynomially compact or a Riesz operator or has countable spectrum or
spectrum with empty interior, then o, (My) = 04,(A) U 0 (B) = 0w (Me); ¢f. 20,
Corollary 5]. Later on we shall prove further conditions which imply the equality
of these spectra.

The equality o, (M¢) = 04(A) U oy, (B) has a bearing on o(M¢).

Proposition 3.2. If 0,,(M¢) = 04, (A) U0y (B), or 0aw(Me) = 04w (A) Uoew(B),
then o(Mc¢) = o(A)Uo(B).

Proof. Since o(M¢) C o(A) U o(B), it would suffice to prove the reverse inclusion.
Let A ¢ o(M¢). Then the invertibility of Mo — A implies that A— X is left invertible,
B — ) is right invertible and ind(A — X) +ind(B — \) = 0 (which, since a(A — \) =
B(B — A) = 0 implies that 5(A — \) = (B — A)). Assume, to start with, that
ow(Mc) = 0w(A)Uoy(B). If B(A—X) #0, then \ € 0,,(4) Noyw(B) Co(Me), a
contradiction. Hence (A —\) = a(B—\) = 0, which implies that A ¢ oc(A)Uc(B).
Assume now that 04, (Mc) = 0gw(A) U o (B). If (A —X) = a(B — ) #0, then
ind(A — X) < 0 and ind(B — A) > 0. This, since already A € &, (A4) N P_(B),
implies that A € ®,(A4) N ®F(B). Observe that if (also) A ¢ 0,4, (B), then A €
®O(A)N®°(B) = B(A—)\) = a(B— ) = 0. Consequently, A\ € 04, (B). But then
A € 0(M¢) — once again a contradiction. Hence S(A — \) = a(B — A) =0, and so
A¢o(A)Uo(B). O

Proposition 3.2 extends [4, Proposition 3] and [11, Corollary 6].

It is easily seen that if A € 04, (Mo)€ (= 0a(Mo) \ 0aw(Mp)), then A € &, (A)N
@, (B) and ind(A —\) +ind(B — A) < 0. Apparently, 04,(Mo) C 04w (A) U (B).
A relation of type (IV) between o4, (Mc) and 04, (Mp) is seemingly not possible.
Indeed:

Proposition 3.3. [8, Theorem 4.6] If X\ € 04.,(Mc)C, then

(a) A € @ (A) and ind(A — N) + ind(B — \) <0;

(b) either A € ®(B), or the range of B—\ is not closed, or the essential embedding
(A* — AI*)1(0) < X*/(B* — AI*)X* does not hold.
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Here, for a pair of Banach spaces Y and Z, )Y < Z denotes “)Y can be essentially
embedded in Z”, where we say that ) can be embedded in Z, Y < Z, if there exists
a left invertible operator J : Y — Z, and that Y < Z if Y < Z and Z/WY is an
infinite dimensional linear space for every W € B(), Z).

Evidently, 0,(My) = 0,(A)Ucq(B) and 0,(A) C 0,(M¢c) C 04(A)Uo,(B). The
following proposition gives a sufficient condition for o,(M¢) = o,(Mp).

Proposition 3.4. If S, () (A*) =0, then 0,(Mc) = 0a(A) U o (B).

Proof. If A € 0,(Mc)¢, then A — X is left invertible. Hence A* — AI* is right
invertible. Since a surjective operator has SVEP at 0 if and only if it is injective [1,
Corollary 2.24], A* — AI'* (and so also A — X)) is invertible. But then B — X is left
invertible. Hence \ € 0,(M¢)¢ implies A ¢ 0,(A) Uo,(B). O

Let
|| Tz

T) = inf,gp—1 () ———1——
M) = inbegr=200) Gt 7-1(0))

denote the reduced minimum modulus of T. Then ~(T') = v(T*) > 0 if and only if
TY is closed. The following technical lemma will be required in our next result.

Lemma 3.5. If )\ € is00,(T), or A € isoo(T), then the mapping A — (T — X) is
not continuous if and only if v(T — X) > 0.

Proof. We consider the case A € isoo,(T); the proof for the other case is similar.
Let A € is00,(T). Then there exists an e-neighbourhood O, of A such that T — p is
left invertible for every (A #)u € O,. Let z € (T — \)~1(0). Then

. I = pell I~ el
S G T ) - el
(=g = el

which implies that (T — p) — 0 as u — A. Hence (T — A) > 0 precisely when
A — (T — )) is not continuous. O

Observe that Ro(T) Nop(T) = O for every operator T; hence Ro(T) Ny (T) = 0
for every operator T

Proposition 3.6. If A € Ro(M¢), then the mapping N — ~y(Mc — N) is not
continuous if and only if the mappings A — y(A — X) and A — ~(B* — \I*) are
not continuous.

Proof. Let A € Ro(M¢), and assume that the mappings A — (A — A) and
A — y(B* — AI*) are not continuous. Then v(A — \) and (B — \) are > 0. Since

Y(Mc — A)

vV

gl < é 10 ) min{1, (A =), (B = A),7(A = A)v(B - N}

1 .
= THOHIHIH{M(A — ), 7(B = A),7(A =Xy (B - \)}

> 0,
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Lemma 3.5 implies that the mapping A — y(Mc—2A) is not continuous. Conversely,
assume that the mapping A — v(M¢ — \) is not continuous at every A € Ro(M¢).
Since Ro(Mc) N Gaw(Mc) = 0, X € 04u(Mc)C. The hypothesis A € Ro(M¢) also
implies that asc(A — \) and dsc(B — \) are finite; hence A € 04, (Mc)€ implies that
A€ D (A)N®F(B) (so that v(A — ) and v(B* — AI*) are > 0). Since A and B*
have SVEP at A\, A € isoo,(A) Uisoo,(B*). Lemma 3.5 applies, and we conclude
that the mappings A\ — v(A — X) and A — ~(B* — A\I*) are not continuous. O

If we let R(T) denote the set of poles (of the resolvent) of T', and p(T) the resolvent
set of T', then R(My) = R(A)UR(B) (= {R(A)Np(B)}U{R(A)NR(B)}U{p(4)N
R(B)}). The following proposition is an immediate consequence of the observations
that:

(Mo =) 7H0) = {(A= X)) Np(B =N} U{(A=N)H0)N(B-N)"1(0)}
U{p(A =) N (B =N 0)k

a(My—2X) <o = a(A—X) <oo,a(B—2A) < o0,

and \ € R(My) <= A € R(A) UR(B).

PI‘OpOSitiOl’l 3.7. A e RO(MO) — \€ Ro(A) U Ro(B)

If A € R(A)UR(B), then the inequalities asc(M¢c — ) < asc(A— ) +asc(B—\)
and dsc(M¢g — A) < dsc(A — A) + dsc(B — \) imply that A € R(M¢). Also, since
a(Me —A) <a(A—AN)+a(B—A), A€ Ro(A) URo(B) = A € Ro(Mc¢); cf. [4,
Theorem 1]. Observe that if A € Ro(A)URy(B), then A, A*, B and B* have SVEP
at A

Proposition 3.8. (i). If either A* or B has SVEP on Ro(Mc), then A € Ro(Mc)
if and only if A € Ro(A) URy(B).
(i). If o(Mc) = 0(A)Ua(B), then A € Ro(Mc) if and only if X € Ro(A) URy(B).

Proof. (i). We have to prove that A € Ro(M¢) implies A € Ro(A) URy(B). Since
A € Ro(M¢) implies Mc and Mc™ have SVEP at A\, A and B* have SVEP at \.
Again, since Ro(Mc)Now(Mc) = 0, A € Ro(M¢) implies A € @7 (A)N®F(B) and
ind(A — \) +ind(B — \) = 0. Consequently, if A* has SVEP at ), then A\ € ®°(A),
which forces A € ®°(B); again, if B has SVEP at ), then A\ € ®°(B), and this forces
A € ®Y(A). The proof now follows from the fact that A and B* have SVEP at \ in
the first case, and A and B have SVEP at A in the second case.

(ii). If X € Ro(M¢) and o(M¢g) = o(A) U o(B), then A € isoo(A) U isoo(B)
(={isoc(A) N p(B)} U {isoc(A) Nisoo(B)} U {p(A) Nisoc(B)}), a(A — N) < oo,
B(B — ) < o0, asc(A — A) < oo and dsc(B — A) < oo. The conclusions that A €
isoo(B)Up(B), f(B—\) < oo and dsc(B — ) < oo imply that A € Ro(B)Up(B) [1,
Theorem 3.81]. Evidently, A € &, (A). Hence A € isoo(A*)Up(B), dsc(A* —AI*) <
oo and B(A* — AI*) < oo. But then, [1, Theorem 3.81], A € Ro(A*)Up(B) = X €
Ro(A)Up(B). O

Proposition 3.8(ii) had earlier been proved by Barnes [4, Theorem 2] using a different
technique.
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4. Bt and a — Bt

In the following, alongwith considering necessary and (/or) sufficient conditions for
My and M¢ to satisfy Bt or a — Bt, we consider conditions for the implications
My (or Mc) satisfies Bt = Mc¢ (resp., My) satisfies Bt and My (or M) satisfies
a — Bt = Mg (resp., My) satisfies a — Bt. We start by characterizing operators
My satisfying Bt: many of these conditions are known to be equivalent for a single
operator satisfying Bt (see, for example, [2]). Recall that T satisfies Bt if acco(T) C
ow(T).

Theorem 4.1. The following conditions are equivalent:

(i). My satisfies Bt.

(i3). Sq, (My)(Mo) = 0.

(Z”) Sﬂw(Mo)(A) = SO'.,_U(MU)(B) =0.

(iv). A € ®°(A) N ®°(B) and A € isoo(A) U isoa(B) for every X € a,(Mp)C.

(v). ow(My) = op(Mp).

(UZ) O'w(Mo)c = Ro(Mo) = Ro(A) U Ro(B)

(vit). The mappings A — Y(A — X)) and A — ~v(B — X\) are not conlinuous on
Ro(Mp).

(viii). dimHo(A — \) and dimHy(B — \) are finite on o,(My)C.

(iz). codimK (A — \) and codimK (B — \) are finite on o, (My)C.

(z). asc(A—)\) and asc(B—N\), or dsc(A—\) and dsc(B—)\), are finite on a,(My)C.
(xi). My satisfies Bt.

Proof. The equivalence of the conditions (4), (v), (vi) and (zi), for every Banach
space operator, is well known [2]; we prove the equivalence of the remaining condi-
tions to (7).

(1) = (i1) = (#i1). If (4) is satisfied, then o(Mp) = acco(My) U isoo(My) C
ow(My)Uisoo (Mg) C (M) implies that aw(MO)c Cisoo(Mo) = S, () (Mo) =
(. Hence (i) = (4¢). Since My has SVEP at a point if and only if A and B have
SVEP at the point, (i) = (4i4).

(iii) = (iv). If (i4) is satisfied, then A € 0,(M)¢ = X € ®(A) N ®(B),
ind(A—\)+ind(B—\) = 0, and both A and B have SVEP at A (= ind(A—\) and
ind(B — \) are < 0). Hence (4ii) implies that A € ®(A) N ®°(B), asc(A — \) < oo
and asc(B — \) < oo, and this in turn implies that A € ®°(A4) N ®°(B) and X\ €
isoo(A) Uisoo(B), for every \ € o, (My)C.

(iv) = (vii). Evidently, (¢v) implies that A € Ro(A4) U Ro(B) = Ro(My) for every
A € 0, (Mp)€. Now apply (a slightly modified) Proposition 3.6.

(vit) = (viii). It is clear from (vii) that the range of My — X is closed at points
A € Ro(My). Since a(Mpy — A) < oo (so that A € 4 (My)), and My and My™ have
SVEP at points A € Ro(Mp), we conclude that A\ € Ro(Mp) <= X € 0, (Mp)¢ and
dimHy(Mp — ) = dimHy(A — X) + dimHy(B — \) < oo at points A € Ro(Mp) [1,
Theorem 3.18].

(viii) = (iz). Let A € 0,(My)C. If (viii) is satisfied, then A\ € ®°(My) and
dimHy(Mp — A) = dimHo(A — \) + dimHy(B — A) < co. Hence A € isoo(My) =
isoo(A) Uisoo(B). But then X = Hy(A—AN) @ K(A—-X) = Hy(B—AN) @ K(B—-\),
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which implies that codimK (A — \) and codimK (B — ) are finite on o, (Mp)C.
(iz) = (z). If (ix) is satisfied, then the following implications hold:
A€ o,(My)¢ & A€ ®(A)NP(B),ind(A—\)+ind(B - \) =0,
codimK (A — \) and codimK (B — A) are finite
= Xed(A)Nd(B),ind(A—\) +ind(B—\) =0,
and A, B* have SVEP at A

= A€ d(A4)Nd°B) and A, B* have SVEP at A
= AERo(A)URyB)
= asc(A— ) =dsc(A—\) <oo,asc(B — A) =dsc(B — A) < 0.

(z) = (7). If (z) holds, then we have

A€o, (Mp)¢ = Xed(A)nd°B),A and Blor A* and B*) have SVEP at
= A €isoo(A)Uisoo(B)
= ) € isoo(My).

This completes the proof. O

Remark 4.2. Here, we note for future reference the following easy consequence of
condition (v) of Theorem 4.1: if My satisfies Bt, then oy, (My) = 0, (A4) U 04 (B).

It is easily seen, argue as for a single linear operator [15, 2, 12], that the follow-
ing implications hold: (i) Mc satisfies Bt <= (ii) S, (mo)(Mc) = 0 <= (iii)
ow(Mc) = 0p(M¢) <= (iv) 04,(Mc)¢ = Ro(M¢c) <= (v) Mc™ satisfies Bt. Fur-
thermore, these conditions are equivalent to the condition that: (vi) the mappings
A — v(A—X) and A — y(B* — AI*) are not continuous on Ro(Mc¢): this follows
from a combination of Proposition 3.6 and the following lemma.

Lemma 4.3. If the mappings A — y(A—X\) and A\ — v(B*—AI*) are not contin-
uous on Ro(Mc) (resp., RE(Mc)), then o,(Mc)C = Ro(Mc) (resp., Gaw(Mc)¢ =
R§(Mc)).-

Proof. The proof in both the cases is very similar: we consider the case oq,, (Mc)¢ =
RE(Mc). It is easily seen that the discontinuity of the mappings A — (A — A)
and A\ — y(B* — A\[*) on R&(Mc) implies that RE(Mc) C 04w(Mc)C. For the
reverse inclusion, let 1o € 04 (Mc)C. Since a(Mc — o) = 0 implies pg ¢ 0 (Mc),
we may assume that a(Mg — pg) > 0. There exists an e-neighbourhood O, of pg
such that p € &, (M¢), ind(M¢e—po) = ind(Me —p) and o(Mo—p) < (Mo — o)
remains constant for every p € O, \ {po}. Suppose that a(M¢c — ) > 0. Then
there exists a 1 € O, \ {po, 1} such that u; € 4 (M¢), ind(M¢ — p) = ind(M¢e —
p1) and a(Me — p1) < a(Me — p). Since this is a contradiction, we must have
a(Me —p) =0 for all p € O\ {po}. But then Mc — p is left invertible; hence
po € isooy(Me) N &4 (Me) and ind(Me — po) < 0, ie., po € R3I(M¢e). Thus
Taw(Mc)® C R§(Mc). O
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1-U0U*
0 U~
unilateral shift on a Hilbert space, shows that conditions of type (iv), (viii), (iz) and
() of Theorem 4.1 are not necessary for M¢ to satisfy Bt. However, if o,,(M¢) =
ow(A)Uaoy,(B), then the corresponding conditions are both necessary and sufficient.

Theorem 4.4. If 6,,(M¢) = 0(A) Uy (B), then the following implications hold:

The example of the unitary operator ( , where U is the forward

Mc¢ satisfies Bt

A€ D(A)N®(B) and A € isos(A) Uisos(B) for A € o,(Mc)©
dimHo(A — )\) and dimHo(B — )\) are finite for \ € o,(Mc)©
codimK (A — X) and codimK (B — \) are finite for A € 0,(Mc)©
asc(A — X)) and asc(B—X), or dsc(A—X) and dsc(B — \),

are finite for X € 0,(Mc)C.

to o0

Proof. The hypothesis o.,(M¢) = 0, (A) U 0 (B) implies that o, (M¢g) = o, (M)
and o(M¢) = o(My) (see Proposition 3.2). Recall that M¢ satisfies Bt if and
only if Mc has SVEP on o,,(Mc)¢. We prove that Mc has SVEP on o, (M¢)¢ if
and only if My has SVEP on o, (M¢)¢; this, by Theorem 4.1, would then imply
the equivalence of the implications of the theorem. Evidently, My has SVEP at a
point ) if and only if A and B have SVEP at \; hence My has SVEP on o, (M¢)¢
implies Mo has SVEP on o, (M¢)€. For the reverse implication, Mo has SVEP at
A € 0, (Mc)€ implies A € isoo(M¢c) = ) € isoo(A) Uisoo(B). Hence both A and
B have SVEP at A = M, has SVEP at \. O

The conclusion that o, (M¢c) = 0, (A4) U 0y (B) may be obtained in a variety of
ways; the following proposition lists some sufficient conditions.

Proposition 4.5. If either (i) A and A*, or (ii) A and B, or (iii) A* and B*, or
(iv) B and B* have SVEP on 0.,(M¢)C, then ,(Mc) = 0,(A) U oy (B).

Proof. Let A € 0,(M¢)¢; then A € @, (A)N®_(B) and ind(A—\)+ind(B—\) = 0.
If A and A* have SVEP at A, then ind(A — \) = 0, and so ind(B — A) = 0 and
A€ ®°(A)Nd°(B); if A and B have SVEP at ), then ind(4 — \) and ind(B — \)
are < 0, so that ind(A — \) = ind(B — \) = 0 and A\ € ®%(A4) N ®°(B); if A* and
B* have SVEP at A, then ind(A — \) and ind(B — \) are > 0, so that ind(A—\) =
ind(B —\) =0 and A € ®°(A) N ®°(B); finally, if B and B* have SVEP at ), then
ind(B — \) = 0, and so (also) ind(A — \) = 0 and (once again) A € ®°(A4) N ®°(B).
In either case, 0., (M) 2 0 (A)Uoyw(B). Since 0y (Me) C 04(A) Uoy, (B) always,
the equality follows. 0O

Since M, satisfies Bt if and only if My* satisfies Bt, the hypothesis M, satisfies
Bt implies that A, A*, B and B* all have SVEP on ¢,,(My)€. This implies that if
either of the pairs (i) to (iv) of Proposition 4.5 have SVEP on o, (My)\ oy (M) and
M, satisfies Bt, then o, (M¢g) = 04 (A) U o, (B) and M¢ satisfies Bt. Conversely:

Proposition 4.6. If M¢ satisfies Bt, and if either A* or B has SVEP on a,,(Mc)C,
then My satisfies Bt.
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Proof. If M¢ satisfies Bt, and A € o, (Mc)¢, then (A and B* have SVEP at
A) A € ©(A) N @F(B) and ind(A — \) + ind(B — ) = 0. Thus either of the
hypotheses A* has SVEP on A\ € 0,(Mc)¢ and B has SVEP on \ € 0,(M¢)°
implies that A € ®°(A) N ®°(B). Hence 0,,(M¢) = 0(A) U 0y (B). To complete
the proof, argue as in the proof of Theorem 4.4 to prove that My has SVEP on
ow(Mc)¢ = 0, (My)¢. O

Our next result leads to a number of conditions for M, satisfies Bt to imply M¢
satisfies Bt.

Proposition 4.7. If Mc has SVEP on o,(My) \ 0w(Mc), then My satisfies Bt
implies M¢ satisfies Bt.

Proof. Suppose that M satisfies Bt. Then A and B have SVEP on aw(Mo)c; hence
M¢ has SVEP on o,,(Mp)€. The hypothesis M has SVEP on o, (My) \ 0., (Mc)
now implies that M¢ has SVEP on o,,(Mc)¢; hence M¢ satisfies Bt. O

The hypothesis M¢ has SVEP on o4, (M) \ 0, (M¢) in the proposition above may
be satisfied in a variety of ways: for example, if A and A* have SVEP on o,,(My) \
osr,(A), or B and B* have SVEP on o,(My) \ osr_(B), or A has SVEP on
ow(My) \ 0sr, (A) and B has SVEP on o,,(My) \ osr_(B), or A* has SVEP on
ow(Mo) \ 0sr, (A) and B* has SVEP on o,,(My) \ osr_(B); cf. [14, Theorem
3.1(a)], [11, Proposition 4.1] and [7, Theorem 3.2].

Theorem 4.8. If 0,,(M¢c) = 04(A) U 0y, (B), then My satisfies Bt if and only if
M¢ satisfies Bt.

Proof. Evidently o, (M¢) = 0y (A) U oy (B) = 0w(My), o(M¢) = 0(A) Uo(B) =
o(Mpy), and the following implications hold:

My satisfies Bt < A, B have SVEP on o, (My)©
= Mc¢c has SVEP on crw(Mc)C = M¢ satisfies Bt

and

M satisfies Bt < o(Mc) \ 0w(Mc) = Ro(Mc) = 0w (Mc)©
= every \ € o,(Mg)C is isolated in o(Mc) = o(Mo)
= My has SVEP on O'w(Mo)C = O’w(Mc>C = My satisfies Bt.

This completes the proof. O

Next, we consider a — Bt for operators My and M. Recall that T satisfies a — Bt
if and only if acco(T) C 04w (T).

Theorem 4.9. The following conditions are equivalent:
(i). My satisfies a — Bt.

(71). 0o(My) = 0aw(Mo) U {isoos(A) U isoo,(B)}.

(i4). 0w (Mo) = oap(Mp).
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(iv). A and B have SVEP on 04, (My)C.

(v). asc(A — X) and asc(B — \) are finite on 04, (My)C.

(vi), dimHy(A — X\) and dimHo(B — \) are finite on ¢q.,(Mo)C.

(vii). Ho(A —X) and Hyo(B — \) are closed on 04, (Mp)C.

(viii). Points X € 04, (Mo)C are isolated in o,(My).

(iz). The mappings A\ — v(A — X) and A — (B — ) are not continuous on
R§(Mo).

(). O (Mo)® = RE(A) URG(B) = RY(Mo) -

Proof. (i) = (i4). Since 0,(My) = 04(A)Uoo(B), A € isoo,(My) = A € isoo,(A)U
isoo,(B). Thus, if acco,(My) C 0aw (M), then o,(My) = accoq(My)Uisoo(My) C
Gaw(Mp) Uisoo,(My) C o4(Mp).

(#) = (#it). Since 04(T) C 0u(T) for every operator T, we have to prove
oar(Mo) C Oaw(Mp). If X € 04w(Mp)C, then X € @, (A) N &, (B) and ind(A —
A) + ind(B — A) < 0. Since (¢4) implies that A and B have SVEP at A\, A €
®, (A) N @ (B), and both asc(A — X) and asc(B — A) are finite. Hence \ ¢
cap(A) Uoe(B) = Uab(MO)-

The implications (iii) = (iv) = (v) are evident.

(v) = (vi). If asc(A — \) and asc(B — \) are finite at A\ € 04, (Mg)C, then
A€ P (A)NPy(B) and A € isoo,(A) Uisoo,(B). This, [1, Theorem 3.78], implies
that Ho(A — A) and Ho(B — ) are finite dimensional.

(vi) = (vii). Evident.

(vit) = (viig). Tt is clear from (vii) that Ho(Mo — A\) = Ho(A — \) @ Ho(B — A)
is closed on 04, (Mo)€. Thus My has SVEP on 04, (M) [1, Theorem 3.14]; hence
A € is00,(My) for every A € 044, (Mo)€ [1, Theorem 3.14].

(vidi) = (x). If (viii) is satisfied, then A\ € 04, (Mp)¢ implies A € &, (A4) N &, (B),
ind(A—\)+ind(B—X) < 0 and A, B have SVEP at A. Hence A € R§(A)URE(B) =
R&(Mp). Since RE(My) N 04w (Mo)€ = 0, the proof follows.

() & (iz). The implication (iz) = (z) follows from Lemma 4.3, and the im-
plication (z) = (iz) follows from Lemma 3.5 (and the fact that y(My — A) >
min{1,v(A — X),v(B — A}).

The implication (z) = (i) being evident, the proof is complete. O

If My satisfies a — Bt, then 04,(Moy) = 0aw(A) U 04w (B). This fails for Mg, as
U 1-U0U*

0 U*

What makes Theorem 4.9 possible is the information on A and B one is able to
extract from My at points in 04, (Mp)C; a similar situation does not prevail for M¢
(see Proposition 3.3). One does however have the following:

follows from a consideration of (the earlier considered) operator

Proposition 4.10. The following conditions are equivalent: (i) Mo satisfies a— Bt;
(1) 0a(Mc) = 0aw(Mc) U isoo,(Mc); (iii) Mc has SVEP on 04,(Mc)C; (iv)
0a(Mc) \ 0auw(Mc) = RG(Mc).

Proof. The proof of the proposition is the same as that for a single linear operator;
see[2]. O
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Remark 4.11. Lemma 4.3 implies that the discontinuity of the maps A — v(A—\)
and A — y(B—)) is a sufficient condition for M¢ to satisfy a— Bt: is this condition
necessary too?

We consider now sufficient conditions for M¢ satisfies a — Bt to imply M satisfies
a— Bt, and vice versa. As one would expect, My satisfies a — Bt does not imply M¢
satisfies @ — Bt. For example, if A, B,C € B({?> © () are the operators A =U ® 1,
B =U*®1 and C is the diagonal operator with entries (0,1 — UU*,1 —UU",...),
where U € B(¢?) is the forward unilateral shift, then o, (My) = 04w (M), RE(My) =
(0, and M, satisfies a — Bt; however, o(M¢) is the closed unit disc D, o,,(M¢) is
the boundary 0D of D, Ro(M¢g) = 0, and Mc does not satisfy Bt (much less
a — Bt). Conversely, M¢ satisfies a« — Bt does not imply M, satisfies a — Bt, as

1-UU*
0o U*
satisfies @ — Bt if and only if A and B have SVEP on 04, (My)¢; hence, if M¢ has
SVEP on 644, (Mo) \ 0aw(Mc), then, since My satisfies a — Bt implies M¢ has SVEP
on 04(Mc)C, Mc satisfies a — Bt. The following theorem shows that this happens
in a variety of ways.

the example of the operator ( shows. Recall, however, that M

Theorem 4.12. (i). If 04uw(Mc) = 040w (A)Uoaw(B), then My satisfies a — Bt im-
plies M satisfies a— Bt. If, additionally, either A* or B has SVEP on ¢4.,(Mc)C,
then M¢ satisfies a — Bt if and only if My satisfies a — Bt.

(ii). If A and A*, or A* and B*, have SVEP on 04.,(Mc)C, then Mg satisfies
a — Bt if and only if My satisfies a — Bt.

(iii). If A and A* have SVEP on 04,(Mc)¢ \ osp, (A), or A* has SVEP on
Caw(Mc)C \ osr, (A) and B* has SVEP on 04.,(Mc)¢ \ osr, (B), then Mc satis-
fies a — Bt if and only if My satisfies a — Bt.

Proof. (i). The hypothesis 04 (Mc) = 0aw(A) U 0aw(B) implies that 4., (Mp) =
Oaw(Mc) = 0w (A) U oaw(B). If My satisfies a — Bt, then A and B have SVEP
on G4, (Mp)¢ implies that Mc has SVEP on 04, (Mc)¢, and so M satisfies a —
Bt. Assume now that M¢ satisfies a — Bt, 044(Mco) = 0aw(A) U 04w (B), and
either A* or B has SVEP on 04,(Mc)¢. Since M satisfies a — Bt implies A
has SVEP on 0,4.,(Mc)¢, if B has SVEP on 04, (Mc)¢, then My has SVEP on
Oaw(My)¢ = 04u(Mc)C, and so My satisfies a — Bt. Assume now that A* has
SVEP on 0.,(Mc)¢: we prove that o,(Mc) = 04(A) U 0.(B) = 04(My). If
p & o,(Mc), then Mc — p and A — p are left invertible, y € 04,(Mc)C. The
left invertibility of A — p implies the right invertibility of A* — pul*; hence, since
A* has SVEP on 04,(Mc)¢, A* — uI* is invertibile. But then the invertibility
of A — pu, taken alongwith the left invertibility of M¢ — p, implies that B — p is
left invertible. Hence p ¢ 04(A) U 04(B). Since 0,(Mc) C 04(A) U o,(B) always,
ca(Mc) = 04(A) Uoa(B) = 04(Mp). Assume now that M¢ satisfies a — Bt. Then
A € 0auw(Mc)€ implies that A € isoo, (M) = isoo, (A) Uisoo, (B); hence (A and B
have SVEP on 04, (M) = 04, (Mc)C implies) My has SVEP on 4., (My)¢, and
so My satisfies a — Bt.

(ii). Let A\ € 04uw(Mc)¢. Then the hypothesis that A and A* have SVEP on
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Oaw(Mc)C implies that A € ®°(4) N @ (B) C ®,(A) N @, (B). Consequently,
Oaw(Mc) 2 0aw(A) U 0aw(B); hence 04w(Mc) = 0aw(A) U oaw(B). Again, if A*
and B* have SVEP on 0,,(Mc)C, then A € 04,(Mc)¢ = X € &, (A),ind(A —
A)+ind(B—X) <0,8(4—-X) <alAd—N),B8(B—A) <a(B—\). Hence, in view
of Proposition 3.3, A € ®°(4) N ®°(B) C 7 (A) NP (B), which (once again) leads
to the conclusion that o4, (M¢e) = 0aw(A) U 0w (B). Applying part (i), the proof
follows.

(iii). Let A\ € 04w (Mc)C. Then A € &, (A) and ind(A—\)+ind(B—)) < 0. If A and
A* have SVEP on 04, (Mc)€ \ osp, (A), then X € ®°(A) (is isolated in o, (A)), and
this forces A € @ (B). Hence A ¢ 04.,(A) U 0qyw(B), which leads us to the equality
Oaw(Mc) = an(A) U Gaw(B). Again, if A* has SVEP on 0,.,(Mc)¢ \ osr, (A),
then A € @1 (A4) (= X € ®(B)); thus, if B* has SVEP on 04, (Mc)¢ \ osp, (B),
then A € fbi (B), which forces A € ®°(A)N®°(B) and X € isoo(A) Uisoos(B). Once
again, we conclude that o4 (Mc) = 0aw(A) Uoaew(B). The proof now follows from
an application of part (i) (since both A and A* have SVEP on 0,.,(Mc)¢). O

5. Wt and a — Wt

The problem that we consider in this section is that of finding necessary and (/or)
sufficient conditions for the implications My satisfies Wt <= M satisfies Wt and
My satisfies a — Wt <= M satisfies a — Wt to hold. Recall that T satisfies Wt

(resp., a—Wt) if and only if 0(T)\ 0 (T) = Po(T) (resp., 0o (T)\0aw(T) = P§(T)).
Theorem 5.1. If 0,,(M¢) = 0, (A) Uy (B), then the equivalence

My satisfies Wt <= Mg satisfies Wt
holds if and only if Po(Mo) = Po(Mc).

Proof. The hypothesis o,,(M¢) = 04, (A4) U 0y, (B) implies that o.,(My) = o, (Mc)
and o(My) = o(M¢) (see Proposition 3.2). Suppose that M satisfies Wt; then M
satisfies Bt, and so

o(M¢g) \ ow(Mc) = a(Mo) \ 0w (Mo) = Po(Mo) = Ro(Mo) = Ro(Mc) € Po(Mc),

where the equality Ro(My) = Ro(M¢) follows from Proposition 3.8. Again, if Mo
satisfies Wt, then (M¢ satisfies Bt and)

o(Mo) \ ow(Mo) = o(Mc) \ ow(Mc) = Po(Mc) = Ro(Mc) = Ro(Mo) € Po(Mo),

where (once again) the equality Ro(Me) = Ro(Myp) follows from Proposition 3.8.
Thus, the statements of the theorem are equivalent if and only if
Po(Mo) = Po(Mc). O

The theorem has a number of consequences: some of these are listed below. Re-
call that the spectral picture SP(T) of T is the set o.(T'), the holes and pseudoholes
in 0.(T"), and the indices associated with these holes and pseudoholes. Recall from
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[19, Lemma 2.2] that if the entries A and B in M are Hilbert space operators
(with C' correspondingly defined), then the hypothesis SP(A) or SP(B) has no
pseudoholes holes implies the equality o.,(My) = 0., (M¢c). The operator T is said
to be isoloid if the isolated points of the spectrum of T are eigenvalues of T'.

Corollary 5.2. [19, Theorem 2.4] If 0.,(My) = 0 (Mc), A is isoloid and satisfies
Wt, then My satisfies Wt implies M¢ satisfies Wt.

Proof. We prove that if the hypotheses of the corollary are satisfied, then o, (M) =
ow(A)Uoyw (B) and Py(My) = Po(Mc); the proof of the corollary would them follow
from Theorem 5.1. The hypothesis A satisfies Wt implies that o(A) \ o, (A4) =
Ro(A) = Py(A) (so that both A and A* have SVEP on o,,(A)°). If X € 0, (Mp)C,
then My satisfies Wt implies that A € Py(My). Hence A € isoo(A) U p(A) and
a(A — A\) < co. By hypothesis, A is isoloid; hence A € Py(A), which implies that
both A and A* have SVEP on o,,(Mg)¢. Since \ € o,,(Mp)¢, and A and A* have
SVEP at A, implies A € ®°(A4) N ®°(B), it follows that o, (M) = o,(Mc) =
ow(A) U oy (B) (which, see Proposition 3.2, implies that o(M¢) = o(A) U o(B)).
Again, since A and A* have SVEP on o,,(My)¢ = 0,(Mc)C, Ro(My) = Ro(Mc)
(see Proposition 3.8). Hence Py(My) = Ro(Mo) = Ro(Mc) C Po(Mc). Finally,
since isoo (M¢) = isoo(A)Uisoo (B), A € Po(Mc) = A € Po(A)UPy(B) = Po(Mp).
Hence Po(Mo) = PO(MC). O

Corollary 5.3. [/, Theorem 4] If 0.,(M¢) = 0 (A) Uy (B), A and B satisfy Bt,
w € isoo(A) implies i € Ro(A) and v € isoo(B) implies v € Ry(B), then Mc¢
satisfies Wt.

Proof. Evidently, 0, (Mp) = 04 (Mc) = 0yw(A) Uoy(B) (= o(M¢) = o(A) U
o(B)). The hypothesis p1 € isoo(A) = p € Ro(A) implies that Py(A) C Ro(A4),
and the hypotheses p € isoo(A) = pu € Ro(A) and p € isoo(B) = p € Ro(B)
imply that Po(Mo) C Ro(My); hence, since A and B satisfy Bt implies My (has
SVEP on 0,,(My)¢ = 04, (A)° Noyw(B)¢ = Ro(A) NRo(B) implies My) satisfies Bt,
A and M, satisfy Wt. Since A is evidently isoloid, the proof follows from Corollary
5.2. O

Corollary 5.4. [11, Theorem 4.2] If A and A*, or A* and B* have SVEP, and A
is isoloid and satisfies Wt, then My satisfies Wt implies M¢ satisfies Wt.

Proof. Apply Remark 2.1(ii) and Corollary 5.2. O
The following corollary generalizes [7, Theorem 3.3].

Corollary 5.5. If either 0¢q(A) = osp, (B), or ogp_(A)Nosp, (B) =0, and A
1s isoloid and satisfies W't, then My satisfies Wt implies M¢ satisfies Wt.

Proof. Either of the hypotheses 0¢q(A) = osp, (B) and ogp_(A) Nogp, (B) =0
implies that o, (Mc¢) = 04, (M) (see [14, Corollary 3.3(b)] or [7, Corollary 2.2 and
Theorem 3.2)); hence, if My satisfies Bt, then o, (M¢) = 04, (M) = 04 (A)Uoy(B).
Now argue as above. 0O
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The implications

A ¢ 0p(A) Uoy(B) <= ) € 0,(A)° Noy(B)°
= A€ d(A)NPY(B),asc(A — \) = dsc(A — \) < oo,
asc(B — \) =dsc(B - \) < o0
<= A€ ®(M¢p),asc(Me — A) = dse(Mg — A) < 00, A* has SVEP at
A or B has SVEP at A

imply that
op(A) U oy(B) = o(Mc) U{S,,(mc)(A%) N So,(me) (B)}-
Again, the implications

A ¢ op(Mc) U{oa(A") Noa(B)}

= A€ P (A)NPF(B),asc(A—A) < oo and ind(A— ) +ind(B —\) =0,
dsc(B — A\) < 0o, and either A € ®(A*) and
asc(A* — AI") < oo or A€ ®(B) and asc(B — ) < 00

= Aea(A)°nay(B)°

imply that
op(A)Uop(B) C op(Mc) U {oa(A") Noaw(B)};

¢f. [6, Theorem 2.7]. The following Corollary generalizes [5, Theorem 2.9].

Corollary 5.6. If o,,(A*) Noww(B) = 0, A is isoloid and satisfies Wt, then M
satisfies Wt implies Mo satisfies W't.

Proof. The hypothesis My satisfies Wt implies that A and B have SVEP on {\ €
O(A)ND(B) : ind(A—A)+ind(B—A) = 0} and 04 (M) = 04(Mo) = 04 (A)Uoy, (B).
Since A € 0,(Mc)¢ = A € &, (A)N®_(B) and ind(A — \) +ind(B — \) = 0, it
follows that if (also) o4p(A*) Noen(B) = 0, then A € ®(A)NP(B) and ind(A — \) +
ind(B — A\) = 0. Thus o, (M¢c) D 04,(My), which implies that o, (Me) = 04, (Mp).
Now apply Corollary 5.2. O

Next, we prove an a — Wt analog of Theorem 5.1.

Theorem 5.7. (i). If 04uw(Mo) = 0aw(Mc), then My satisfies a — Wt implies Mo
satisfies a — Wt if and only if P§(Mc) C P§(Mo).

(ii). Conversely, if 0aw(Mo) = 0aw(Mc) and A* has SVEP on 04,(Mc)C, then
Me satisfies a — Wt implies My satisfies a — Wt if and only if P§(My) C P§(Mc).

Proof. (i). Since My satisfies a — Wt implies M, satisfies a — Bt, A and B have
SVEP on the complement of o4, (M¢) (= 04w(Mo) = 04w (A) U 0aw(B)). Hence
My satisfies a— Bt (see Theorem 4.12(i)). Thus A € R¢(Mc) <= A € 040(Mc)¢ =
Taw(Mp)€ = RE(Mp). Since RG(M¢) C P§(Mc), it follows that

ga(Mc) \ 0aw(Mc) = Rg(Mc) = Ri(Mo) = Py (Mo) € Pg(Mc),
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which proves that M¢ satisfies a — Wt if and only if P§(M¢) C P§(Mp).

(ii). The argument of the proof of Theorem 4.12(i) shows that if o, (M¢c) =
0w (Mp) and A* has SVEP on 04, (Mc)C, then o4 (Mc) = 0,(My) = 04(A)Uc,(B).
Thus, if M satisfies a — Wi, then My satisfies a — Bt (i.e., 04(Mp) \ 04w (My) =
RO(MO)) and

0a(Mo)\Gaw(Mo) = 0a(Mc)\0aw(Mc) = R§(Mc) = Ri(Mo) = Pg (Mo) < Pg(Mo),

where the equality R (My) = RE(M¢) follows from the implications A € RE(M¢) <
A € Oaw(Mc)¢ = 0auw(Mp)¢ <= X € RE(My). Hence My satisfies a — Wt if and
only if P§(Mc) C P§(Myp). O

The following corollary appears in [7, Theore 3.5]. Recall that T is a-isoloid if T is
isoloid at every A € isoo,(T).

Corollary 5.8. If 0,,(A) = osp (B), A is a-isoloid and satisfies a — Wt, then
My satisfies a — Wt implies M¢ satisfies a — Wt.

Proof. Start by observing that if A\ € & (M¢) and ind(A — X) > 0, then A €
®(A) N @4 (B) and ind(A — A) +ind(B — A) < 0; if, instead, ind(A — A) < 0
then 04, (A) = osp, (B) and A € ® (M¢) imply that A\ € & (A) N &, (B) and
ind(A — A) +ind(B — A) < 0. In either case, A € ®7(M¢) = X € &7 (My);
hence 04 (Mc) = 0qw(Mp). In view of Theorem 5.7, we are thus left to prove
that P§(Mc) C P§(My). If A € P§(Mc), then A € isoo,(A) U isoo,(B), and so
A € PE(A) = 0aw(A)° = osp, (B)C (since A is a-isoloid, A satisfies a — Wt and
Oaw(A) = osp, (B)). But then, since My satisfies Bt implies B has SVEP at A,
A € R&(B). Hence A € RE(Mp) = Pe(Mp). O

If A* has SVEP, then A € 04, (Mc)C implies A € ®(A) N @ (B), ind(A—\) >0
and ind(A — A) +ind(B — A) < 0; this in turn implies that /\ ¢ 0aw(A) U o (B).
Thus, if A* has SVEP and M, satisfies a — Bt, then 4., (Mp) = 04w (A)Uoew(B) =
an(Mc).

Corollary 5.9. If 0,(A*) has empty interior, A is a-isoloid and satisfies a — Wt,
then My satisfies a — Wt = M¢ satisfies a — Wt.

Proof. Evidently, A* has SVEP, My satisfies a — Bt and 04, (Mo) = 040 (Mc). Now
argue as in the (latter part of the) proof of Corollary 5.8. O

Corollary 5.9 generalizes [6, Theorem 3.3].

For an operator T' € B(Y) such that T* has SVEP, T satisfies Wt if and only if T
satisfies a—Wt [1, Theorem 3.108]. Thus, if A* and B* have SVEP, then M% = My*
or M¢c™ has SVEP, and the (two way) implication Mx satisfies Wt <= Mx satisfies
a — Wt holds. The following theorem, our final result, proves more.

Theorem 5.10. If S(,SF+ (4)(A*)u SUSF+(B)(B*) = (), then M¢ satisfies Wt <=
M satisfies a — Wt.
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Proof. The implication M¢ satisfies a — Wt = M satisfies Wt being clear, we
prove the reverse implication. For this, it would suffice to prove that o(M¢) =
0a(M¢) (which would then imply Po(M¢e) = P§(Me)) and o (Me) = 04w (Me).

Evidently, 0,(M¢) C o(M¢). Let A ¢ 0,(M¢g). Then Mo — A and A — X are
left invertible. The left invertibility of A — A implies A € ®;(A). Since A* has
SVEP at points A € &, (A), it follows that A — X is invertible. But then B — A
is left invertible, which (because B* has SVEP at points A € ®(B)) implies that
B — X is invertible. Thus, A ¢ 0,(Mc) = X ¢ o(A) U o(B), ie., o(Mg) C
0(A) Uao(B) C 04(Mc¢). Next, we prove that o,(Mc) C 04w(Mc): this would
then imply the equality o, (M¢) = 0auw(Mc). Let X € 04w (Mc); then A € & (A)
(and ind(A — A\) + ind(B — A) < 0). Since A* has SVEP at points A € &, (A4), it
follows that ind(A — A) > 0 = A € ®(A) (with ind(4A — A\) > 0). Since this forces
A € &, (B), it follows (from the hypothesis B* has SVEP on the set of A € ®(B))
that A € ®(B) and ind(B — A) > 0. Since ind(A — \) +ind(B — \) < 0, we conclude
that A € ®°(A4) N ®9(B). Hence 0, (M¢) C 04(A) Uow(B) C 0aw(Mc), and the
proof is complete. O
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