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CLASSIFICATION OF THE CROSSED PRODUCT C(M)×θ Zp

FOR CERTAIN PAIRS (M, θ)

Yifeng Xue

Abstract

Let M be a separable compact Hausdorff space with dim M ≤ 2 and
θ : M → M be a homeomorphism with prime period p (p ≥ 2). Set Mθ =
{x ∈ M | θ(x) = x} 6= ∅ and M0 = M\Mθ. Suppose that M0 is dense in
M and H2(M0/θ,Z) ∼= 0, H2(χ(M0/θ),Z) ∼= 0. Let M ′ be another separable
compact Hausdorff space with dim M ′ ≤ 2 and θ′ be the self–homeomorphism
of M ′ with prime period p. Suppose that M ′

0 = M ′\M ′
θ′ is dense in M ′.

Then C(M)×θ Zp
∼= C(M ′)×θ′ Zp iff there is a homeomorphism F from M/θ

onto M ′/θ′ such that F (Mθ) = M ′
θ′ . Thus, if (M, θ) and (M ′, θ′) are orbit

equivalent, then C(M)×θ Zp
∼= C(M ′)×θ′ Zp.

1 Introduction

The classification of dynamical systems and corresponding C∗–crossed products
have became one of most important research subjects for more than a decade. One of
the most important results about the classification of the minimal Cantor dynamical
system was obtained by T. Giordano, I.F. Putnam and F. Skau in [5]. They proved
that two minimal Cantor crossed products C(X1) ×α1 Z and C(X2) ×α2 Z are ∗–
isomorphic iff (X1, α1) and (X2, α2) are strong orbit equivalent (cf. [5, Theorem
2.1]). Recently, H. Lin and H. Matui used their notation so–called approximate
conjugacy of dynamical systems to obtain many equivalent conditions that make
C(X1)×α1 Z ∼= C(X2)×α2 Z in [13].

For the type of dynamical systems such as (C(X), α,Zn) where X is a com-
pact Hausdorff space and α : X → X is homeomorphism, there is little known
when C(X1) ×α1 Zn

∼= C(X2) ×α2 Zn. We only know if α1 acts on X1 freely and
H2(X1/α1,Z) has no element annihilated by n, then C(X1)×α1 Z ∼= C(X2)×α2 Z
iff α2 acts on X2 freely and X1/α1

∼= X2/α2 (cf. [11, Proposition 5]).
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But there is a special example showed by Elliott in [3] which could enlighten
one on the classification of C(X) ×α Zn when α has fixed points. The example
is: C(S1)×α Z2

∼= {f : [0, 1] → M2(C) continuous | f(0), f(1) are diagonal}, where
α(z) = z, ∀ z ∈ S1 (cf. [1, 6.10.4, 10.11.5]).

Inspired by this example, we try to find when the crossed product C(X)×α Zp

has the similar form and try to classify it. So, in this paper, we will consider the
classification of the crossed product C(M) ×θ Zp, here M is a separable compact
Hausdorff space and θ is a self–homeomorphism of M with prime period p (p ≥ 2)
such that Mθ = {x ∈ M | θ(x) = x} 6= ∅. We let (M, θ) denote the pair which
satisfy conditions mentioned above throughout the paper.

Based on the Extension theory of C∗–algebras and author’s previous work on
C(M) ×θ Zp, we obtain that if dim M ≤ 2, M0 = M\Mθ is dense in M and
H2(M0/θ,Z) ∼= 0, H2(χ(M0/θ),Z) ∼= 0, then

C(M)×θ Zp
∼= {(aij)p×p ∈ Mp(C(M/θ))| aij(x) = 0, ∀x ∈ Mθ, i 6= j}.

where M/θ (or M0/θ) is the orbit space of θ and χ(M0/θ) is the corona set of M0/θ.
Moreover, let (M ′, θ′) be another pair with dim M ′ ≤ 2 and M\M ′

θ′ = M ′. Then

C(M)×θ Zp
∼= C(M ′)×θ′ Zp

iff there is a homeomorphism F from M/θ onto M ′/θ′ such that F (Mθ) = M ′
θ′ .

2 Preliminaries

Let A be a C∗–algebra with unit 1. We denote by U(A) the group of unitary
elements of A and U0(A) the connected component of the unit 1 in U(A). Let
Mm(A) be the matrix algebra of order m over A. Set (cf. [16, 17] or [20])

Sn(A) ={ (a1, · · · , an)|
n∑

k=1

a∗kak = 1}

csr(A) =min{n| U0(Mn(A)) acts transitively on Sm(A) ∀m ≥ n }
Lemma 2.1. Let X be a compact Hausdorff space with covering dimension dim X ≤
2. Given U ∈ U(Mp(C(X))), there are U0 ∈ U0(Mp(C(X))) and v ∈ U((C(X)))
such that U = U0 diag (1p−1, v).

Proof. We have from [14], csr(C(X)) ≤
[
dim X + 1

2

]
+ 1 ≤ 2, where [x] stands for

the greatest integer which is less than or equal to x.
Let u1 be the first column of U . Then u1 ∈ Sp(C(X)) and consequently, there

is U1 ∈ U0(Mp(C(X)) such that u1 becomes the first column of U1 for csr(C(X)) ≤
2 ≤ p. Put W = U∗

1 U . Then the unitary element W has the form W = diag (1, V1)
for some V1 ∈ U(Mp−1(C(X))).

Repeating above procedure to V1, there are U2 ∈ U0(Mp−1(C(X))) and V2 ∈
U(Mp−2(C(X))) such that V1 = U2 diag (1, V2). So U = U1U2 diag (12, V2). By
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induction, we can finally find U0 ∈ U0(Mp(C(X))) and v ∈ U(C(X)) such that
U = U0 diag (1p−1, v).

According to [21], {x ∈ M | θk(x) = x} = Mθ, k = 2, · · · , p − 1. Now set
M0 = M\Mθ. Let M/θ (resp. M0/θ)) denote the orbit space of θ and let P be
the canonical projective map of M (or M0) onto M/θ (or M0/θ). Let Oθ(x) =
{x, θ(x), · · · , θp−1(x)} denote the orbit of x in M or M0. For the pair (M, θ), the
dynamical system (C(M), θ,Zp) (resp. (C0(M0), θ,Zp)) yields a crossed product
C∗–algebra C(M)×θ Zp (resp. C0(M0)×θ Zp). Set

D(M, θ) =








f0 f1 . . . fp−1

θ(fp−1) θ(f0) . . . θ(fp−2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
θp−1(f1) θp−1(f2) . . . θp−1(f0)


 ; f0, · · · , fp−1 ∈ C(M)





D(M0, θ) =








f0 f1 . . . fp−1

θ(fp−1) θ(f0) . . . θ(fp−2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
θp−1(f1) θp−1(f2) . . . θp−1(f0)


 ; f0, · · · , fp−1 ∈ C0(M0)





,

where θ(f)(x) = f(θ(x)), ∀x ∈ M (resp. M0), f ∈ C(M) (resp. C0(M0)). By 7.6.1
and 7.6.5 of [15], we have C(M)×θZp

∼= D(M, θ) ⊂ Mn(C(M)) and C0(M0)×θZp
∼=

D(M0, θ) ⊂ Mn(C0(M0)).
Let ω = e2πi/p. Put ej = diag (0, · · · , 0︸ ︷︷ ︸

j−1

, 1, 0, · · · , 0︸ ︷︷ ︸
p−j

) and

Ωp =




1√
p

ω√
p . . . ωp−1

√
p

1√
p

ω2
√

p . . . (ω2)p−1
√

p

. . . . . . . . . . . . . . . . . . . . . . . . . .
1√
p

ωp−1
√

p . . . (ωp−1)p−1
√

p
1√
p

1√
p . . . 1√

p




, Pj = Ω∗pejΩp, j = 1, · · · , p.

It is easy to check that Ωp is unitary in Mp(C) and P1, · · · , Pp are projections in

D(M, θ). Define ∗–homomorphism π : D(M, θ) →
p−1⊕

j=0

C(Mθ) as

π







f0 f1 . . . fp−1

θ(fp−1) θ(f0) . . . θ(fp−2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
θp−1(f1) θp−1(f2) . . . θp−1(f0)





=




p−1∑

j=0

ωj(p−1)fj |Mθ
, · · · ,

p−1∑

j=0

fj |Mθ


 .

π induces following exact sequence of C∗–algebras:

0 −→ D(M0, θ)
l−→ D(M, θ) π−→

p−1⊕

j=0

C(Mθ) −→ 0. (2.1)
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Lemma 2.2. For the pair (M, θ), we have

(1) Every irreducible representation of D(M0, θ) is equivalent to the representation
πx, where πx(a) = a(x) for some x ∈ M0 and ∀a ∈ D(M0, θ) and P (x) → [πx]
gives a homeomorphism of M0/θ onto ̂D(M0, θ)–the spectrum of D(M0, θ),
where we identify D(M0, θ) with { a ∈ D(M, θ)| a|Mθ

= 0};
(2) D(M0, θ) is a p–homogeneous algebra which is ∗–isomorphic to C0(M0/θ, E),

where E is a matrix bundle over M0/θ with fiber Mp(C);

(3) Let σ be a pure state on D(M, θ). Then σ is multiplicable iff there is x0 ∈ Mθ

such that

σ







f0 f1 . . . fp−1

θ(fp−1) θ(f0) . . . θ(fp−2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
θp−1(f1) θp−1(f2) . . . θp−1(f0)





 =

p−1∑

j=0

ωjkfj(x0)

for some k ∈ {0, · · · , p− 1}. We let σx0,k denote the σ.

Proof. Let (Π,K) be an irreducible representation of D(M0, θ). Then by [2, Propo-
sition 2.10.2], there is an irreducible representation (ρ,H) of Mp(C0(M0)) such that
K ⊂ H and Π(·) = ρ(·)|K . It is well-known that (ρ,H) is equivalent to (ρx0 ,Cp)
for some x0 ∈ M0, where ρx((fij)p×p) = (fij(x))p×p, x ∈ M0 and fij ∈ C0(M0),
i, j = 1, · · · , p.

Put πx = ρx|D(M0,θ), x ∈ M0. Given A = (aij)p×p ∈ Mp(C). Since x0, θ(x0), · · · ,
θp−1(x0) are mutually different in M0, we can find f0, · · · , fp−1 ∈ C(M) such that
fj |Mθ

= 0, j = 0, · · · , p− 1 and

πx0







f0 f1 . . . fp−1

θ(fp−1) θ(f0) . . . θ(fp−2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
θp−1(f1) θp−1(f2) . . . θp−1(f0)





 = A.

This means that (πx0 ,Cp) is an irreducible representation of D(M0, θ) and hence
(Π,K) is equivalent to (πx0 ,Cp). Thus D(M0, θ) is a p–homogeneous C∗–algebra.

Let x0 ∈ M0 and x1 = θj(x0) for some j ∈ {1, · · · , p − 1}. It is easy to
check that there is a unitary matrix U in Mp(C) such that πx0(a) = Uπx1(a)U∗,
∀ a ∈ D(M0, θ), i.e., (πx0 ,Cp) and (πx1 ,Cp) are equivalent; On the other hand, if
(πx0 ,Cp) and (πx1 ,Cp) are equivalent and Oθ(x0)∩Oθ(x1) = ∅, then we can choose
g0, · · · , gp−1 ∈ C(M) such that gj(x) = 0, ∀x ∈ Mθ ∪ Oθ(x0) and gj |Oθ(x1) 6= 0,
j = 0, · · · , p− 1. Set

G =




g0 g1 . . . gp−1

θ(gp−1) θ(g0) . . . θ(gp−2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
θp−1(g1) θp−1(g2) . . . θp−1(g0)


 ∈ D(M0, θ).
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Then πx0(G) = 0, while πx1(G) 6= 0. Therefore, we have Oθ(x0) ∩ Oθ(x1) 6= ∅,
that is, x0 = θj(x1) for some j ∈ {0, 1, · · · , p− 1}. So the map P (x) 7→ [πx] gives a
homeomorphism of M0/θ onto ̂D(M0, θ) by using [2, Lemma 3.3.3].

Set [x] = P (x) ∈ M0/θ and D([x]) = D(M0, θ)/Ker πx
∼= Mp(C), ∀x ∈ M0. Let

a([x]) be the canonical image of a ∈ D(M0, θ) in D([x]). Put E = ∪
[x]∈M0/θ

D([x]).

Then E is a fiber bundle (matrix bundle) over M0/θ with fiber Mp(C) (cf. [4,
§3.2, P.249]). The ∗–isomorphism from D(M0, θ) onto C0(M0/θ,E) is defined by
φ(a)([x]) = a([x]), ∀ a ∈ D(M0, θ) and [x] ∈ M0/θ.

The proof of (3) comes from Corollary 1, Case 1 and case 2 on P77 and case 2
on P79 of [11].

Assume that the matrix bundle E above is trivial, i.e., there is a homeomorphism
Γ: E → M0/θ ×Mp(C) such that Γ(D([x])) = [x]×Mp(C), ∀ [x] ∈ M0/θ. Then Γ
induces an isomorphism Γ∗ : C0(M0/θ, E) → Mp(C0(M0/θ)) given by Γ∗(f)([x]) =
Γ(f([x])), ∀ f ∈ C0(M0/θ, E) and [x] ∈ M0/θ. Set Φ = l ◦ φ−1 ◦ Γ−1. Applying
Lemma 2.2 to (2.1), we have following:

Corollary 2.3. Let (M, θ) be the pair such that all matrix bundles over M0/θ is
trivial. Then we have following exact sequence of C∗–algebras

0 −→ Mp(C0(M0/θ)) Φ−→ D(M, θ) π−→
p−1⊕

j=0

C(Mθ) −→ 0. (2.2)

3 Main results

Consider the exact sequence of C∗–algebras

0 −→ B i−→ E q−→ A −→ 0, (3.1)

where B is a separable C∗–algebra and i(B) is the essential ideal of E . Let {un}
be an approximate identity of B and M(B) be the multiplier algebra of B. Define
∗–monomorphism ρ : E → M(B) by µ(e) = lim

n
i−1(i(un)e), ∀ e ∈ E , where the limit

is taken as the strict limit in M(B). Then Busby invariant τq : A → M(B)/B,
associated with (3.1) is given by τq(a) = Ω(µ(e)), where e ∈ E such that q(e) = a,
Ω: M(B) → M(B)/B is the quotient map. τq is well–defined and is monomorphic
since i(B) is essential. Please see [10, Chapter 3] or [12, Chapter 5], or [19, Chapter
3]) for details. In order to obtain our main result, we need following lemma, which
comes from [10, Lemma 3.2.2].

Lemma 3.1. Let τq (resp. τq′) be the Busby invariant associated following exact
sequence of C∗–algebras:

0 −→ B i−→ E q−→ A −→ 0 (resp. 0 −→ B i′−→ E ′ q′−→ A −→ 0),

where i(B) (resp. i′(B)) is the essential ideal of E (resp. E ′). Assume that there is
a unitary element u ∈ M(B) such that τq(a) = Ω(u)τq′(a)Ω(u∗), ∀ a ∈ A. Then E
is ∗–isomorphic to E ′.
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Let X be a locally compact Hausdorff space. Let X+ (resp. β(X)) denote the
one–point (resp. Stone–Cěch) compactification of X. Set χ(X) = β(X)\X (the
corona set of X).

Lemma 3.2. Let X be a locally compact Hausdorff space with dim X ≤ 2. If
H2(X,Z) ∼= 0, then every matrix bundle over X is trivial.

Proof. Let M(X+) denote the collection of all (isomorphism classes of) matrix
bundles of arbitrary degree over X+ and SM(X+) denote the the distinguished
subsemigroup of M(X), consisting of matrix bundles of the form V ⊗ V ∗, where
V is an arbitrary complex vector bundle over X+, and ∗ denotes adjoints. When
dim X+ = dim X ≤ 2 and H2(X,Z) = H2(X+,Z) ∼= 0, M(X+) = SM(X+) by
[7, Corollary 1] and all complex vector bundles over X+ are trivial. Therefore,
all matrix bundles of arbitrary degree over X+ is trivial. Because every matrix
bundle over X with fiber Mn(C) can be extended to an matrix bundle over X+

with fiber Mn(C) (using the same methods described in [9, P110–P112]), we get the
assertion.

By Lemma 3.2, we may assume that the pair (M, θ) satisfies condition (A):

dim M ≤ 2 and H2(M0/θ,Z) ∼= 0.

Lemma 3.3. Let the pair (M, θ) satisfy Condition (A). If M0 = M\Mθ is dense
in M , then Φ(Mp(C0(M0/θ)) is an essential ideal of D(M, θ).

Proof. Let a ∈ D(M, θ) such that ac = 0, ∀ c ∈ D(M0, θ) = Φ(Mp(C0(M0/θ)). If
there is x0 ∈ M0 such that a(x0) 6= 0, then we can find a b ∈ D(M0, θ) such that
b(x0) = (a(x0))∗. It follows that a(x0)(a(x0))∗ = 0, i.e., a(x0) = 0, a contradiction.
So a|M0 = 0. Since M0 is dense in M and all elements in a are continuous, we have
a = 0.

It is known that

M(Mp(C0(M0/θ))) = Mp(Cb(M0/θ)) ∼= Mp(C(β(M0/θ))),
Mp(Cb(M0/θ))/Mp(C0(M0/θ)) ∼= Mp(C(χ(M0/θ))).

Assume that (M, θ) satisfies Condition (A) and the condition that M\Mθ is
dense in M . Then the ∗–monomorphism µ : D(M, θ) → Mp(Cb(M0/θ)) is given by
µ(a) = lim

n→∞
Φ−1(Φ(un)a), ∀ a ∈ D(M, θ), where {un} is an approximate identity

for Mp(C0(M0/θ)). We now construct the Busby invariant τπ associated with (2.2)
as follows.

Let f0, · · · , fp−1 ∈ C(Mθ). Extends them to g0, · · · , gp−1 ∈ C(M), respectively,

such that gj |Mθ
= fj , j = 0, · · · , p−1. Put f̂j =

1
p

p−1∑
k=0

θk(gj), j = 0, · · · , p−1. Then

θ(f̂j) = f̂j and f̂j |Mθ
= fj , j = 0, · · · , p− 1. Thus, functions h0, · · · , hp−1 given by
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hj([x]) = f̂j(x), x ∈ M0, j = 0, · · · , p−1 are all in Cb(M0/θ). Set a(f0, · · · , fp−1) =
p−1∑
j=0

Pj+1f̂j . Then π(a(f0, · · · , fp−1)) = (f0, · · · , fp−1) ∈
p−1⊕

j=0

C(Mθ).

Let Ω: Mp(Cb(M0/θ)) → Mp(Cb(M0/θ))/Mp(C0(M0/θ)) be the canonical ho-
momorphism. Note that for any b ∈ Mp(C0(M0/θ)) and [x] ∈ M0/θ,

(µ(Pj+1f̂j)b)([x]) =Φ−1(Pj+1f̂jΦ(b))([x]) = Γ∗ ◦ φ(Pj+1f̂jΦ(b))([x])

=Γ((Pj+1f̂jΦ(b))([x])).

since Pj+1f̂jΦ(b)− Pj+1Φ(b)f̂j(x) ∈ Ker πx, it follows that

Γ((Pj+1f̂jΦ(b))([x])) = Γ((Pj+1Φ(b))([x]))f̂j(x) = (µ(Pj+1)b)([x])hj([x]),

that is, µ(Pj+1f̂j) = µ(Pj+1)hj , j = 0, · · · , p− 1. Set Qj = Ω ◦ µ(Pj), j = 1, · · · , p.
Then τπ is given by

τπ(f0, · · · , fp−1) = Ω ◦ µ(a(f0, · · · , fp−1)) =
p−1∑

j=0

Qj+1Ω(hj1p).

Let A(Mθ) = {(aij)p×p ∈ Mp(C(M/θ))| aij(x) = 0, x ∈ Mθ, i 6= j}. Define the

∗–homomorphism Λ: A(Mθ) →
p−1⊕

j=0

C(Mθ) by Λ((aij)p×p) = (a11|Mθ
, · · · , app|Mθ

).

Then we have following exact sequence:

0 −→ Mp(C0(M0/θ)) i−→ A(Mθ)
Λ−→

p−1⊕

j=0

C(Mθ) −→ 0. (3.2)

The Busby invariant τΛ associated with (3.2) is given by

τΛ(f0, · · · , fp−1) =
p−1∑

j=0

Ω(ej+1)Ω(hj1p),

where h0, · · · , hp−1 are given as above.
Now we present the main results of the paper as follows

Theorem 3.4. Suppose that the pair (M, θ) satisfies condition (A) and Condition
(B):

M0 = M\Mθ is dense in M, H2(χ(M0/θ),Z) ∼= 0.

Then C(M)×θ Zp
∼= A(Mθ).

Proof. Since dim(M0/θ) = dim M0 ≤ dim M ≤ 2 by [21, Lemma 1.3] and H2(M0/θ,Z)
∼= 0, it follows from Lemma 3.2 that every matrix bundle over M0/θ is trivial. Since

dim(χ(M0/θ)) ≤ dim(β(M0/θ)) ≤ dim(M0/θ)) ≤ 2, H2(χ(M0/θ),Z) ∼= 0,
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all complex vector bundles over χ(M0/θ) are trivial.
It is easy to check that for any b ∈ Mp(C0(M0/θ)), there is fj ∈ C0(M0) with

θ(fj) = fj such that PjΦ(b)Pj = fjPj , j = 1, · · · , p. So, µ(Pj)Mp(C0(M0/θ))µ(Pj)
is a commutative C∗–algebra, j = 1, · · · , p. Since Mp(C0(M0/θ)) is dense in
Mp(Cb(M0/θ)) in the sense of strict topology, µ(Pj)Mp(Cb(M0/θ))µ(Pj) is also a
commutative C∗–algebra, j = 1, · · · , p. Assume that Q1, · · · , Qp in Mp(C(χ(M0/θ)).
Then QjMp(C(χ(M0/θ))) Qj is commutative and hence rank Qj(x) ≤ 1, ∀x ∈
χ(M0/θ) by [15, Lemma 6.1.3], j = 1, · · · , p.

Note that Q1, · · · , Qp are mutually orthogonal and
p∑

j=1

Qj = 1p. Therefore, we

have rank Qj(x) = 1, ∀x ∈ χ(M0/θ), j = 1, · · · , p. So there are partial isometries
V1, · · · , Vp in Mp(C(χ(M0/θ)) such that Sj = V ∗

j Vj and ej = VjV
∗
j , j = 1, · · · , p.

Put V =
p∑

j=1

Vj . Then V is a unitary element in Mp(C(χ(M0/θ)) and Sj = V ∗ejV ,

j = 1, · · · , p. Applying Lemma 2.1 to V ∗, we can find V0 ∈ U0(Mp(C(χ(M0/θ))) and
v ∈ U(C(χ(M0/θ))) such that V ∗ = V0 diag (1p−1, v). Consequently, Sj = V0ejV

∗
0 ,

j = 1, · · · , p.
Similarly, there is V ′

0 ∈ U0(Mp(C(χ(M0/θ)))) such that Ω(ej) = V ′
0ejV

′∗
0 .

Choose U ∈ U0(Mp(C(β(M0/θ)))) such that Ω(U) = V0V
′∗
0 . Since Ω(hj1p) com-

mutes with every element in Mp(C(χ(M0/θ))), j = 0, · · · , p− 1, it follows that

τπ(f0, · · · , fp−1) = Ω(U)τΛ(f0, · · · , fp−1)Ω(U∗),

∀ f0, · · · , fp−1 ∈ C(Mθ). Therefore, C(M)×θ Zp
∼= A(Mθ) by Lemma 3.1.

For the pair (M, θ) with dimM ≤ 1, we have dim(M0/θ) ≤ 1 and dim χ(M0/θ) ≤
1. In this case, H2(M0/θ,Z) ∼= H2(χ(M0/θ),Z) ∼= 0. Therefore, we have following
corollary according to Theorem 3.4:

Corollary 3.5. Let (M, θ) be the pair with dim M ≤ 1 and M0 = M , where M0 is
the closure of M0 in M . Then C(M)×θ Zp

∼= A(Mθ).

Theorem 3.6. Suppose that the pair (M, θ) satisfy Condition (A), Condition (B).
Let (M ′, θ′) be another pair with M ′

0 = M ′. Then C(M)×θ Zp
∼= C(M ′)×θ′ Zp iff

there exists a homeomorphism F : M/θ → M ′/θ′ such that F (Mθ) = M ′
θ′ .

Proof. (⇐) Put α = F |M0/θ. Then α has a unique homeomorphic extension
ᾱ : β(M0/θ) → β(M ′

0/θ′) (cf. [8, §44 Corollary 10]). Thus ᾱ : χ(M0/θ) → χ(M ′
0/θ′)

is a homeomorphism. Thus (M ′, θ′) Satisfies Condition (A) and Condition (B).
Consequently, C(M) ×θ Zp

∼= A(Mθ) and C(M ′) ×θ′ Zp
∼= A(M ′

θ′) by Theorem
3.4. Clearly, Ψ((aij)p×p) = (aij ◦ F )p×p gives a ∗–isomorphism from A(M ′

θ′) onto
A(Mθ). The assertion follows.

(⇒) Let ∆ be the ∗–isomorphism from D(M ′, θ′) onto D(M, θ). Let a′ ∈
D(M ′

0, θ
′) and put a = ∆(a′). If a 6∈ D(M0, θ), we can pick y0 ∈ Mθ such that

a(y0) 6= 0. Then σy0,1 ◦∆ is multiplicable on D(M ′, θ′). Thus, there exist x0 ∈ M ′
θ′

and k ∈ {1, · · · , p} such that σy0,1 ◦∆ = σx0,k and hence σy0,1(a) = σx0,k(a′) = 0, a
contradiction. So, ∆ induces a ∗–isomorphism ∆0 : D(M ′

0, θ
′) → D(M0, θ) and
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so that ∆′
0 = Φ−1 ◦ ∆0 ◦ Φ′−1 gives a ∗–isomorphism of Mp(C0(M ′

0/θ′)) onto
Mp(C0(M0/θ)). Thus, we can find a homeomorphism α : M0/θ → M ′

0/θ′. This
shows that (M ′, θ′) satisfies Condition (A) and Condition (B) too.

Now we have A(M ′
θ′) ∼= A(Mθ) via the ∗–isomorphism Θ by Theorem 3.4. Since

Θ(f1p) commutes with every element in A(Mθ), ∀ f ∈ C(M ′/θ′), it follows that
there is h ∈ C(M/θ) such that Θ(f1p) = h1p. Thus, f 7→ h yields a ∗–isomorphism
from C(M ′/θ′) onto C(M/θ) so that there is a homeomorphism F : M/θ → M ′/θ′

such that Θ(f1p) = (f ◦ F )1p = h1p.
Let φ be a character on A(Mθ) with φ(1p) = 1. Since e1, · · · , ep ∈ A(Mθ) and

p∑
j=1

ej = 1p, there is ei0 such that φ(ei0) = 1 and φ(ej) = 0, j 6= i0. Without

losing the generality, we may assume i0 = 1. Then f 7→ φ(fe1) is a character on
C(M/θ). Thus, there is x0 ∈ M/θ such that φ(fe1) = f(x0), ∀ f ∈ C(M/θ). For
any g ∈ C0(M0/θ), let B = (bij)p×p ∈ A(Mθ) be given by bp1 = g and bij = 0, i 6= p,
j 6= 1. Then B∗B = g∗g e1, epB = B and hence |g(x0)|2 = 0, ∀ g ∈ C0(M0/θ).
Consequently, x0 ∈ Mθ.

For any x ∈ Mθ, define the character φx on A(Mθ) by φx((aij)p×p) = a11(x).
Note that φx ◦ Θ−1 is a character on A(M ′

θ′). So by above arguments, there is
y ∈ M ′

θ′ such that

g(y) = φx ◦Θ(g1p) = φx((g ◦ F )1p) = g(F (x)), ∀ g ∈ C(M ′/θ′).

This means that F (Mθ) ⊂ M ′
θ′ . Similarly, we have F−1(M ′

θ′) ⊂ Mθ. Thus,
F (Mθ) = M ′

θ′ .

Corollary 3.7. Suppose that the pair (M, θ) satisfy Condition (A) and Condition
(B). Let (M ′, θ′) be another pair. If (M, θ) and (M ′, θ′) are orbit equivalent, that is,
there is a homeomorphism F : M → M ′ such that F (Oθ(x)) = Oθ′(F (x)), ∀x ∈ M ,
then C(M)×θ Zp

∼= C(M ′)×θ′ Zp.

Proof. F induces a homeomorphism F̃ of M/θ onto M ′/θ′ given by F̃ (P (x)) =
P ′(F (x)) by the assumption, where P ′ : M ′ → M ′/θ′ is the canonical projective
map. Obviously, F̃ (Mθ) = M ′

θ′ and M ′
0 = F (M0) = M ′. So C(M) ×θ Zp

∼=
C(M ′)×θ′ Zp by Theorem 3.6.

4 Some examples

Example 4.1. Consider (M, θ), where M = S1 and θ(z) = z̄, ∀ z ∈ S1. Then

Mθ = {−1, 1}, M0 = M, M0/θ ∼= (−1, 1), M/θ ∼= [−1, 1].

(M, θ) satisfies Condition (A) and (B) for dimM = 1. Thus C(M)×θ Zp
∼= A(Mθ)

by Theorem 3.4.
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Define γ(< z >) =
x + 1

2
for z = x + i y ∈ S1, where < z >= P (z) ∈ M/θ.

Clearly, γ is a homeomorphism from M/θ onto [0, 1] and γ(Mθ) = {0, 1}. So

C(M)×θ Z2
∼=A({0, 1})
={f : [0, 1] → M2(C) continuous| f(0), f(1) are diagonal}.

Example 4.2. Let M = S1× S1 and θ(z1, z2) = (z2, z1), ∀ z1, z2 ∈ S1. Then
Mθ = {(z, z)| z ∈ S1} ∼= S1 and M0 = M . Set

S = {(z1 + z2, z1z2)| z1, z2 ∈ S1} ⊂ C× C.

It is easy to check that S is a closed and bounded subset in C× C, that is, S
is compact. Define the continuous map ξ : M/θ → S and β : [0, 1]× S1 → S,
respectively, by ξ(< z1, z2 >) = (z1 + z2, z1z2) and β(t, z) = (2zt, z2), where <
z1, z2 >= P (z1, z2) ∈ M/θ. Then ξ and β are all homeomorphic (cf. [21, Exmple
4.3]). Therefore the homeomorphism δ = β−1 ◦ ξ : M/θ → [0, 1]× S1 sends Mθ to
{1}× S1.
Claim 1. (M, θ) satisfies Condition (A) and Condition (B).

Since δ(Mθ) = {1}× S1, δ(M0/θ) = [0, 1)× S1. Let i : {1}× S1 → [0, 1]× S1

be the inclusion. Then i is homotopic equivalence map. Since H2([0, 1]× S1) ∼= 0,
it follows from the exact sequence of the reduced coholomological groups (cf. [18])
that

H̃1([0, 1]× S1,Z) i∗−→ H1({1}× S1,Z) −→ H̃2(([0, 1)× S1)+,Z) −→ 0.

So H̃2(([0, 1)× S1)+,Z) ∼= 0 and consequently, (M, θ) satisfies Condition (A).
Noting that [0, 1)× S1 ∼= [0,+∞)× S1, we have H2(χ([0, 1)× S1),Z) ∼= 0 by [6,

Corollary 4.7]. So (M, θ) satisfies Condition (B).
Let M ′ = [0, 2]× S1 and θ′(t, z) = (2 − t, z). Then M ′

θ′ = {1}× S1. Define the
homeomorphism δ′ : M ′/θ′ → [0, 1]× S1 by δ′(< t, z >) = (1− |1− t|, z).
Claim 2. C(M)×θ Z2

∼= C(S1)⊗A(1), where

A(1) =
{(

f11 f12

f21 f22

)
∈ M2(C([0, 1]))

∣∣∣∣ f12(1) = f21(1) = 0
}

.

Since M/θ ∼= [0, 2]×S1/θ′ via δ′−1 ◦ δ and (δ′−1 ◦ δ)(Mθ) = M ′
θ′ , it follows from

Theorem 3.6 that

C(M)×θ Z2
∼= C(M ′)×θ′ Z2

∼= C(S1)⊗ (C([0, 2])×θ1 Z2),

where θ1 : [0, 2] → [0, 2] given by θ1(t) = 2− t.
Note that [0, 2]/θ1

∼= [0, 1] via < t > 7→ |1− t|, ∀ t ∈ [0, 1]. We have C([0, 2])×θ1

Z2
∼= A(1) by Theorem 3.4.
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