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CLASSIFICATION OF THE CROSSED PRODUCT C(M) xy Z,
FOR CERTAIN PAIRS (M, 6)

Yifeng Xue

Abstract

Let M be a separable compact Hausdorff space with dimM < 2 and
0: M — M be a homeomorphism with prime period p (p > 2). Set My =
{zr € M|0(z) = 2} # @ and My = M\Mpy. Suppose that My is dense in
M and H*(M,/60,7) = 0, H*(x(Mo/0),Z) = 0. Let M’ be another separable
compact Hausdorff space with dim M’ < 2 and #’ be the self-homeomorphism
of M’ with prime period p. Suppose that My = M’\Mj, is dense in M'.
Then C(M) X¢Zp =2 C(M') X g1 Zy iff there is a homeomorphism F from M/
onto M’/ such that F(My) = My,. Thus, if (M,0) and (M’,0’) are orbit
equivalent, then C'(M) Xg Z, =2 C(M') Xgr Zy.

1 Introduction

The classification of dynamical systems and corresponding C*—crossed products
have became one of most important research subjects for more than a decade. One of
the most important results about the classification of the minimal Cantor dynamical
system was obtained by T. Giordano, I.LF. Putnam and F. Skau in [5]. They proved
that two minimal Cantor crossed products C(X1) Xq, Z and C(X3) X, Z are *—
isomorphic iff (X7,a1) and (Xs,as) are strong orbit equivalent (cf. [5, Theorem
2.1]). Recently, H. Lin and H. Matui used their notation so—called approximate
conjugacy of dynamical systems to obtain many equivalent conditions that make
C(Xl) X aq 7 = C(X2) X g Z in [13]

For the type of dynamical systems such as (C(X),«,Z,) where X is a com-
pact Hausdorff space and a: X — X is homeomorphism, there is little known
when C(X1) Xqo, Zn = C(X2) Xa, Zn. We only know if oy acts on X freely and
H?(X,/a1,7) has no element annihilated by n, then C(X1) X, Z = C(X2) Xy Z
iff g acts on Xy freely and X;/a1 = Xo/ag (cf. [11, Proposition 5]).
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But there is a special example showed by Elliott in [3] which could enlighten
one on the classification of C(X) X, Z, when « has fixed points. The example
is: C(S') xo Za =2 {f:[0,1] — Mz(C) continuous| f(0), f(1) are diagonal}, where
a(z) =7%,Vz e St (cf. [1,6.10.4, 10.11.5)).

Inspired by this example, we try to find when the crossed product C(X) x Z,
has the similar form and try to classify it. So, in this paper, we will consider the
classification of the crossed product C'(M) xg Zj,, here M is a separable compact
Hausdorff space and 6 is a self-homeomorphism of M with prime period p (p > 2)
such that My = {x € M|0(x) = =} # @. We let (M,0) denote the pair which
satisfy conditions mentioned above throughout the paper.

Based on the Extension theory of C*—algebras and author’s previous work on
C(M) xg Zp, we obtain that if dimM < 2, My = M\Mp is dense in M and
H2(My/0,7Z) = 0, H?(x(My/0),Z) = 0, then

C(M) %o Zp = {(aij)pxp € Mp(C(M/0))] aij(z) =0, Vo € My, i # j}.

where M /6 (or My /6) is the orbit space of § and x(My/0) is the corona set of My /6.
Moreover, let (M’,0’) be another pair with dim M’ < 2 and M\M/}, = M’'. Then

C(M) X Zp = C(M/) X g1 Zp

iff there is a homeomorphism F from M /6 onto M'/¢’ such that F(My) = M.

2 Preliminaries

Let A be a C*—algebra with unit 1. We denote by U(A) the group of unitary
elements of A and Uy(A) the connected component of the unit 1 in U(A). Let
M, (A) be the matrix algebra of order m over A. Set (cf. [16, 17] or [20])

STL(A) :{ (ala e 7a/n)| Z alt;ak = 1}
k=1
cst(A) =min{ n| Uy(M,,(A)) acts transitively on S,,(A) Vm > n}

Lemma 2.1. Let X be a compact Hausdorff space with covering dimension dim X <
2. Given U € UM, (C(X))), there are Uy € Uy(M,(C(X))) and v € U((C(X)))
such that U = Uy diag (1p—1,v).

Proof. We have from [14], csr(C(X)) < + 1 < 2, where [z] stands for

dimX +1
|
the greatest integer which is less than or equal to x.
Let u; be the first column of U. Then u; € S,(C(X)) and consequently, there
is Uy € Up(M,(C(X)) such that u; becomes the first column of U; for csr(C(X)) <
2 < p. Put W = U;U. Then the unitary element W has the form W = diag (1, V7)
for some Vi € U(M,_1(C(X))).
Repeating above procedure to Vi, there are Uy € Uy(M,_1(C(X))) and V5 €
UM,_2(C(X))) such that Vi = Usdiag(1,V2). So U = U U diag(12,V2). By
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induction, we can finally find Uy € Up(M,(C(X))) and v € U(C(X)) such that
U=U diag (lp_l,’U). [

According to [21], {z € M|6*(z) = 2} = My, k = 2,--- ,p — 1. Now set
My = M\My. Let M/0 (resp. My/0)) denote the orbit space of 6 and let P be
the canonical projective map of M (or My) onto M/ (or My/6). Let Oyp(z) =
{x,0(x),---,0P"1(x)} denote the orbit of 2 in M or My. For the pair (M, @), the
dynamical system (C(M),0,Z,) (resp. (Co(My),0,Z,)) yields a crossed product
C*-algebra C(M) xg Z,, (resp. Co(My) xg Zy). Set

fo bil v fpa
D(M,0) = Op1)  Of0) oo 6(fp-2) i fo, o fpm1 € C(M)
0P~ (fr) P (f2) ... 60PN (fo)
fo S A |
D(Mp, 0) = 0(fp—1)  0(fo) ... 0(fp—2) oo for € Co(Mo) b,
P (fr) 0PN (f2) .o 0P N(fo)

where 0(f)(z) = f(0(x)),Vz € M (resp. My), f € C(M) (resp. Co(Mp)). By 7.6.1
and 7.6.5 of [15], we have C(M) x¢Z, = D(M,8) C M,,(C(M)) and Co(Mo) X ¢Z, =
D(Mm@) C Mn(CO(Mo))

Let w = e2™/P. Put e; = diag (0,---,0,1,0,---,0) and
—_—— N———
j—1 p—j

1 W WP~

P VP VP

1 LQ (w2)p—1

P VP VP . _

Q= y Pp=Qeiy, j=1,--,p.
1w (e
N N
VP VP VP
It is easy to check that €, is unitary in M,(C) and Pi,---, P, are projections in

p—1
D(M,0). Define *~homomorphism 7: D(M, §) — @C(Mg) as
j=0

oP=t(fr) 0P H(f2) o 0PN (fo)

7 induces following exact sequence of C*—algebras:

oGy e et || (e
T p—1 0 p—2 = wj(p_l)f]| R f]| [ .
(Z M, jz::() M,

J=0

0 —s D(My,0) - D(M, 0) @C(Mg) —0. (2.1)
§=0
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Lemma 2.2. For the pair (M, ), we have

(1) Every irreducible representation of D(My, 0) is equivalent to the representation
Ty, Where mz(a) = a(x) for some x € My and Va € D(My, 0) and P(x) — [m4]

gives a homeomorphism of My/0 onto D(My,8)-the spectrum of D(My,0),
where we identify D(My, ) with { a € D(M, 0)|a|n, = 0};

(2) D(My,0) is a p~homogeneous algebra which is x—isomorphic to Co(My/6, E),
where E is a matriz bundle over My/0 with fiber M, (C);

(8) Let o be a pure state on D(M,0). Then o is multiplicable iff there is xg € My
such that

fo h N b1
0(fp—1) 0(fo) - O0(fp—2) _ ijkfj(xo)

() e ) e 0 )) )
for some k € {0,--- ,p—1}. We let 04,1 denote the o.

Proof. Let (II, K) be an irreducible representation of D(Mjy, 8). Then by [2, Propo-
sition 2.10.2], there is an irreducible representation (p, H) of My,(Cy(Mp)) such that
K Cc H and II(:) = p(-)|x. It is well-known that (p, H) is equivalent to (pg,, CP)
for some o € Mo, where pu((Fig)pxp) = (fis(@)pxps @ € Mo and fi; € Co(Mo),
iaj: 1a ) P-

Put 7, = pz|p(a,.6), T € Mo. Given A = (a;;)pxp € Mp(C). Since zg, 0(zo), - - - ,

67~ 1(zo) are mutually different in My, we can find fo,- -, fo—1 € C(M) such that
fj|1V[e =0,7=0,---,p—1and
fo f1 - fp,1
mo | [ O OG0 O00e) |y

0P~ (f1) 0PN (f2) ... 0P7M(fo)

This means that (m,,C?) is an irreducible representation of D(Mj, ) and hence
(IT, K) is equivalent to (m,, CP). Thus D(My,#) is a p~-homogeneous C*-algebra.

Let z9 € My and x; = 67(xq) for some j € {1,---,p — 1}. It is easy to
check that there is a unitary matrix U in My(C) such that 7, (a) = Uy, (a) U*,
Ya € D(My,0), ie., (my,, C?) and (7, ,CP) are equivalent; On the other hand, if
(g, CP) and (m,,, CP) are equivalent and Ogy(x)NOp(z1) = &, then we can choose
90, »9p—1 € C(M) such that g;(z) = 0, Yo € My U Og(x0) and g;|o, () # O,
=0, ,p—1. Set
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Then 7,,(G) = 0, while 7., (G) # 0. Therefore, we have Og(xo) N Og(z1) # 2,
that is, o = 67 (1) for some j € {0,1,--- ,p—1}. So the map P(x) — [r,] gives a
homeomorphism of M /0 onto D(Mjy, ) by using [2, Lemma 3.3.3].

Set [z] = P(x) € My/6 and D([z]) = D(Moy,0)/Kerm, = M,(C), Yz € M. Let

a([z]) be the canonical image of a € D(My,0) in D([z]). Put E = . L]dl /QD([aj]).
x|eMo

Then E is a fiber bundle (matrix bundle) over M,/0 with fiber M,(C) (cf. [4,
§3.2, P.249]). The *—isomorphism from D(My, ) onto Co(My/6, E) is defined by
o(a)([z]) = a([z]), Va € D(My,0) and [z] € M,y/0.

The proof of (3) comes from Corollary 1, Case 1 and case 2 on P77 and case 2
on P79 of [11]. O

Assume that the matrix bundle E above is trivial, i.e., there is a homeomorphism
I': E — My/6 x M,(C) such that I'(D([z])) = [z] x M,(C), V[x] € My/6. Then I'
induces an isomorphism I'*: Co(My/0, E) — M, (Co(My/0)) given by I'*(f)([z]) =
L(f([x]), Vf € Co(Mp/0,E) and [x] € Mp/f. Set ® = lo¢~1 o'~ Applying
Lemma 2.2 to (2.1), we have following:

Corollary 2.3. Let (M,0) be the pair such that all matriz bundles over My/0 is
trivial. Then we have following exact sequence of C*—algebras

p—1
0 — M, (Co(Mo/6)) —* D(M, 0) " @D C(Mg) — 0. (2.2)
j=0
3 Main results
Consider the exact sequence of C*—algebras
0—B-5&-15A—0, (3.1)

where B is a separable C*—algebra and i(B) is the essential ideal of £. Let {u,}
be an approximate identity of B and M (B) be the multiplier algebra of B. Define
s—monomorphism p: & — M(B) by u(e) = li7rlni’1(i(un)e), Ve € &, where the limit
is taken as the strict limit in M (B). Then Busby invariant 7,: A — M(B)/B,
associated with (3.1) is given by 7,(a) = Q(u(e)), where e € £ such that g(e) = a,
Q: M(B) — M(B)/B is the quotient map. 7, is well-defined and is monomorphic
since i(B) is essential. Please see [10, Chapter 3] or [12, Chapter 5], or [19, Chapter
3]) for details. In order to obtain our main result, we need following lemma, which
comes from [10, Lemma 3.2.2].

Lemma 3.1. Let 7, (resp. T,) be the Busby invariant associated following exact
sequence of C*—algebras:
0—B-5&-5A—0 (resp.0—>BL>5’q—>A—>0),

where i(B) (resp. i'(B)) is the essential ideal of € (resp. £'). Assume that there is
a unitary element uw € M(B) such that T4(a) = Q(u)1y (a)Q(u*), Ya € A. Then &
is x—isomorphic to £'.
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Let X be a locally compact Hausdorff space. Let X (resp. 3(X)) denote the
one—point (resp. Stone—Céch) compactification of X. Set x(X) = B(X)\X (the
corona set of X).

Lemma 3.2. Let X be a locally compact Hausdorff space with dmX < 2. If
H2(X,7Z) =0, then every matriz bundle over X is trivial.

Proof. Let M(X™) denote the collection of all (isomorphism classes of) matrix
bundles of arbitrary degree over Xt and SM(X™) denote the the distinguished
subsemigroup of M (X), consisting of matrix bundles of the form V ® V*, where
V is an arbitrary complex vector bundle over X, and * denotes adjoints. When
dim X+t = dimX < 2 and H*(X,Z) = H*(X*,Z) = 0, M(X*) = SM(X™*) by
[7, Corollary 1] and all complex vector bundles over Xt are trivial. Therefore,
all matrix bundles of arbitrary degree over X is trivial. Because every matrix
bundle over X with fiber M,,(C) can be extended to an matrix bundle over X
with fiber M,,(C) (using the same methods described in [9, P110-P112]), we get the
assertion. O

By Lemma 3.2, we may assume that the pair (M, ) satisfies condition (A):
dimM <2 and H?*(M,/6,7) = 0.

Lemma 3.3. Let the pair (M, 0) satisfy Condition (A). If My = M\My is dense
in M, then ®(M,(Co(Mo/0)) is an essential ideal of D(M, 9).

Proof. Let a € D(M, ) such that ac = 0, Ve € D(My,0) = ®(M,(Co(My/0)). If
there is xg € My such that a(zp) # 0, then we can find a b € D(My, §) such that
b(xo) = (a(zo))*. It follows that a(zg)(a(zo))* =0, i.e., a(zp) = 0, a contradiction.
So a|a, = 0. Since My is dense in M and all elements in a are continuous, we have
a=0. O

It is known that

M(Mp(Co(Mo/0))) = Mp(Cy(Mo/0)) = My (C(3(Mo/0))),
M, (Cy(Mo/0)) /My (Co(Mo/0)) = M, (C(x(Mo/0)))-

Assume that (M, 0) satisfies Condition (A) and the condition that M\M, is
dense in M. Then the *—monomorphism p: D(M,0) — M,(Cy(My/0)) is given by
pla) = 7}1_)120 &~ 1(®(uy)a), Va € D(M, ), where {u,} is an approximate identity
for My, (Co(My/8)). We now construct the Busby invariant 7. associated with (2.2)
as follows.

Let fo, -+, fp—1 € C(Mp). Extends them to go,- -, gp—1 € C(M), respectively,

A 1 p—1
such that g;|a, = f,5 =0,--- ,p—1. Put f; = — Y 6%(g;),j =0, ,p—1. Then
P k=0

H(fj) = fj and fj|M9 = fj,j=0,---,p—1. Thus, functions hg,--- , hp—1 given by
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hi([z]) = f;(x), z € My, 5 =0,--- ,p—1areall in c,,(MO/e) Set a(fo, -+, fp_1) =

p—1 R
> Pisafj. Then w(a(fo, -, fp—1)) = (fo, -+ s fp-1) @C Mp).

j=0
Let Q: M,(Cy(Mo/0)) — M,(Cy(Mo/0))/M, (C’O(MO/G)) be the canonical ho-
momorphism. Note that for any b € M,(Cy(My/6)) and [z] € My/9,

(1(Py1f5)b)([2]) =7 (P f;2(0))([2]) = T 0 $(Pys1 f2(0)) ([2])
=L((Pj11/;2(0))([2])).

since Py, f;®(b) — Pj1®(b) f;(x) € Kerm, it follows that
D((Py+1fi2(0))([2])) = D((Pi1@(0)([2) £ () = (u(Pir0)b) ([ ([2]),

that is, 4(Pj1f;) = p(Pis1)hy, j =0, ,p—1. Set Q; = Qopu(P}), j=1,--- ,p.
Then 7, is given by

p—1
Tﬂ'(fO? to >fp—l) =Qo ,u'(a(f()a to 7fp—1)) = ZQj+1Q(hj1p)~

Jj=0

Let A(Mp) = {(aij)pxp € Mp(C(M/0))|a;j(z) =0, x € My, i # j}. Define the
p—1
s~homomorphism A: A(Mpg) — @D C(Mp) by A((aij)pxp) = (a11lazy, -+ > applasy)-
j=0
Then we have following exact sequence:

0 — M,(Co(Mo/0)) —— A(My) - @ C(My) — 0. (3.2)
j=0

The Busby invariant 75 associated with (3.2) is given by

p—1

TA(an e 7fp—1) = Z Q(ej+1)Q(hj1P)v

=0

where hg,- -+, hp—1 are given as above.
Now we present the main results of the paper as follows

Theorem 3.4. Suppose that the pair (M, 0) satisfies condition (A) and Condition

(B):
My = M\ My is dense in M, H?(x(My/0),Z) = 0.

Then C(M) X9 Zp = .A(M@)

Proof. Since dim(M/6) = dim My < dim M < 2 by [21, Lemma 1.3] and H2(M, /6, Z)
& (, it follows from Lemma 3.2 that every matrix bundle over M;/# is trivial. Since

dim(x(Mo/6)) < dim(B(Mo/0)) < dim(Mo/0)) <2, H*(x(Mo/6),Z) =0,
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all complex vector bundles over x(My/0) are trivial.

It is easy to check that for any b € M, (Co(My/9)), there is f; € Co(Mp) with
O(fj) = fj such that Pj‘b(b)P] = ijj7 j = 1, e, P SO, ,U,(PJ)MP(C()(M()/H))M(P])
is a commutative C*-algebra, j = 1,---,p. Since My(Cy(My/8)) is dense in
M, (Cy(My/6)) in the sense of strict topology, pu(P;)M,(Cy(My/0))u(P;) is also a
commutative C*—algebra, j = 1,--- ,p. Assume that Q1,---,Q, in M,,(C(x(Mo/9)).
Then Q;M,(C(x(Mo/0)))Q; is commutative and hence rank @Q,(z) < 1, Vz €
x(Mp/0) by [15, Lemma 6.1.3], j =1,--- ,p.

P

Note that Q1,--- ,Qp are mutually orthogonal and ) Q; = 1,. Therefore, we
j=1

have rank Q;(z) =1, Vo € x(My/0), j =1,---,p. So there are partial isometries

Vi,V in Mp(C(x(Mo/9)) such that S; = VVj and e; = V;V7, j=1,-- ,p.
p
Put V.= 3" V;. Then V is a unitary element in M,(C(x(My/0)) and S; = V*e;V,

j=1
j=1,---,p. Applying Lemma 2.1 to V*, we can find V € Uy(M,,(C'(x(Mop/0))) and

v € U(C(x(Mo/0))) such that V* = Vjdiag (1,—1,v). Consequently, S; = Voe; V',
j = 15 LD

Similarly, there is Vj € Uo(Mpy(C(x(Mo/0)))) such that Q(e;) = Vje;Vy*.
Choose U € Uy(M,(C(5(Mo/0)))) such that Q(U) = VoVy*. Since Q(h;1,) com-
mutes with every element in M, (C(x(Mo/6))),7 =0,--- ,p — 1, it follows that

7—7'r(fO7 T afp—l) = Q(U)TA(an e 7fp—1)Q(U*)7
Y fo, -+, fp—1 € C(Mp). Therefore, C(M) x¢ Z, = A(Mp) by Lemma 3.1. O

For the pair (M, 8) with dim M < 1, we have dim(M,/6) < 1 and dim x(My/6) <
1. In this case, H*(My/0,7Z) = H?(x(Mo/0),Z) = 0. Therefore, we have following
corollary according to Theorem 3.4:

Corollary 3.5. Let (M,0) be the pair with dim M < 1 and My = M, where My is
the closure of My in M. Then C(M) xg Z, = A(Mp).

Theorem 3.6. Suppose that the pair (M, 0) satisfy Condition (A), Condition (B).
Let (M',0") be another pair with M, = M'. Then C(M) x¢ Z, = C(M') x¢' Zy, iff
there exists a homeomorphism F: M/0 — M'/0" such that F(My) = My,.

Proof. (<) Put a = Flp,9. Then a has a unique homeomorphic extension
a: (My/0) — B(M}/0") (cf. [8, §44 Corollary 10]). Thus a: x(Mo/0) — x(M}/0")
is a homeomorphism. Thus (M’',0") Satisfies Condition (A) and Condition (B).
Consequently, C(M) xg¢ Z, = A(Mp) and C(M’) x¢ Z, = A(M},) by Theorem
3.4. Clearly, U((a;j)pxp) = (aij © F)pxp gives a x—isomorphism from A(M},) onto
A(Mp). The assertion follows.

(=) Let A be the x—isomorphism from D(M’,6") onto D(M,0). Let o' €
D(M{,0") and put a = A(a’). If a & D(My, ), we can pick yo € My such that
a(yo) # 0. Then oy, 1 o A is multiplicable on D(M’,6’). Thus, there exist zo € My,
and k € {1,--- ,p} such that oy, 1 0 A = 04, & and hence oy, 1(a) = 04, x(a’) =0, a
contradiction. So, A induces a *—isomorphism Ag: D(M{,6) — D(Mo,8) and
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so that A = &1 o Ago & ! gives a x—isomorphism of M,(Co(M{/0")) onto
M, (Co(My/0)). Thus, we can find a homeomorphism a: My/0 — M;y/¢’. This
shows that (M’,0") satisfies Condition (A) and Condition (B) too.

Now we have A(Mjy,) = A(Mjy) via the *—isomorphism © by Theorem 3.4. Since
©(f1,) commutes with every element in A(Mp), Vf € C(M'/¢), it follows that
there is h € C'(M/0) such that ©(f1,) = hl,. Thus, f +— h yields a *—isomorphism
from C(M'/0") onto C(M/0) so that there is a homeomorphism F': M/0 — M’ /0’
such that ©(f1,) = (f o F)1, = hl,.

Let ¢ be a character on A(Mp) with ¢(1,) = 1. Since e1,--- , e, € A(Mp) and

P
Zl ej = 1,, there is e;, such that ¢(e;;) = 1 and ¢(e;) = 0, j # ip. Without
]:

losing the generality, we may assume i = 1. Then f — ¢(fe;) is a character on
C(M/0). Thus, there is zg € M /6 such that ¢(fe1) = f(xo), Vf € C(M/0). For
any g € Co(Mo/0), let B = (bij)pxp € A(Mp) be given by b1 = g and b;; = 0, ¢ # p,
j # 1. Then B*B = g*gei, e,B = B and hence |g(z0)|? = 0, Vg € Co(My/0).
Consequently, o € My.

For any x € My, define the character ¢, on A(Mp) by ¢ ((aij)pxp) = a11(x).
Note that ¢, o ©~1 is a character on A(M},). So by above arguments, there is
y € M), such that

9(y) = ¢ 0 O(gly) = ¢a((g 0 F)1p) = g(F(x)), Vg€ CM'/0).

This means that F(My) C Mj,. Similarly, we have F~'(M},) C M,. Thus,
F(My) = M},. O

Corollary 3.7. Suppose that the pair (M, 0) satisfy Condition (A) and Condition
(B). Let (M',0") be another pair. If (M,0) and (M',8") are orbit equivalent, that is,
there is a homeomorphism F: M — M’ such that F(Og(z)) = Og/ (F(z)),Yx € M,
then C(M) X0 Zp = C(M/) X g Zp.

Proof. F induces a homeomorphism F of M/6 onto M'/6" given by F(P(x)) =
P'(F(z)) by the assumption, where P': M" — M'/6#" is the canonical projective

map. Obviously, F'(My) = M}, and M} = F(My) = M'. So C(M) xg Z, =
C(M') x¢' Z,, by Theorem 3.6. O

4 Some examples
Example 4.1. Consider (M, 0), where M = S! and 0(z) = z, V2 € S*. Then

My = {717 1}7 WO: M, MO/G = (717 1)a M/0 = [ila 1]

(M, 6) satisfies Condition (A) and (B) for dim M = 1. Thus C(M) x¢ Z, = A(My)
by Theorem 3.4.
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1
Define (< z >) = v for 2 = x +iy € S, where < 2 >= P(z) € M/6.

Clearly, v is a homeomorphism from M/6 onto [0,1] and v(Mp) = {0,1}. So

C(M) Xg Zg g./4({0, 1})
={f:10,1] — M3(C) continuous| f(0), f(1) are diagonal}.

Example 4.2. Let M = st xil and 0(z1,22) = (22,21), V21,22 € S!  Then
My = {(Z,Z)| z e Sl} =~ Sl and My = M. Set

S ={(21+ 22, 2122)| 21, 22 € 8’} C Cx C.

It is easy to check that S is a closed and bounded subset in Cx C, that is, S
is compact. Define the continuous map ¢£: M/ — S and §:[0,1] x St — S,
respectively, by (< 21,20 >) = (21 + 22,2122) and B(t,z) = (2zt,2%), where <
21,29 >= P(z1,29) € M/0. Then £ and § are all homeomorphic (cf. [21, Exmple
4.3]). Therefore the homeomorphism 6 = 371 o &: M/ — [0,1] x St sends My to
{1} x St.
Claim 1. (M, 0) satisfies Condition (A) and Condition (B).

Since §(Mp) = {1} x S, §(My/0) = [0,1) x S*. Let i: {1} x S' — [0,1] x S?
be the inclusion. Then i is homotopic equivalence map. Since H2([0, 1] x St) = 0,
it follows from the exact sequence of the reduced coholomological groups (cf. [18])
that

([0, 1] x S!,Z) = H! ({1} x S!,Z) — H2(([0,1)x S})*,Z) — 0.

So H2(([0,1)x 8')*,7Z) 22 0 and consequently, (M, ) satisfies Condition (A).
Noting that [0,1)x St 2 [0, +00) x S1, we have H2(x([0,1) x S!),Z) = 0 by [6,
Corollary 4.7]. So (M, 8) satisfies Condition (B).
Let M' = [0,2] x S' and 6'(t,z) = (2 — t,z). Then M}, = {1} x S'. Define the
homeomorphism & : M’/0" — [0,1]x St by §'(< t,z >) = (1 — |1 —t], 2).
Claim 2. C(M) x¢ Zy = C(S') ® A(1), where

aw ={ (12 eneo)| fa(r) = fa) = o}

Since M/6 = [0,2]x S' /¢’ via '~ o § and (8’71 0 §)(My) = M}),, it follows from
Theorem 3.6 that

C(M) xgZy = C(M') xg 7y =2 C(SY) @ (C([0,2]) X0, Zs),
where 6;: [0,2] — [0,2] given by 01(t) =2 — ¢.

Note that [0,2]/61 = [0,1] via < t > |1 —¢t|, V¢ € [0,1]. We have C([0,2]) Xg,
Zy = A(1) by Theorem 3.4.
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