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CONNECTEDNESS AND SEPARATION IN THE
CATEGORY OF CLOSURE SPACES

Mehmet Baran, Deniz Tokat, and Muammer Kula

Abstract

In previous papers, various notions of (strongly) closed subobject, (strongly)
open subobject, connected and Ti, i = 0, 1, 2 objects in a topological category
were introduced and compared. The main objective of this paper is to char-
acterize each of these classes of objects in the category of closure spaces as
well as to examine how these generalizations are related.

1 Introduction

Despite the fact that closure operators had been used in calculus first ([33] and
[36]), they have been used in other fields of mathematics such as logic ([26] and
[37]), algebra ([12] , [13] and [34]) and topology ([28] and [15]).

In 1940, G. Birkhoff observed that the collection of closed sets of a closure space
forms a complete lattice [13]. Since his work, the interrelation between closures and
complete lattices has been investigated by many authors and a general treatment
of this subject can be found in [23]. Another motivation for considering closures is
G. Birkhoff’s work on association of closures to binary relations in his book [13].
By using similar ideas, G. Aumann worked on contact relations with application
to social sciences [4] or B. Ganter and R. Wille worked on formal contexts with
application to data analysis and knowledge representation [24].

In recent years, closure operators are used in quantum logic and representation
theory of physical systems [2], [3].

A closure space (X, C) is a pair, where X is a set and C is a subset of the power
set P (X) satisfying the conditions that X and ∅ belong to C and that C is closed
for arbitrary unions. A function f : (X, C) → (Y,D) between closure spaces (X, C)
and (Y,D) is said to be continuous if f−1(D) ∈ C whenever D ∈ D. Cls is the
construct with closure spaces as objects and continuous maps as morphisms [19].

Another isomorphic description is obtained by means of a closure operator [13].
The closure operation cl : P (X) → P (X) associated with a closure space (X, C) is
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defined in the usual way by x ∈ clA ⇐⇒ (∀C ∈ C : x ∈ C ⇒ C ∩ A 6= ∅) where
A ⊂ X and x ∈ X. This closure need not be finitely additive, but it does satisfy the
conditions cl∅ = ∅, (A ⊂ B ⇒ clA ⊂ clB), A ⊂ clA, and cl(clA) = clA whenever A
and B are subsets of X. Continuity is then characterized in the usual way [19].

Finally, closure spaces can also be equivalently described by means of neigh-
borhood collections of the points. These neighborhood collections satisfy the usual
axioms, except for the fact that the collections need not be filters. So in a closure
space (X, C) the neighborhood collection of a point x is a non empty stack (in the
sense that with every V ∈ N (x) also every W with V ⊂ W belongs to N (x)), where
every V ∈ N (x) contains x and N (x) satisfies the open kernel condition [19].

The notions of ”closedness” and ”strong closedness” in set based topological
categories are introduced by Baran [5], [6] and it is shown in [8] that these notions
form an appropriate closure operator in the sense of Dikranjan and Giuli [20] in
some well-known topological categories. Moreover, various generalizations of each
of Ti, i = 0, 1, 2, 3, 4 separation properties for an arbitrary topological category over
Set, the category of sets are given and the relationship among various forms of each
of these notions are investigated by Baran in [5], [7], [9] and [10].

Recently, complete objects in the category of T0 closure spaces is characterized
by D. Deses et al. [19] and a cartesian closed topological hull and quasitopos hull
of the construct Cls of closure spaces is constructed by V. Claes et al.(see [16] and
[17]).

The main goal of this paper is

1. to characterize the (strongly) closed and (strongly) open subspace of a closure
space,

2. to give the characterization of each of the various notions of connected, and
Ti, i = 0, 1, 2 closure spaces,

3. to examine how these generalizations are related.

2 Preliminaries

A closure space (X, C) is a pair, where X is a set and C is a subset of the power set
P (X) satisfying the conditions that X and ∅ belong to C and that C is closed for
arbitrary unions. A function f : (X, C) → (Y,D) between closure spaces (X, C) and
(Y,D) is said to be continuous if f−1(D) ∈ C whenever D ∈ D. Cls is the category
with closure spaces as objects and continuous maps as morphisms [19].

Cls is a topological category [21] and Top, the category of topological spaces,
is embedded in Cls as a full bicoreflective subconstruct [16].

Note that a source {fi : (X, C) → (Yi, Ci), i ∈ I} is initial in Cls iff C = {U ⊂
X : U =

⋃
i∈I

f−1
i (Ui), Ui ∈ Ci} [25].

Similarly, an epi sink fi : (Yi, Ci) → (X, C) is final in Cls iff C = {U ⊂ X :
f−1

i (U) ∈ Ci, for all i ∈ I}.
In particular:
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1. The embeddings f : X → Y are the injective maps such that a subset of X is
open iff it is inverse image by f of an open set of Y .

2. Let {(Xi, Ci)} be a collection of closure spaces and X be the product of the
sets Xi, i.e., X = ΠiXi. The product structure on X is the class C = {U ⊂
X : U =

⋃
i∈I

π−1
i (Ui), Ui ∈ Ci}, where πi : X → Xi are the projection maps.

3. (X, C) is a discrete space iff C = P (X) and it is an indiscrete space iff C =
{X, ∅}.

3 Connected Closure Spaces

In this section, the (strongly) closed and (strongly) open subobjects of an object are
characterized in the category of closure spaces. Furthermore, the characterization
of each of the various notions of the connected objects in this category are given.

Let B be a set and p ∈ B. Let B ∨p B be the wedge at p ([5] p.334), i.e., two
disjoint copies of B identified at p, i.e., the pushout of p : 1 → B along itself (where
1 is the terminal object in Set. More precisely, if i1 and i2 : B → B ∨p B denote
the inclusion of B as the first and second factor, respectively, then i1p = i2p is the
pushout diagram. A point x in B ∨p B will be denoted by x1(x2) if x is in the first
(resp. second) component of B ∨p B. Note that p1 = p2.

The principle p−axis map, Ap : B ∨p B → B2 is defined by Ap(x1) = (x, p)
and Ap(x2) = (p, x). The skewed p−axis map, Sp : B ∨p B → B2 is defined by
Sp(x1) = (x, x) and Sp(x2) = (p, x).

The fold map at p, 5p : B ∨p B → B is given by 5p(xi) = x for i = 1, 2 [5], [6].
Note that the maps Sp and 5p are the unique maps arising from the above

pushout diagram for which Spi1 = (id, id) : B → B2, Spi2 = (p, id) : B → B2,
and 5pij = id, j = 1, 2, respectively, where, id : B → B is the identity map and
p : B → B is the constant map at p.

The infinite wedge product ∨∞p B is formed by taking countably many disjoint
copies of B and identifying them at the point p. Let B∞ = B × B × ... be
the countable cartesian product of B. Define A∞p : ∨∞p B → B∞ by A∞p (xi) =
(p, p, ..., p, x, p, ...), where xi is in the i-th component of the infinite wedge and x is
in the i-th place in (p, p, ..., p, x, p, ...) and 5∞

p : ∨∞p B −→ B by 5∞
p (xi) = x for all

i ∈ I [5], [6].
Note, also, that the map A∞p is the unique map arising from the multiple pushout

of p : 1 → B for which A∞p ij = (p, p, ..., p, id, p, ...) : B → B∞, where the identity
map, id, is in the j-th place [8].

Definition 1. (cf. [5] or [6]) Let U : E −→ Set(=the category of sets) be a
topological functor, X an object in E with U(X) = B. Let F be a nonempty subset
of B. We denote by X/F the final lift of the epi U–sink q : U(X) = B → B/F =
(B\F )∪ {∗}, where q is the epi map that is the identity on B\F and identifying F
with a point ∗ [5]. Let p be a point in B.
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1. X is T1 at p iff the initial lift of the U−source {Sp : B∨p B −→ U(X2) = B2

and 5p : B∨pB −→ UD(B) = B} is discrete, where D is the discrete functor
which is a left adjoint to U .

2. p is closed iff the initial lift of the U−source {A∞p : ∨∞p B −→ U(X∞) = B∞

and 5 : ∨∞p B −→ UD(B) = B} is discrete.

3. F ⊂ X is closed iff {∗}, the image of F , is closed in X/F or F = ∅.
4. F ⊂ X is strongly closed iff X/F is T1 at {∗} or F = ∅.
5. If B = F = ∅, then we define F to be both closed and strongly closed.

Remark 1. 1. In Top, the notion of closedness coincide with the usual one [5] and
M is strongly closed iff M is closed and for each x /∈ M there exists a neighbourhood
of M missing x [5]. If a topological space is T1, then the notions of closedness and
strong closedness coincide [5].
2. In general, for an arbitrary topological category, the notions of closedness and
strong closedness are independent of each other (see [6] and [11]). Even if X ∈ E
is T1, where E is a topological category, then these notions are still independent of
each other (see [6] and [11]).

Theorem 1. Let (X, C) be a closure space and p ∈ X. (X, C) is T1 at p iff X = {p}.
Proof. Suppose (X, C) is T1 at p and X 6= {p}. Then there exists x ∈ X with x 6= p.
Since (X, C) is T1 at p, {x1} = ∇−1

p ({x}) ∪ S−1
p (W ), where W ∈ C2 and C2 is the

product structure on X×X. Note that {x1} = ∇−1
p ({x})∪S−1

p (W ) ⊃ ∇−1
p ({x}) =

{x1, x2} which is a contradiction. Hence, X = {p}.
Conversely, let X = {p}. Note that the only closure structure on X is given by
C = {∅, {p}} = P (X). It follows from Definition 1 that (X, C) is T1 at p.

Theorem 2. Let (X, C) be a closure space and p ∈ X. {p} ⊂ X is closed iff
X = {p}.
Proof. Suppose {p} ⊂ X is closed but X is not a singleton, i.e., there exists x ∈ X
with x 6= p. Note that xi ∈ ∨∞p X, A∞p (xi) = (p, p, ..., p, x, p, ...) ∈ X∞ and
5∞

p (xi) = x for all i ∈ I. Since {p} is closed in X, by Definition 1 (2), the initial
lift of A∞p and 5∞

p is discrete and consequently, {xi} ∈ P (∨∞p X), the discrete struc-
ture on ∨∞p X. We have {xi} = (∇∞p )−1({x}) ∪ (A∞p )−1(W ), where {x} ∈ P (X)
and W ∈ C∞, the product structure on X∞. Since (∇∞p )−1({x}) = {x1, x2, ...}, it
follows that {xi} = (∇∞p )−1({x})∪ (A∞p )−1(W ) ⊃ {x1, x2, ...} which is a contradic-
tion. Hence, we must have X = {p}.
Conversely, if X = {p}, then X∞ = {(p, p, ...)} = ∨∞p X. Consequently, by Defini-
tion 1, X = {p} is closed.

Theorem 3. Let (X, C) be a closure space. ∅ 6= F ⊂ X is closed iff F = X.

Proof. Let (X, C) be a closure space and F be a nonempty subset of X. By Defini-
tion 1, F is closed iff {∗} is closed in X/F iff, by Theorem 2, we have X/F = {∗}
iff F = X.
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Theorem 4. Let (X, C) be a closure space. ∅ 6= F ⊂ X is strongly closed iff F = X.

Proof. Let (X, C) be a closure space and F be a nonempty subset of X. By Defini-
tion 1, F is strongly closed iff X/F is T1 at {∗} iff, by Theorem 1, X/F = {∗} iff
F = X.

Note that in Top the notion of openness coincide with the usual one [11]. If a
topological space is T1, then the notions of openness and strong openness coincide
[11].

We now give the characterization the various notions of connectedness in the
category of closure spaces.

Definition 2. Let E be a topological category over Set and X be an object in E.
X is D-connected iff any morphism from X to discrete object is constant (cf. [11],
[14], [29], [35]).

Note that for the category Top of topological spaces, the notion of D-connectedness
coincides with the usual notion of connectedness.

Theorem 5. Let (X, C) be a closure space. (X, C) is D-connected iff for any U, V ∈
C with U 6= ∅ 6= V , U ∩ V = ∅, then U ∪ V 6= X.

Proof. Suppose that (X, C) is D-connected and the condition does not hold, i.e.,
there exists U, V ∈ C with U 6= ∅ 6= V , U ∩ V = ∅, then U ∪ V = X. We define
a function f : (X, C) → (Y, P (Y )) by f(x) = a, if x ∈ U and f(x) = b, if x ∈ V .
Let W ∈ P (Y ), the discrete structure on Y . If a ∈ W , then f−1(W ) = U ∈ C. If
b ∈ W , then f−1(W ) = V ∈ C. If a, b ∈ W , then f−1(W ) = X ∈ C since (X, C) is a
closure space. Hence, f is continuous but it is not constant, a contradiction.
Conversely, assume that the condition holds. If Y = {a}, one point set, then every
continuous function f : (X, C) → (Y, P (Y )) is constant. Suppose |Y | ≥ 2 and
(X, C) is not D-connected. Then there exists a continuous function f : (X, C) →
(Y, P (Y )) which is not constant. It follows that there exist x, y ∈ X with x 6= y
and f(x) 6= f(y). Let U = f−1({f(x)}) and V = f−1({f(x)}c), where {f(x)}c

is the complement of {f(x)}. Note that x ∈ U , y ∈ V , U ∩ V = ∅, U ∪ V = X
and U, V ∈ C since f is continuous and {f(x)}, {f(x)}c are in P (Y ). This is a
contradiction. Hence, (X, C) is D-connected.

Definition 3. Let E be a complete category and C be a closure operator in the
sense of Dikranjan and Giuli [20] of E. An object X of E is called C-connected if
the diagonal morphism δX =< 1X , 1X >: X → X ×X is C-dense. ∇(C) denotes
the full subcategory of C-connected objects [18].

Note that if E = Top and C = K, the usual Kuratowski closure operator, then
∇(K) is the category of irreducible spaces (i.e., of spaces X for which X = F ∪G
with closed sets F and G are possible only for F = X or G = X ) [18].

Let (X, C) be a closure space and M ⊂ X. The (strong) closure of M is the
intersection of all (strongly) closed subsets of X containing M and it is denoted
by cl(M) (resp., scl(M)). Note that for any closure space (X, C) and M ⊂ X, if
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M 6= ∅, then cl(M) = X = scl(M) and if M = ∅, then cl(∅) = ∅ = scl(∅) are
closure operators of Cls in the sense of [20].

We have;

Corollary 1. Every closure space (X, C) is cl(scl)-connected.

Remark 2. Let (X, C) be a closure space. If (X, C) is D-connected, then (X, C) is
cl(scl)-connected, but the converse of this implication is not true, in general. For
example, suppose X = {a, b} and C = P (X). Then, by Theorem 5 and Corollary 1,
(X, C) is cl(scl)−connected but it is not D-connected.

4 Hausdorff Closure Spaces

Let B be a nonempty set, B2 = B × B be cartesian product of B with itself and
B2 ∨∆ B2 be two distinct copies of B2 identified along the diagonal. A point (x, y)
in B2 ∨∆ B2 will be denoted by (x, y)1((x, y)2) if (x, y) is in the first (resp. second)
component of B2 ∨∆ B2. Clearly (x, y)1 = (x, y)2 iff x = y [5].

The principal axis map A : B2 ∨∆ B2 → B3 is given by A(x, y)1 = (x, y, x)
and A(x, y)2 = (x, x, y). The skewed axis map S : B2 ∨∆ B2 → B3 is given by
S(x, y)1 = (x, y, y) and S(x, y)2 = (x, x, y) and the fold map, ∇ : B2 ∨∆ B2 → B2

is given by ∇(x, y)i = (x, y) for i = 1, 2 [5].

Definition 4. (cf. [5], [9] and [38]) Let U : E → Set be a topological functor, X
an object in E with U(X) = B.

1. X is T0 iff the initial lift of the U -source {A : B2 ∨∆ B2 → U(X3) = B3 and
∇ : B2 ∨∆ B2 → UD(B2) = B2} is discrete, where D is the discrete functor
which is a left adjoint to U .

2. X is T0 iff X does not contain an indiscrete subspace with (at least) two
points.

3. X is PreT2 iff the initial lifts of the U -sources {A : B2∨∆B2 → U(X3) = B3}
and {S : B2 ∨∆ B2 → U(X3) = B3} coincide.

4. X is PreT ′2 iff the initial lift of the U -source {S : B2 ∨∆ B2 → U(X3) = B3}
and the final lift of the U−sink {i1, i2 : U(X2) = B2 → B2 ∨∆ B2} coincide,
where i1 and i2 are the canonical injections.

5. X is T2 iff X is T0 and PreT2.

6. X is NT2 iff X is T0 and PreT2.

7. X is MT2 iff X is T0 and PreT ′2.

8. X is ST2 iff ∆, the diagonal, is strongly closed in X2.

9. X is ∆T2 iff ∆, the diagonal, is closed in X2.
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Remark 3. 1. Note that for the category Top of topological spaces, T0, T0, PreT2,
PreT ′2, and T2 reduce to the usual T0, T1, PreT2 (where a topological space is called
PreT2 if for any two distinct points, if there is a neighbourhood of one missing the
other, then the two points have disjoint neighbourhoods), and T2 separation axioms,
respectively [5].
2. Let U : E → B be a topological functor. In [8], it is shown that every indiscrete
object of E is PreT2. Furthermore, if X is PreT ′2, then it is PreT2 object in E [10].
In an arbitrary topological category, PreT2 and PreT ′2 objects are used to define
various forms of each of T2 objects and regular objects, and consequently normal
objects, see [5] and [7].
3. Mielke in [32] showed that pre-Hausdorff objects are used to characterize the
decidable objects, [27] or [30] in a topos, where an object X of E, a topos, is said
to be decidable if the diagonal ∆ ⊂ X2 is a complemented subobject. Moreover, it
is proved in [31] that the image of a topos in a topological category by a geometric
morphism [27] or [30], i.e., an exact functor which has a right adjoint, is a PreT ′2
object. In particular, PreT ′2 objects play a role in the general theory of geometric
realizations, their associated interval and corresponding homotopy structures [31].
4. In [6] for an arbitrary topological category, it is proven that there is no relation-
ship between T0 and T0, in general. Moreover, it is shown, in [10], that the notions
of T2, NT2, MT2, 4T2, and ST2 are independent of each other, in general.

Theorem 6. Let (X, C) be a closure space. (X, C) is T0 iff X is a singleton.

Proof. Suppose (X,C) is T0 and X 6= {x}. Then there exists y ∈ X such that x 6= y.
Since A(x, y)1 = (x, y, x) ∈ W and W ∈ C3, where C3 is the product structure on
X3, there exist M, N ∈ C such that W = π1−1(N) ∪ π2−1(M) ∪ π3−1(N) =
(N × X2) ∪ (X × M × X) ∪ (X2 × N). Since x 6= y we have ∇ − 1((x, y)) =
{(x, y)1, (x, y)2}. However, {(x, y)1} = ∇− 1({x, y})∪A−1(W ) ⊃ {(x, y)1, (x, y)2}.
This is a contradiction. Hence, X = {x}. Conversely, if X = {x}, i.e., a singleton,
then clearly, by Definition 4, (X,C) is T0.

Theorem 7. Let (X, C) be a closure space. (X, C) is T0 iff for all different pair of
points x, y ∈ X, there exists a set Ux ∈ C with x ∈ Ux such that y /∈ Ux or there
exists a set Uy ∈ C with y ∈ Uy such that x /∈ Uy.

Proof. Suppose (X, C) is T0, i.e., X does not contain an indiscrete subspace with
two points and x, y ∈ X with x 6= y. Let A = {x, y} and CA = {U ∩ A : U ∈ C},
the subspace structure on A. Since CA is not indiscrete structure, then there exists
a set Ux ∈ CA with x ∈ Ux such that y /∈ Ux or there exists a set Uy ∈ CA with
y ∈ Uy such that x /∈ Uy. Suppose x ∈ Ux ∈ CA. Then, there exists a set U ∈ C
such that x ∈ U and Ux = U ∩ A. If y ∈ U , then y ∈ Ux. This is a contradiction.
Hence, y /∈ U . Similarly, if y ∈ Uy ∈ CA, then there exists a set V ∈ C such that
x ∈ V with Uy = V ∩A. If x ∈ V , then x ∈ Uy. This is a contradiction. Therefore,
x /∈ V .
Conversely, suppose the above condition holds. We want to show that X contains
an indiscrete subspace with two points, i.e., A = {x, y} and CA = {∅, A, Ux ∩ A}
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with x 6= y. Since A ∈ CA, there exists Vx ∈ C, x ∈ Vx such that Vx ∩ A = A.
Thus, A ⊂ Vx, i.e., y ∈ Vx. This is a contradiction. Similarly, we can show for
x ∈ Uy. Therefore, X does not contain an indiscrete subspace with two points.
Hence, (X, C) is T0.

Theorem 8. Let (X, C) be a closure space. (X, C) is PreT2 iff it is an indiscrete
closure space.

Proof. If (X, C) is indiscrete closure space, then, by Remark 3.2, it is PreT2.
Suppose that (X, C) is PreT2. If X = ∅ or X = {x}, then it is obvious that (X, C)
is indiscrete closure space and by Remark 3.2, (X, C) is PreT2. Suppose that X
contains at least two points, i.e., there exist x, y ∈ X with x 6= y. Assume that
A = {x, y} ⊂ X. The induced structure on A is given by CA = {A ∩ U : U ∈ C}.
We want to show that (A, CA) is PreT2 only if CA is indiscrete structure on A. We
have four cases.
Case 1. If CA = {∅, A}, then, by Remark 3.2, (A, CA) is PreT2.
Case 2. If CA = {∅, A, {x}}, then C3

A = {∅, A3, {x} × A2, A × {x} × A,A2 ×
{x}, ({x}×A2)∪ (A×{x}×A), ({x}×A2)∪ (A2×{x}), (A×{x}×A)∪ (A2×{x}),
({x} × A2) ∪ (A × {x} × A) ∪ ({x} × A2)}, where C3

A is the product structure
on A3. We claim that (A, CA) is not PreT2. Let W = A2 × {x} ∈ C3

A and
U = S−1(W ) = S−1(A2 × {x}) = {(x, x)1 = (x, x)2, (y, x)1, (y, x)2}. In fact,
if (x, y)1 ∈ U = S−1(W ), then S(x, y)1 = (x, y, y) /∈ W = A2 × {x}, since
x 6= y. Similarly, (y, x)1 ∈ U = S−1(W ), then S(y, x)1 = (y, x, x) ∈ W =
A2 × {x}. Hence (y, x)1 ∈ S−1(W ). If (x, y)2 ∈ U = S−1(W ), then S(x, y)2 =
(x, x, y) /∈ W = A2 × {x}, since x 6= y. Similarly, if (y, x)2 ∈ U = S−1(W ),
then S(y, x)2 = (y, y, x) ∈ W = A2 × {x}. Therefore, (y, x)2 ∈ U = S−1(W ).
Hence, S−1(W ) = {(x, x)1 = (x, x)2, (y, x)1, (y, x)2}. However, there is no W ′ ∈ C3

A

such that A−1(W ′) = S−1(W ). In fact, if W = A2 × {x}, then A−1(W ) =
{(x, x)1 = (x, x)2, (x, y)1, (y, x)2}. In fact, if (x, y)1 ∈ A−1(W ), then A(x, y)1 =
(x, y, x) ∈ W = A2 × {x}. Thus, (x, y)1 ∈ A−1(W ). If (y, x)1 ∈ A−1(W ),
then A(y, x)1 = (y, x, y) /∈ W = A2 × {x}, since x 6= y. Similarly, if (x, y)2 ∈
A−1(W ), then A(x, y)2 = (x, x, y) /∈ W = A2 × {x}, since x 6= y. If (y, x)2 ∈
A−1(W ), then A(y, x)2 = (y, y, x) ∈ W = A2 × {x}. Hence, (y, x)2 ∈ A−1(W ).
Similarly, we have A−1(C3

A) = {∅, A2 ∨∆ A2, {(x, x)1 = (x, x)2, (x, y)2, (x, y)1},
{(x, x)1 = (x, x)2, (x, y)2, (y, x)1}, {(x, x)1 = (x, x)2, (x, y)1, (y, x)2}, {(x, x)1 =
(x, x)2, (x, y)2, (x, y)1, (y, x)1}, {(x, x)1 = (x, x)2, (x, y)2, (x, y)1, (y, x)2}, {(x, x)1 =
(x, x)2, (x, y)2, (y, x)1, (x, y)1, (y, x)2}}. Therefore, S−1(W ) ∈ S−1(C3

A), but S−1(W )
/∈ A−1(C3

A). Thus A−1(C3
A) 6= S−1(C3

A).
Case 3. If CA = {∅, A, {y}}, then the proof is similar to Case 2.
Case 4. If CA = {∅, A, {x}, {y}} then C3

A = {∅, A3, {x} × A2, A × {x} × A,A2 ×
{x}, {y}×A2, A×{y}×A,A2×{y}, ({x}×A2)∪(A×{x}×A), ({x}×A2)∪(A2×{x}),
(A × {x} × A) ∪ (A2 × {x}), ({x} × A2) ∪ (A × {x} × A) ∪ ({x} × A2), ({y} ×
A2) ∪ (A× {y} × A), ({y} × A2) ∪ (A2 × {y}), (A× {y} × A) ∪ (A2 × {y}), ({y} ×
A2) ∪ (A × {y} × A) ∪ ({y} × A2)}. Let W = A2 × {x}, by the above argument
U = S−1(W ) = {(x, x)1 = (x, x)2, (y, x)1, (y, x)2} and U = S−1(W ) /∈ A−1(C3

A).
Therefore, S−1(C3

A) 6= A−1(C3
A).
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In general, suppose X contains at least two points. If (X, C) is indiscrete closure
space, then, by Remark 3.2, (X, C) is PreT2. Suppose (X, C) is not an indiscrete
closure space. Then, there exists U ⊂ X such that U ∈ C with ∅ 6= U 6= X.
1. Let x ∈ U , y /∈ U and W ′ = X2 × U ∈ C3. Then, A−1(W ′) /∈ A−1(C3). In fact,
as it is shown in Case 2, W = A2 × {x} ∈ C3

A and A−1(W ) /∈ A−1(C3
A). Since W =

A2×{x} ∈ C3
A, there exists X2×U ∈ C3 such that W = A2×{x} = A3∩ (X2×U).

Since A−1(W ) /∈ A−1(C3
A), we have A−1(X2 × U) = A−1(W ′) /∈ A−1(C3). On the

other hand, if A−1(W ′) ∈ A−1(C3), then A−1(W ) ∈ A−1(C3
A). This is a contra-

diction. Similarly, since S−1(W ) ∈ S−1(C3
A), then S−1(W ′) ∈ S−1(C3). If it was

S−1(W ′) /∈ S−1(C3), then, by the definition of C3
A, S−1(W ) /∈ S−1(C3

A). This is a
contradiction, as it shown in Case 2.
2. Let y ∈ U , x /∈ U and W ′ = X2 × U ∈ C3. Then, as it is shown above
A−1(W ′) /∈ A−1(C3) and S−1(W ′) ∈ S−1(C3) by using Case 3.
3. Let x, y ∈ U and W ′ = X2 × U ∈ C3. Then, as it is shown above A−1(W ′) /∈
A−1(C3) and S−1(W ′) ∈ S−1(C3) by using Case 4.
Consequently, a closure space (X, C) is not PreT2 unless it is an indiscrete space.

Theorem 9. Let (X, C) be a closure space. (X, C) is PreT ′2 iff it is an indiscrete
closure space.

Proof. Suppose that (X, C) is PreT ′2. If X = ∅ or X = {x} then it is obvious
that (X, C) is indiscrete closure space. Assume that X contains at least two points.
Then, there exist x, y ∈ X with x 6= y. Let A = {x, y} ⊂ X. Then CA = {A ∩ U :
U ∈ C} is the subspace structure on A. Let C2

A be the product structure on A2

and C∗A be the final structure on A2 ∨∆ A2 induced by canonical injections i1 and
i2 : A2 → A2 ∨∆ A2, i.e., C∗A = {U ⊂ A2 ∨∆ A2 : i−1

1 (U) ∈ C2
A and i−1

2 (U) ∈ C2
A}.

We show that by Definition 4 (A, CA) is PreT ′2, i.e., S−1(C3
A) = C∗A, where C3

A is the
product structure on A3, iff (A, CA) is indiscrete. We have four cases.
Case 1. If CA = {∅, A}, the indiscrete structure, then it is easy to see that S−1(C3

A) =
{A2 ∨∆ A2, ∅} = C∗A. So (A, CA) is PreT ′2.
Case 2. If CA = {∅, A, {x}}, then C2

A = {∅, A2, {x} × A,A× {x}, ({x} × A) ∪ (A×
{x})}, where C2

A is the product structure on A2. We want to show that (A, CA) is
not PreT ′2. Let W = A2 × {x} ∈ C3

A and S−1(W ) = S−1(A2 × {x}) = {(x, x)1 =
(x, x)2, (y, x)1, (y, x)2} ∈ S−1(C3

A), as it is shown in the proof of above theorem.
However, there is no element in C∗A equivalent to S−1(W ). Let U = ({x}×A)∨∆A2.
Note that i−1

1 (U) = {x}×A ∈ C2
A and i−1

2 (U) = A2 ∈ C2
A. Hence, U ∈ C∗A. Similarly,

we get C∗A = {∅, A2∨∆A2, {x}×A∨∆A2, A2∨∆{x}×A, A×{x}∨∆A2, A2∨∆A×{x},
[{x} ×A ∪A× {x}] ∨∆ A2, A2 ∨∆ [{x} ×A ∪A× {x}]}. Thus, S−1(C3

A) 6= C∗A.
Case 3. If CA = {∅, A, {y}} then, similar to the above case, we can show that
S−1(C3

A) 6= C∗A.
Case 4. If CA = {∅, A, {x}, {y}} then C2

A = {∅, A2, {x} × A, A × {x}, ({x} × A) ∪
(A× {x}), {y} ×A,A× {y}, ({y} ×A) ∪ (A× {y}), ({x} ×A) ∪ ({y} ×A), ({x} ×
A) ∪ (A × {y}), (A × {x}) ∪ (A × {y})}. Again, similar to Case 2, when we find
C∗A = {∅, A2 ∨∆ A2, {x}×A∨∆ A2, A2 ∨∆ {x}×A, A×{x}∨∆ A2, A2 ∨∆ A×{x},
[{x}×A∪A×{x}]∨∆ A2, A2∨∆ [{x}×A∪A×{x}], {y}×A∨∆ A2, A2∨∆ {y}×A,
A×{y}∨∆ A2, A2∨∆ A×{y}, [{y}×A∪A×{y}]∨∆ A2, A2∨∆ [{y}×A∪A×{y}],
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[{x} ×A ∪A× {y}] ∨∆ A2, A2 ∨∆ [{x} ×A∪A× {y}], [A× {x} ∪ {y} ×A] ∨∆ A2,
A2 ∨∆ [A × {x} ∪ {y} × A]}, we can see that there is no element in C∗A which is
equivalent to S−1(W ) = {(x, x)1 = (x, x)2, (y, x)1, (y, x)2}, where W = A2 × {x}.
Hence, S−1(C3

A) 6= C∗A.
Therefore, closure space (A, CA) is PreT ′2 if and only if it is an indiscrete space.
In general, suppose X contains at least two points. Let C2 be the product structure
on X2 and C∗ be the final structure on X2 ∨∆ X2 induced by canonical injections
i1 and i2 : X2 → X2 ∨∆ X2, i.e., C∗ = {U ⊂ X2 ∨∆ X2 : i−1

1 (U) ∈ C2 and
i−1
2 (U) ∈ C2}. We show that (X, C) is PreT ′2, i.e., S−1(C3) = C∗, where C3 is the

product structure on X3, iff (X, C) is indiscrete. If (X, C) is indiscrete closure space,
then S−1(C3) = {∅, X2 ∨∆ X2} = C∗. Thus (X, C) is PreT ′2.
Conversely, suppose that (X, C) is PreT ′2 but it is not an indiscrete closure space.
Then, there exists U ⊂ X such that U ∈ C with ∅ 6= U 6= X.
1. Let x ∈ U , y /∈ U , A = {x, y} and W ′ = X2 × U ∈ C3. As it is shown in Case 2,
W = A2 × {x} ∈ C3

A and S−1(W ) /∈ C∗A. Since, W = A2 × {x} ∈ C3
A, there exists

X2 × U ∈ C3. Note that W = A2 × {x} = A3 ∩ (X2 × U). Since S−1(W ) /∈ C∗A,
we have S−1(X2 ×U) = S−1(W ′) /∈ C∗. On the other hand, if S−1(W ′) ∈ C∗, then
S−1(W ) ∈ C∗A. This is a contradiction. Similarly, since S−1(W ) ∈ S−1(C3

A), then
S−1(W ′) ∈ S−1(C3). If it is S−1(W ′) /∈ S−1(C3), then, by the definition of C3

A,
S−1(W ) /∈ S−1(C3

A). This is a contradiction, as it is shown in Case 2.
2. Let y ∈ U , x /∈ U and W ′ = X2 × U ∈ C3. Then, as it is shown above
S−1(W ′) /∈ C∗ and S−1(W ′) ∈ S−1(C3), by using Case 3.
3. Let x, y ∈ U and W ′ = X2 × U ∈ C3. Then, as it is shown above S−1(W ′) /∈ C∗
and S−1(W ′) ∈ S−1(C3), by using Case 4.
Therefore, a closure space (X, C) is not PreT ′2 unless it is an indiscrete space.

Theorem 10. Let (X, C) be a closure space. X is T2 (resp. NT2 or MT2) iff X is
a point or the empty set.

Proof. It follows from Definition 4 and Theorems 6, 7, 8, and 9.

Theorem 11. Let (X, C) be a closure space. X is 4T2 (resp. ST2) iff X is a point
or the empty set.

Proof. Assume (X, C) is 4T2 (resp. ST2), i.e., 4 is (strongly) closed in X2 by
Definition 4. By Theorem 3 (Theorem 4), 4 = X2. It follows that X is a point or
the empty set.

Converse is obvious.

Remark 4. 1. A closure space (X, C) is PreT2 iff (X, C) is PreT ′2.
2. If a closure space (X, C) is T0, then it is T0 but the converse is not true generally.
For example, let X = {a, b} and C = {∅, X, {a}}. Then (X, C) is T0 but it is not
T0.
3. All of T2, NT2, MT2, 4T2, and ST2 closure spaces are equivalent.
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