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LACUNARY SERIES IN MIXED NORM SPACES
ON THE BALL AND THE POLYDISK

Miroljub Jevti¢ and Miroslav Pavlovié

Abstract

We characterize lacunary series in mixed norm spaces on the unit ball B"
in C" and on the unit polydisk D™ in C™.

Introduction and main results

Let n be a positive integer. Two domains will be used in the paper: the open unit
ball B in C",
B*"={zeC": |2| <1},

and the open unit polydisk D™ in C™,
D" ={z= (21,0, 2n) €C": |21 < 1,.., |z <1}

We write D = B! = D!,
Denote by T™ the Shilov boundary of D", by dB™ the boundary of B", by do,,
the normalized surface measure on OB, and define the measure du,, on T" by

dun(ewH. .. ,ew") =dbf;---db,.

Lacunary series on the unit ball B”

The mixed norm space HP#*(B"), 0 < p,g < 00 0 < a < o0, consists of all
functions f holomorphic in B", f € H(B"), such that

1
A2 go = / (1- 7")‘1‘3‘_1Mp(7"7 Hidr < oo, if 0<q< oo,
0

and
[fllp,c0.a = sup (1 —r)*My(r, f) < oo.
o<r<1
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Here, as usual,

w0 = ([ ogran©) " 0<p<oe

and
Moo(r, f) = sup [f(r§)].
[€]=1

We write ||f|[, = supg<,<1 My(r, f).

Note that when 0 < p = ¢ < 0o, then HPP:(e+1)/P(B") where @ > —1, coincides,
as a topological linear space, with the weighted Bergman space AP**(B"™), consisting
of those f € H(B™) for which

[ fGpa - prav) <o,

where dV,, is the normalized volume measure on B,,.
We say that a holomorphic function f on B™ has a lacunary expansion if its
homogeneous expansion is of the form

F(2) =3 fu(2),
k=1

where my, satisfies the condition

. MmEk+1
inf +
1<k<oco My,

=A>1

The series Yo fm, (%) as well as the sequence {my} are then said to be lacunary.
In this paper we characterize holomorphic functions with lacunary expansions
in mixed norm spaces HP¢%*(B"). More precisely, we prove

THEOREM 1. Let 0 < p,q < 00, 0 < a < o0 and let f(z) = > oy fmi(2) be a
holomorphic function on B™ with a lacunary expansion. Then f € HPT%(B™) if
and only if

i [ fom |13 :
qa <00 if 0<g<oo,
- M
k=1
or
sup mlza|‘fmk”19<oov Zf q = Q.
1<k<oc0

Lacunary series in H?'%*(D) are characterized in [MP]. (See also [JP]).

Our work was motivated by characterizations of lacunary series in weighted
Bergman spaces AP*(B™), see [Ch], [YO], and [St]. Case ¢ = oo of Theorem 1
also follows from [ZZ, Proposition 63]. We note that in [St] lacunary series in mixed
norm spaces HP'9%(B™) are considered and some partial results have been obtained.
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Lacunary series on the unit polydisk in C”

For any Lebesgue measurable function f in D", we define

w0 = ([ 1s6ran) " 0<p<oe

and

OO(rvf) = sup |f(7f)|v

£eTn

where r = (r1,...,75).
FO<p<oo,0<g<oo,and a=(ag,..,an),a; >0,j=1,..,n,let

S0 e

where I = [0,1)™ and dr = dry - - - dr,,. The mixed norm space H?2%*(D") is then
defined to be the space of functions f holomorphic in D", f € H(D"), such that

17

The mixed norm space H?:°>*(D"),0 < p < 00, = (1, ..o, ), 1 > 0,0y vy >
0, is the set of those functions f € H(D™) for which

17

n
p,00,a — SUP H(l - rj)ajM;v(Ta f)
reln j=1

is finite.

Our second result is a characterization of lacunary series in mixed norm spaces
HPao(Dn),

THEOREM 2. Let 0 < p<o00,0<g< 00,05 >0,5=1,...,n,and

f(z)= Z by e 2y Tz

k1,~-7kn21
be a holomorphic function on D™ such that there is A > 1 satisfying the condition
My, +1/Mjk, > A forall kj €N, j=1,...n

If 0 < g < 00 , then the following statements are equivalent:

(i) feHP2(D");

q
(ii) Z LI

7qa
ok >1 HJ 1m J
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If ¢ = 0o, then the following statements are equivalent:
(iti) f € HP>>*(D");

(iv)  sup Icgﬁiz%\ < oo
krveekn 21 [T M50

We note that the equivalence (iii) and (iv) also follows from [Av, Theorem 3.
The equivalence (i) <= (ii) for 0 < p = ¢ < co was proved in [St].

1 Preliminaries

In this section we gather several well-known lemmas that will be used in the proofs
of our results.

LEMMA 1. [P] Let o« > —1,0 < ¢ < o0 and I, = {k € N: 2" < k < 27!}
forn > 1, Ip = {0,1}. If {an}3° is a sequence of non-negative numbers such that
the series G(r) = Y02 a,r™ converges for every r € (0,1), then the following two
conditions are equivalent and the corresponding quantities are “proportional”:

(i) fol(l —7r)*G(r)4dr < oo;

(ii) Yoo g2 et (Zkeln ak)q < 0.

In the case of the function G(r) = sup,,>qanr™ in (i) the expression Y, o, ax
in (ii) should be replaced by supye; ag.

LEMMA 2. If {ny} is a lacunary sequence of positive integers, that is infy, n—:l =

A > 1, and {ar} is a sequence of nonnegative real numbers, then the following con-
ditions are equivalent and the corresponding quantities are “proportional”:

(i) [y (1= ) (5, awr™) dr < oo;

(i) fol(l — 1) (supy>, akrnk)qdr < 00

(iii) Yopey Sl < oo,
k
Proof. By Lemma 1,

1 o8] o)
[ @m0 arm)dr=y 2 e (3 )
0 k=1 k=1

njEIk
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Since “+L > X > 1, for all j € N, the number of a; when n; € I is at most

J

[log, 2] + 2. Using this and the fact that n; = 2* when n; € I, we see that

i27k(a+1)( Z (Lj)q o i Z%l.

k=1 n; €I k=1

O

LEMMA 3. [Zy, Du, P] Let 0 < p < oco. If{ny} is an increasing sequence of positive
integers satisfying ng1/ne = X > 1 for all k, then there is a positive constant C
depending only on p and X\ such that

[e's) 1/2 1 2r o0 )
(L) < (g [ [
= k=1

These Paley’s inequalities were extended to the unit polydisk D™ in [Av]:

1/2

» 1/p oo
do) < O(Zak2>

k=1

LEMMA 4. Let {m;, };?‘;1,]' =1,...,n, be arbitrary lacunary sequences and f(z) be
a holomorphic function in D™ given by

flz)= Z by b2y ey 2= (21,0, 2) € DT

Then for any p, 0 < p < oo, f is in the Hardy space HP(D"), ie. ||f|l, =
SUp,.cn Mp(r, f) < oo, if and only if 37 4 5 lak, ...k, |* < 0o. Moreover,

1/2
C‘1||f||p§< T |) < AlIfl

ki ,eokn>1

where C' is a constant independent of f.

2 Proof of Theorem 1

Let

— || fncllf
Z G <oo, O0<p<oo, 0<gq<oo.
k=1 k

If 1 < p < o0, then by using Minkowski’s inequality we obtain

My(r, f) < Zankarnk (1)
k=1
If p = oo, then
Moo (r, ) <D | f oo™ 2)

k=1
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An application of Lemma 2 gives

o0

1
1112, 0 < / (1= 7)1 (S || fg ™) e

k=1

<Cznw |

If 0 <p<1, then

P < M il Brems. (3)
k=1
Hence,
1
/ (1 qa 1 Z”f"k”p pn,,)Q/Pd

< 0/ e Z||fnk||pr”k)"“°dr

. CZ Il
by Lemma 2.

If @ > 0 and {ng} is a lacunary sequence of positive integers, then

ina = (ﬁ), see [Du].

k=1

Using this, (1), (2), and (3) we find that

||f‘|p,oo,a = sup (1 —m)*M, (T f) < Csup 1nelle anka
0<r<1 E>1 nk

Conversely, let || f|p,g,a < 00.
If 0 < p < oo, then by using the slice integration formula [Ru2, Proposition 1.4.7]
and Lemma 3 we find that

= ( [,
([ [ ifnk@)r”kem”
= ( /| (Z\f (©Pr Wda(f))l/p,

ank ro)| doe )) "

pd@)da(f))l/p
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and consequently
My(r, ) > Cl|fu,||pr™*, forall k>1.

If p = oo, also we have Moo (7, f) > || fnillco™, for all & > 1.
Thus, if 0 < ¢ < 0o, then

1
1£1[2 40 = C / (1= )92 (sup || fne [l ™ ) el
0 E>1

o [ II3
>0y z,
k=1

ni®
by Lemma 2.
If ¢ = oo, then

1 fllpoo,a = sup (L —7)*sup||fn,[|pr"™*
0<r<1 k>1

S 1 1 1\ 7k
_?gﬂfnkﬂp@( _771)

1
o Lo Wl
€ k>1 ng.

This finishes the proof of Theorem 1.

3 Proof of Theorem 2

In order to avoid too much calculations we will assume that n = 2.

Proof of implications (ii) = (i) and (iv) = (iii)

Let 0 < p <o0,r = (r1,7r2) and a = (a1, a2),a1 > 0, ag > 0. Then

Mp(raf)S Z |ak17k2‘7{nl,k1r;n2,k2.
k1,k2>1

If 0 < ¢ < oo then by applying Lemma 2 twice we obtain

1 1
1£119, o = / (1= 1)1 1dr,y / (1= 1T =M, (r, £)7dry
0 0

1 1

S / (1 — ’I”Q)qazild’f‘g‘/ (1 — T’l)qalil
0 0

< (SO an gl 2y ) diy

k121 ko2>1
! 1

<C [ (=r)t(Y] o D kg kol ) ) dr

0 ki>1 LR gy>1

107
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=C Z mii‘fl/ (1 — o)zt Z |y g |7 2 ) 0y

k1>1 ko>1

—qo
<C § : E :mlkl m2k2 |ak1,k2|

k121ky>1

If ¢ = 0o, then we have
fllpoc.a = sup sup (1 —71)* (1 —rz)**Mp(r, f)
0<r1<10<rs<1

< sup  sup (1—7r)*(1—ry)*2 Z |y gy |7y g 2
0<r; <1 0<ra<1

k1,k2>1
< sup (L=r)™ Y (sup (1=72)" Y ag, gy lry ™2 )r)"™
0<r1<1 ki1 0<ra<1 fa1
0<ri<1 ™ >1]€221 m2,k)2
< C Sup Sup M

k1>1ko>1 m1 k1m2 ko

Proof of implications (i) = (ii) and (iii) = (iv)

By Lemma 4 we have

2 2 1/2
Mp(r,f) ~ ( Z ‘akl k2|2 mi ky r2m2,k2) / )

k1,k2>1
Thus
mi,ky M2,kg
MP(T’ f) Z sup |ak1,k2|r1 Ty ) 0< p < oo.
k1,k2>1

This holds also for p = co. Hence, if 0 < ¢ < oo, by applying Lemma 2 twice we
get

1 1
1l 2 [ @=raetan [y
0 0

X (Sup(sup ‘ak17k2|r;n1’kl )"“;YLZJW)qdr2

k2>1 k12>1
1
>C [ (1) Z my o ( SUP |ak‘1,kz|r1 V) adry
0 ka>1
1
=02 my / (1= )™ (sup g i, )
ka>1 0 k121

qa2 aq
>C § : E :m2k32 m1k1 |k, ks |

k1>1ka>1



Lacunary series in mixed norm spaces on the ball and the polydisk 109

If

q = 0o, then

fllpsoa = sup — sup (1 —r1)* (1 —r2)** Mpy(r, f)
0<ri<l 0<re<1

> sup  sup (L—7r)*(1—7r2)* sup \akl’k2|r;nl‘k1r;n“2
0<r1<10<ra<1 k1,ka>1
>C sup ‘a’kh]wl

a1 (S5
k1,k2>1 My g Mo g,

This finishes the proof of Theorem 2.
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