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ON ALMOST ESSENTIALLY RUSTON ELEMENTS
OF A BANACH ALGEBRA

Snezana C. Zivkovié-Zlatanovié¢* and Robin E. Harte

Abstract

We introduce the class of “almost essentially Ruston elements” with re-
spect to a homomorphism between two Banach algebras, a class intermediate
between Ruston and Fredholm elements.

1 Introduction

Let C denote the set of all complex numbers and let A and B denote complex Banach
algebras, with identities denoted in both cases with 1, and invertible groups A~!
and B~ respectively. By o(x, A) we denote the spectrum of an element x € A.
The radical of A is the set

Rad(A)={zcA:1-AzCcA '} ={zcA:1-zAC A}

The radical is unchanged if the invertible group A~! is replaced by either the semi-

group Al_e}t of left invertible elements, or the semigroup Ar_izht of right invertible

elements, and can also be realised as the intersection of all maximal proper left

ideals, similarly right ideals.
Let S be a subset of A. The commutant of S is defined by comm(S) = {x € A:
xs = sz for all s € S}. The perturbation class of S, denoted by P(S), is the set

P(S)y={zeA:x+seS forevery se S}
The quasinilpotents of A form the set
QNA) ={zcA:0(x,A)={0}}={reA:1-CaxcC A} (1)
Recall that [6, Theorem 2.11]: if z, y € A, then

zy = yr = o(xy, A) C o(x, A)o(y, A) (2)
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and
xy=yr = o(x +y,A) Co(x,A)+ 0oy, A). (3)

From (2) it follows that
x € QN(A) = comm(z)xr C QN (A), (4)
which together with (1) implies
QN(A)={zrc A:1—comm(x)z C A~} (5)

The radical can be recognised as the perturbation class of the invertible group, and
the quasinilpotents as a sort of commutative analogue: there are the equivalencies

v € Rad(A) <= (Vg)(ge A =z +gec A7) (6)

and
r€QN(A) <= (Vg)(g € A ' Ncomm(z) =z +ge€ A7Y). (7)

Observe also that (6) holds separately for the left and right invertible semigroups
and that (7) follows from (5) and (1).
Recall that [6, Theorem 1.43]

x € A is invertible <= x + Rad(A) is invertible in A/Rad(A). (8)
Consequently,
o(xz,A) = o(x + Rad(A), A/Rad(A)) 9)
and
x is quasinilpotent <= x + Rad(A) is quasinilpotent. (10)

A map T : A — B is a homomorphism if T is linear and satisfies T'(zy) = TaTy,
z, y € A, and T1 = 1. The homomorphism 7" has the Riesz property if 0 is the
only one possible point of accumulation of o(z, A) for every € T~1(0), that is, if
Tx =0, then o(z, A) is either finite or a sequence converging to 0 [1].

If T: A — B is a homomorphism, then T(A™1) € B~! and hence

Atc At +177Y0) cTH(BTh.

Recall the following definitions from [1], [3]:

An element a € A is T-Fredholm if it has an invertible image,
acT (B,
and T-Weyl if it splits into the sum of an invertible and an essentially null element:
ac A+ T7Y0).

Thus, a is T-Weyl if
a=c+dwithce A7, Td=0.
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If the previous sum is commutative, then a € A is T-Browder:
ac A 4. T7H0).
Corresponding spectra of a € A are defined as:

J?(a) = o(Ta, B)-the Fredholm spectrum,

ol(a) ={\ € C:a— \is not T — Weyl}-the Weyl spectrum.

w

2 Almost essentially Ruston elements

Recall the following definitions from [4]:

An element a € A is T-Ruston if
a=c+dwithce A7 cd —dc € {0},Td € QN(B),
an element a € A is essentially T-Ruston if
a=c+dwithce A~ ed —dce T7(0),Td € QN(B).

Let us mention that essentially Ruston elements are called almost Ruston elements
in [4]. We introduce the following elements which are intermediate between essen-

tially Ruston and Fredholm elements:

An element a € A is almost essentially T-Ruston if

a=c+dwithc€ A7 ed — dec € T~ (Rad(B)),Td € QN(B).

2.1 Theorem. Let T : A — B be a homomorphism. If ¢ € A is an almost
essentially T-Ruston element, that is a = ¢ + d where ¢ € A=, Td € QN(B) and
cd — de € T71(Rad(B)), then o(Ta, B) = o(Tc, B) and a is T-Fredholm.

Proof. Let 7 : B — B/Rad(B) denote the quotient map and let a = ¢ + d where
c€ A1, Td € QN(B) and cd — dc € T~!(Rad(B)). Hence n(Tc) and m(T'd) com-
mute. By (9) we have o(Ta, B) = o(n(Ta), B/Rad(B)), o(n(Td), B/Rad(B)) =
o(Td,B) = {0} and o(n(T'c), B/Rad(B)) = o(Tc, B). Then, according to (3), we

have o(Ta, B) = o(n(Ta), B/Rad(B))
7(T¢) + 7(Td), B/Rad(B))

(m(

(m(

(r(Tc), B/Rad(B)) + o(n(Td), B/Rad(B))
(7 (

(

7(Tc), B/Rad(B))
Tc, B).

N
Qa 9 9 9 9
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As ¢ = a—d and ad — da € T~} (Rad(B)), we get o(Tc,B) C o(Ta,B). Hence
o(Ta,B) = o(Tc,B). Since ¢ € A™L, it follows that 0 ¢ o(T'c, B), which implies
that 0 ¢ o(Ta, B), i.e. Ta € B~*. Thus a is T-Fredholm. O

Let us remark that the fact that every almost essentially T-Ruston element is
T-Fredholm can be proved also by using (7):

Suppose that a € A is an almost essentially T-Ruston element, i.e. a = c+d
where ¢ € A7, Td € QN(B) and T(cd — dc) € Rad(B). Then 7(Ta) = n(Tc) +
m(Td), 7(Tc) is invertible, 7(Td) is quasinilpotent and 7(T¢) and 7 (7T'd) commute.
According to (7) we conclude that 7(Ta) is invertible which by (8) implies that Ta
is invertible. Hence a is T-Fredholm.

Therefore we have:

Ruston
Browder = W li essentially Ruston = almost essentially Ruston=>Fredholm
ey

(11)

The essentially Ruston spectrum of a € A is defined as:

ol (a) ={\ € C:a— \is not essentially T — Ruston},

er

and the almost essentially Ruston spectrum of a € A is defined as:

T
aer

Oper(@) ={A € C:a— X is not almost essentially T'— Ruston}.

Let us remark that

ol (a) =n{o(a—d,A): Td € QN(B),ad — da € T~*(Rad(B))},

aer

and consequently, this spectrum is compact. Clearly,

07 (a) C oge,(a) C 0 (a) C oy (a), (12)

and we conclude that o7,

(a) is nonempty.

In [4, Theorem 6.6] it is proved that if T : A — B is a homomorphism with
closed range which satisfies the Riesz property, then Ruston elements are Browder
and essentially Ruston elements are Weyl. We can improve the second assertion:

2.2 Theorem. If T : A — B is a homomorphism with closed range which satis-
fies the Riesz property, then every almost essentially T-Ruston element is T-Weyl.
Proof. Let a = c+d, wherec € A7, d € T"Y(QN(B)) and cd—dc € T~} (Rad(B)).
As TcTd — TdTce € Rad(B), it follows that Tc™1Td — TdTc™! € Rad(B), since
Rad(B) is a two-sided ideal. If 7 : B — B/Rad(B) denotes the quotient map,
then 7(Te™ ') and 7(Td) commute, and by (10), #T7d € QN(B/Rad(B)). From
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(4) it follows that «(T(c~*d)) € QN (B/Rad(B)), and so T(c~'d) € QN(B) by
(10). Therefore, c"ta = 1+ ¢~1d is T-Ruston and by [4, Theorem 6.6.1], ¢~ ta is
T-Browder. Thus a = c¢(c™'a) is T-Weyl. O

2.3 Corollary. If T : A — B is a homomorphism with closed range and satisfies
the Riesz property, then the set of T-Weyl elements, the set of essentially T-Ruston
elements and the set of almost essentially T-Ruston elements are equal.

Proof. Follows from Theorem 2.2 and the diagram (11). O

2.4 Corollary. If T : A — B is a homomorphism with closed range and satisfies
the Riesz property, then for a € A

Taer(a) = 08, (a) = o, (a).

If K C C is compact, then nK denotes the connected hull of K, i.e. nK is the union
of K and the bounded components of the complement of K.

2.5 Corollary. If T : A — B is an onto homomorphism and a € A, then o7, (a) C
na?(a) and hence nol,,.(a) = no?(a).
Proof. Follows from the first and the second inclusion in (12), and [4, Corollary

7.4]. O

2.6 Corollary. If T : A — B is a homomorphism with closed range and a € A,
then ol (a) C na?(a) and hence nol,,.(a) = no?(a).

Proof. Follows from the first and the second inclusion in (12), and [4, Corollary
7.5]. O

V. Miiller [5, Definition 1] introduced the following concepts:
A subset R of a Banach algebra A is an upper semiregularity if

(i)ae R, ne N=a" € R,

(ii) if a, b, ¢, d are mutually commuting elements of A satisfying ac+ bd = 1 and
a,b € R, then ab € R,

(iii) R contains a neighbourhood of 1,

and an lower semireqularity if

(i)ae R, neN,a" € R=a€ R,
(ii) if @, b, ¢, d are mutually commuting elements of A satisfying ac + bd = 1 and
ab € R, then a,b € R.

2.7 Corollary. Let T : A — B be a homomorphism. If either B is commutative or
T has closed range and satisfies the Riesz property, then the set of almost essentially
T-Ruston elements is an upper semiregularity.

Proof. If B is commutative, then from the definitions it is obvious that the set
of almost essentially T-Ruston elements is equal to the set of essentially T-Ruston
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elements. If T has closed range and satisfies the Riesz property, then, by Corollary
2.3, these sets are equal again. Now the assertion follows from [4, Corollary 8.4]. [

2.8 Corollary. Let T': A — B be a homomorphism. If either B is commutative
or T has closed range and satisfies the Riesz property, then

Taer(f(a) C f(oger(a)

for all @ € A and all functions f analytic on a neighbourhood of o(a) and non-
constant on each component of its domain of definition.

Proof. Follows from Corollary 2.7 and [4, Corollary 8.5]. O

In [4] it is remarked that from [2, Example 4.4] it follows that the set of T-
Weyl elements is not a lower semiregularity even if the homomorphism T has the
Riesz property and closed range. From Corollary 2.3 and the same example it
follows that, in general, the set of almost essentially Ruston elements is not a lower
semiregularity.

In [4] it is proved that if a € A is a Ruston (essentially Ruston) element, then

™ is a Ruston (essentially Ruston) element for every n € N. We prove:

a
2.9 Theorem. Let T : A — B be a homomorphism and a € A. If a is almost
essentially T-Ruston, then a™ is almost essentially T-Ruston for every n € N.
Proof. Suppose that a = ¢ + d, where ¢ € A=, Td € QN(B) and cd — dc €
T~'(Rad(B)). Then 7(Tc) and 7(Td) commute, and by (9), o(7(T'd), B/Rad(B)) =
o(Td, B) = {0}, where 7 : B — B/Rad(B) denotes the quotient map. For n € N,
a™ =c1+dy, with ¢ = ¢ € A~  and dy = Y (})c"*d". Hence, according to
(2) and (3), we get

o(r(Tdy), B/Rad(B)) = o (> (”) (m(Te))"*(x(Td))*, B/Rad(B))

k
k=1

© 3 () fo(n(re) B/Rad(m))~H (o ((Td), B/Rad(5)*
k=1

= {0}.

By (9), 0(T'd1, B) = o(n(Td;), B/Rad(B)), and so Td; € QN(B). Since n(Tc) and
m(T'd) commute, it follows that 7(Tc;) and w(T'd;) commute, i.e. c1dy — dic; €
T~Y(Rad(B)). Therefore, a™ is almost essentially T-Ruston. O

In [4] it is noticed that product of two Ruston elements does not have to be
Ruston. We remark that also product of two essentially Ruston element is not
always essentially Ruston:

Suppose that a = ¢ + d where ¢ € A™!, Td € QN(B) and TcTd — TdTc €
Rad(B)\{0}, in other words a is almost essentially T-Ruston but not essentially
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T-Ruston. As in the proof of Theorem 2.2 we conclude that T(c~td) € QN(B).
Thus 1 + ¢~ 'd is T-Ruston and so it is an essentially T-Ruston element. Since
a = c(1+c7td), it follows that a is a product of two essentially T-Ruston elements
which is not essentially T-Ruston.

Moreover, we see that every almost essentially T-Ruston element is the product
of two T-Ruston elements.
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