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ON ALMOST ESSENTIALLY RUSTON ELEMENTS
OF A BANACH ALGEBRA

Snežana Č. Živković-Zlatanović∗ and Robin E. Harte

Abstract

We introduce the class of “almost essentially Ruston elements” with re-
spect to a homomorphism between two Banach algebras, a class intermediate
between Ruston and Fredholm elements.

1 Introduction

Let C denote the set of all complex numbers and let A and B denote complex Banach
algebras, with identities denoted in both cases with 1, and invertible groups A−1

and B−1, respectively. By σ(x,A) we denote the spectrum of an element x ∈ A.
The radical of A is the set

Rad(A) = {x ∈ A : 1−Ax ⊂ A−1} = {x ∈ A : 1− xA ⊂ A−1}.
The radical is unchanged if the invertible group A−1 is replaced by either the semi-
group A−1

left of left invertible elements, or the semigroup A−1
right of right invertible

elements, and can also be realised as the intersection of all maximal proper left
ideals, similarly right ideals.

Let S be a subset of A. The commutant of S is defined by comm(S) = {x ∈ A :
xs = sx for all s ∈ S}. The perturbation class of S, denoted by P (S), is the set

P (S) = {x ∈ A : x + s ∈ S for every s ∈ S}.
The quasinilpotents of A form the set

QN(A) = {x ∈ A : σ(x,A) = {0}} = {x ∈ A : 1− Cx ⊂ A−1}. (1)

Recall that [6, Theorem 2.11]: if x, y ∈ A, then

xy = yx =⇒ σ(xy,A) ⊂ σ(x,A)σ(y,A) (2)
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and
xy = yx =⇒ σ(x + y, A) ⊂ σ(x,A) + σ(y, A). (3)

From (2) it follows that

x ∈ QN(A) =⇒ comm(x)x ⊂ QN(A), (4)

which together with (1) implies

QN(A) = {x ∈ A : 1− comm(x)x ⊂ A−1}. (5)

The radical can be recognised as the perturbation class of the invertible group, and
the quasinilpotents as a sort of commutative analogue: there are the equivalencies

x ∈ Rad(A) ⇐⇒ (∀g)(g ∈ A−1 =⇒ x + g ∈ A−1) (6)

and
x ∈ QN(A) ⇐⇒ (∀g)(g ∈ A−1 ∩ comm(x) =⇒ x + g ∈ A−1). (7)

Observe also that (6) holds separately for the left and right invertible semigroups
and that (7) follows from (5) and (1).

Recall that [6, Theorem 1.43]

x ∈ A is invertible ⇐⇒ x + Rad(A) is invertible in A/Rad(A). (8)

Consequently,
σ(x,A) = σ(x + Rad(A), A/Rad(A)) (9)

and
x is quasinilpotent ⇐⇒ x + Rad(A) is quasinilpotent. (10)

A map T : A → B is a homomorphism if T is linear and satisfies T (xy) = TxTy,
x, y ∈ A, and T1 = 1. The homomorphism T has the Riesz property if 0 is the
only one possible point of accumulation of σ(x, A) for every x ∈ T−1(0), that is, if
Tx = 0, then σ(x, A) is either finite or a sequence converging to 0 [1].

If T : A → B is a homomorphism, then T (A−1) ⊂ B−1 and hence

A−1 ⊂ A−1 + T−1(0) ⊂ T−1(B−1).

Recall the following definitions from [1], [3]:

An element a ∈ A is T -Fredholm if it has an invertible image,

a ∈ T−1(B−1),

and T -Weyl if it splits into the sum of an invertible and an essentially null element:

a ∈ A−1 + T−1(0).

Thus, a is T -Weyl if
a = c + d with c ∈ A−1, Td = 0.
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If the previous sum is commutative, then a ∈ A is T -Browder:

a ∈ A−1 +c T−1(0).

Corresponding spectra of a ∈ A are defined as:

σT
f (a) = σ(Ta, B)-the Fredholm spectrum,

σT
w(a) = {λ ∈ C : a− λ is not T −Weyl}-the Weyl spectrum.

2 Almost essentially Ruston elements

Recall the following definitions from [4]:

An element a ∈ A is T -Ruston if

a = c + d with c ∈ A−1, cd− dc ∈ {0}, Td ∈ QN(B),

an element a ∈ A is essentially T -Ruston if

a = c + d with c ∈ A−1, cd− dc ∈ T−1(0), Td ∈ QN(B).

Let us mention that essentially Ruston elements are called almost Ruston elements
in [4]. We introduce the following elements which are intermediate between essen-

tially Ruston and Fredholm elements:

An element a ∈ A is almost essentially T -Ruston if

a = c + d with c ∈ A−1, cd− dc ∈ T−1(Rad(B)), Td ∈ QN(B).

2.1 Theorem. Let T : A → B be a homomorphism. If a ∈ A is an almost
essentially T -Ruston element, that is a = c + d where c ∈ A−1, Td ∈ QN(B) and
cd− dc ∈ T−1(Rad(B)), then σ(Ta, B) = σ(Tc,B) and a is T -Fredholm.
Proof. Let π : B → B/Rad(B) denote the quotient map and let a = c + d where
c ∈ A−1, Td ∈ QN(B) and cd− dc ∈ T−1(Rad(B)). Hence π(Tc) and π(Td) com-
mute. By (9) we have σ(Ta, B) = σ(π(Ta), B/Rad(B)), σ(π(Td), B/Rad(B)) =
σ(Td,B) = {0} and σ(π(Tc), B/Rad(B)) = σ(Tc,B). Then, according to (3), we
have

σ(Ta, B) = σ(π(Ta), B/Rad(B))
= σ(π(Tc) + π(Td), B/Rad(B))
⊂ σ(π(Tc), B/Rad(B)) + σ(π(Td), B/Rad(B))
= σ(π(Tc), B/Rad(B))
= σ(Tc,B).
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As c = a − d and ad − da ∈ T−1(Rad(B)), we get σ(Tc, B) ⊂ σ(Ta,B). Hence
σ(Ta, B) = σ(Tc,B). Since c ∈ A−1, it follows that 0 /∈ σ(Tc, B), which implies
that 0 /∈ σ(Ta, B), i.e. Ta ∈ B−1. Thus a is T -Fredholm.

Let us remark that the fact that every almost essentially T -Ruston element is
T -Fredholm can be proved also by using (7):

Suppose that a ∈ A is an almost essentially T -Ruston element, i.e. a = c + d
where c ∈ A−1, Td ∈ QN(B) and T (cd − dc) ∈ Rad(B). Then π(Ta) = π(Tc) +
π(Td), π(Tc) is invertible, π(Td) is quasinilpotent and π(Tc) and π(Td) commute.
According to (7) we conclude that π(Ta) is invertible which by (8) implies that Ta
is invertible. Hence a is T -Fredholm.

Therefore we have:

Browder⇒ Ruston
Weyl

⇒essentially Ruston⇒almost essentially Ruston⇒Fredholm

(11)

The essentially Ruston spectrum of a ∈ A is defined as:

σT
er(a) = {λ ∈ C : a− λ is not essentially T − Ruston},

and the almost essentially Ruston spectrum of a ∈ A is defined as:

σT
aer(a) = {λ ∈ C : a− λ is not almost essentially T − Ruston}.

Let us remark that

σT
aer(a) = ∩{σ(a− d,A) : Td ∈ QN(B), ad− da ∈ T−1(Rad(B))},

and consequently, this spectrum is compact. Clearly,

σT
f (a) ⊂ σT

aer(a) ⊂ σT
er(a) ⊂ σT

w(a), (12)

and we conclude that σT
aer(a) is nonempty.

In [4, Theorem 6.6] it is proved that if T : A → B is a homomorphism with
closed range which satisfies the Riesz property, then Ruston elements are Browder
and essentially Ruston elements are Weyl. We can improve the second assertion:

2.2 Theorem. If T : A → B is a homomorphism with closed range which satis-
fies the Riesz property, then every almost essentially T -Ruston element is T -Weyl.
Proof. Let a = c+d, where c ∈ A−1, d ∈ T−1(QN(B)) and cd−dc ∈ T−1(Rad(B)).
As TcTd − TdTc ∈ Rad(B), it follows that Tc−1Td − TdTc−1 ∈ Rad(B), since
Rad(B) is a two-sided ideal. If π : B → B/Rad(B) denotes the quotient map,
then π(Tc−1) and π(Td) commute, and by (10), πTd ∈ QN(B/Rad(B)). From
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(4) it follows that π(T (c−1d)) ∈ QN(B/Rad(B)), and so T (c−1d) ∈ QN(B) by
(10). Therefore, c−1a = 1 + c−1d is T -Ruston and by [4, Theorem 6.6.1], c−1a is
T -Browder. Thus a = c(c−1a) is T -Weyl.

2.3 Corollary. If T : A → B is a homomorphism with closed range and satisfies
the Riesz property, then the set of T -Weyl elements, the set of essentially T -Ruston
elements and the set of almost essentially T -Ruston elements are equal.
Proof. Follows from Theorem 2.2 and the diagram (11).

2.4 Corollary. If T : A → B is a homomorphism with closed range and satisfies
the Riesz property, then for a ∈ A

σT
aer(a) = σT

er(a) = σT
w(a).

If K ⊂ C is compact, then ηK denotes the connected hull of K, i.e. ηK is the union
of K and the bounded components of the complement of K.

2.5 Corollary. If T : A → B is an onto homomorphism and a ∈ A, then σT
aer(a) ⊂

ησT
f (a) and hence ησT

aer(a) = ησT
f (a).

Proof. Follows from the first and the second inclusion in (12), and [4, Corollary
7.4].

2.6 Corollary. If T : A → B is a homomorphism with closed range and a ∈ A,
then σT

aer(a) ⊂ ησT
f (a) and hence ησT

aer(a) = ησT
f (a).

Proof. Follows from the first and the second inclusion in (12), and [4, Corollary
7.5].

V. Müller [5, Definition 1] introduced the following concepts:

A subset R of a Banach algebra A is an upper semiregularity if

(i) a ∈ R, n ∈ N⇒ an ∈ R,
(ii) if a, b, c, d are mutually commuting elements of A satisfying ac + bd = 1 and

a, b ∈ R, then ab ∈ R,
(iii) R contains a neighbourhood of 1,

and an lower semiregularity if

(i) a ∈ R, n ∈ N, an ∈ R ⇒ a ∈ R,
(ii) if a, b, c, d are mutually commuting elements of A satisfying ac + bd = 1 and

ab ∈ R, then a, b ∈ R.

2.7 Corollary. Let T : A → B be a homomorphism. If either B is commutative or
T has closed range and satisfies the Riesz property, then the set of almost essentially
T -Ruston elements is an upper semiregularity.
Proof. If B is commutative, then from the definitions it is obvious that the set
of almost essentially T -Ruston elements is equal to the set of essentially T -Ruston
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elements. If T has closed range and satisfies the Riesz property, then, by Corollary
2.3, these sets are equal again. Now the assertion follows from [4, Corollary 8.4].

2.8 Corollary. Let T : A → B be a homomorphism. If either B is commutative
or T has closed range and satisfies the Riesz property, then

σT
aer(f(a)) ⊂ f(σT

aer(a))

for all a ∈ A and all functions f analytic on a neighbourhood of σ(a) and non-
constant on each component of its domain of definition.
Proof. Follows from Corollary 2.7 and [4, Corollary 8.5].

In [4] it is remarked that from [2, Example 4.4] it follows that the set of T -
Weyl elements is not a lower semiregularity even if the homomorphism T has the
Riesz property and closed range. From Corollary 2.3 and the same example it
follows that, in general, the set of almost essentially Ruston elements is not a lower
semiregularity.

In [4] it is proved that if a ∈ A is a Ruston (essentially Ruston) element, then
an is a Ruston (essentially Ruston) element for every n ∈ N. We prove:

2.9 Theorem. Let T : A → B be a homomorphism and a ∈ A. If a is almost
essentially T -Ruston, then an is almost essentially T -Ruston for every n ∈ N.
Proof. Suppose that a = c + d, where c ∈ A−1, Td ∈ QN(B) and cd − dc ∈
T−1(Rad(B)). Then π(Tc) and π(Td) commute, and by (9), σ(π(Td), B/Rad(B)) =
σ(Td, B) = {0}, where π : B → B/Rad(B) denotes the quotient map. For n ∈ N,
an = c1 + d1, with c1 = cn ∈ A−1 and d1 =

∑n
k=1

(
n
k

)
cn−kdk. Hence, according to

(2) and (3), we get

σ(π(Td1), B/Rad(B)) = σ(
n∑

k=1

(
n

k

)
(π(Tc))n−k(π(Td))k, B/Rad(B))

⊂
n∑

k=1

(
n

k

)
(σ(π(Tc), B/Rad(B)))n−k(σ(π(Td), B/Rad(B)))k

= {0}.

By (9), σ(Td1, B) = σ(π(Td1), B/Rad(B)), and so Td1 ∈ QN(B). Since π(Tc) and
π(Td) commute, it follows that π(Tc1) and π(Td1) commute, i.e. c1d1 − d1c1 ∈
T−1(Rad(B)). Therefore, an is almost essentially T -Ruston.

In [4] it is noticed that product of two Ruston elements does not have to be
Ruston. We remark that also product of two essentially Ruston element is not
always essentially Ruston:

Suppose that a = c + d where c ∈ A−1, Td ∈ QN(B) and TcTd − TdTc ∈
Rad(B)\{0}, in other words a is almost essentially T -Ruston but not essentially
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T -Ruston. As in the proof of Theorem 2.2 we conclude that T (c−1d) ∈ QN(B).
Thus 1 + c−1d is T -Ruston and so it is an essentially T -Ruston element. Since
a = c(1 + c−1d), it follows that a is a product of two essentially T -Ruston elements
which is not essentially T -Ruston.

Moreover, we see that every almost essentially T -Ruston element is the product
of two T -Ruston elements.
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