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LOCAL SPECTRAL PROPERTIES FOR THE HELTON
CLASS OF AN OPERATOR

Young Min Han and Ji Eun Lee

Abstract

In this paper we study some local spectral properties of the Helton class
of an operator. In particular, we show that the Helton class of an operator
preserves the property (Q) under some condition. Also, we prove that if R
has SVEP, S ∈ Heltonk(R), and T ≺ S then a-Browder’s theorem holds for
f(T ) for each f ∈ H(σ(T )).

1 Introduction

Throughout this note let B(H) and K(H) denote, respectively, the algebra of
bounded linear operators and the ideal of compact operators acting on an infinite
dimensional separable Hilbert space H. If T ∈ B(H) we shall write N(T ) and R(T )
for the null space and range of T . Also, let α(T ) := dimN(T ), β(T ) := dimN(T ∗),
and let σ(T ), σr(T ), σa(T ), and σp(T ) denote the spectrum, right spectrum, ap-
proximate point spectrum, and point spectrum of T , respectively. An operator
T ∈ B(H) is called upper semi-Fredholm if it has closed range and α(T ) < ∞ and
an operator T is called lower semi-Fredholm if β(T ) < ∞. An operator T ∈ B(H)
is called Fredholm if α(T ) < ∞ and β(T ) < ∞. The index of a Fredholm operator
T ∈ B(H) is given by

i(T ) := α(T )− β(T ).

T ∈ B(H) is called Weyl if it is Fredholm of index zero, and Browder if it is
Fredholm of finite ascent and descent. The essential spectrum σe(T ), the Weyl
spectrum σW (T ) and the Browder spectrum σB(T ) of T ∈ B(H) are defined by
([7])

σe(T ) = {λ ∈ C : T − λ is not Fredholm},
σW (T ) = {λ ∈ C : T − λ is not Weyl},
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σB(T ) = {λ ∈ C : T − λ is not Browder},
σre(T ) = {λ ∈ C : T − λ is not lower semi-Fredholm},

respectively. Evidently

σre(T ) ⊆ σe(T ) ⊆ σW (T ) ⊆ σB(T ) = σe(T ) ∪ accσ(T ),

where we write acc K for the accumulation points of K ⊆ C. If we write iso K =
K \ acc K then we let

π00(T ) := {λ ∈ iso σ(T ) : 0 < α(T − λ) < ∞ };
and

p00(T ) := σ(T ) \ σB(T ).

We say that Weyl’s theorem holds for T ∈ B(H) if

σ(T ) \ σW (T ) = π00(T ),

and that Browder’s theorem holds for T ∈ B(H) if

σ(T ) \ σW (T ) = p00(T ).

We consider the sets

Φ+(H) = {T ∈ B(H) : R(T ) is closed and α(T ) < ∞},

Φ−+(H) = {T ∈ B(H) : T ∈ Φ+(H) and i(T ) ≤ 0}.
By definition,

σea(T ) := ∩{σa(T + K) : K ∈ K(H)}
is the essential approximate point spectrum, and

σab(T ) := ∩{σa(T + K) : TK = KT and K ∈ K(H)}

is the Browder essential approximate point spectrum.

We say that a-Browder’s theorem holds for T ∈ B(H) if

σea(T ) = σab(T ).

We say that an operator T has the single valued extension property at λ (abbre-
viated SVEP at λ) if for every open set U containing λ the only analytic function
f : U −→ H which satisfies the equation

(T − λ)f(λ) = 0

is the constant function f ≡ 0 on U . T has SVEP if T has SVEP at every point
λ ∈ C.
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It is known ([6],[8]) that if T ∈ B(H) then we have :

Weyl’s theorem =⇒ Browder’s theorem;

a-Browder’s theorem =⇒ Browder’s theorem.

In [9] J. W. Helton initiated the study of operator T which satisfy an identity
of the form

T ∗m −
(

m

1

)
T ∗m−1T + · · ·+ (−1)mTm = 0. (1)

We need further study for this class of operators based on (1). Let R and S be
in B(H) and let C(R, S) : B(H) → B(H) be defined by C(R, S)(A) = RA − AS.
Then

C(R, S)k(I) =
k∑

j=0

(−1)k−j

(
k
j

)
RjSk−j .

Definition 1.1. Let R ∈ B(H). If there is an integer k ≥ 1 such that an operator
S satisfies C(R,S)k(I) = 0, we say that S belongs to Helton class of R with order
k. We denote this by S ∈ Heltonk(R).

We remark that C(R, S)k(I) = 0 does not imply that C(S, R)k(I) 6= 0 in general.

Example 1.2. Let R ∈ B(l2) be the unilateral weighted shift with the weight
sequence {αn}∞n=0 = {1

2 , 2
3 , · · · · · · , n+1

n+2 , · · · } and let S ∈ B(l2) be the unilateral

weighted shift with a weight sequence {βn}∞n=0 = {2, 7
6 , 15

14 , 26
25 · · · , (n+1)(3n+4)

(n+2)(3n+1) , · · · }
which satisfies βn+1βn − 2(n+2)

n+3 βn + n+1
n+3 = 0. Then it is easy to show that

C(R,S)k(I) = 0, but C(S,R)k(I) 6= 0 for some k ≥ 2.

2 Spectral properties for Helton class

In this section we consider some relations between several spectral properties of an
operator and its Helton class. We begin with the following lemma.

Lemma 2.1.([10]) Suppose R has SVEP and S belongs to Helton class of R with
order k, i.e., S ∈ Heltonk(R). Then S also has SVEP.

Recall that an operator T is called hyponormal if T ∗T ≥ TT ∗. If T is a hy-
ponormal operator then T has SVEP. In fact, if T is hyponormal then N(T − λ) ⊆
N(T ∗ − λ) for each λ ∈ C. Therefore T has finite ascent for each λ ∈ C, and hence
T has SVEP by [13, Proposition 1.8]. It is well known that if T is hyponormal then
σre(T ) = σe(T ) and σr(T ) = σ(T ). We can extend this result as follows:
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Lemma 2.2. Suppose T has SVEP. Then

σre(T ) = σe(T ) and σr(T ) = σ(T ).

Proof. We first show that σe(T ) ⊆ σre(T ). Suppose that λ 6∈ σre(T ). Then T −λ is
right-Fredholm, and hence β(T − λ) < ∞. Since T has SVEP at λ, it follows from
[1, Corollary 3.19] that α(T − λ) ≤ β(T − λ). Therefore T − λ is Fredholm, and
so λ 6∈ σe(T ). Hence we have σre(T ) = σe(T ). To prove the second equality it is
sufficient to show that σ(T ) ⊆ σr(T ). Suppose that λ 6∈ σr(T ). Then T −λ is onto,
and so β(T − λ) = 0. Since T has SVEP at λ, α(T − λ) ≤ β(T − λ) = 0 by [1,
Corollary 3.19]. Therefore α(T − λ) = 0, and so T − λ is invertible. So λ /∈ σ(T ).
Hence σr(T ) = σ(T ).

Proposition 2.3. Suppose that S ∈ Heltonk(R). Then the following relations
hold:
(i) σr(R) ⊆ σr(S),
(ii) If R has SVEP then

σe(R) ⊆ σe(S), σW (R) ⊆ σW (S), σB(R) ⊆ σB(S), and σ(R) ⊆ σ(S).

Proof. (i) Suppose first that λ 6∈ σr(S). Then S−λ is right invertible. So (S−λ)∗ =
S∗ − λ is bounded below, and hence λ 6∈ σa(S∗). But S ∈ Heltonk(R), hence
R∗ ∈ Heltonk(S∗). So we have σa(R∗) ⊆ σa(S∗) by [15, Theorem 3.6.1], and hence
λ 6∈ σa(R∗). Therefore R∗ − λ is bounded below, and so R − λ is right invertible.
Therefore λ 6∈ σr(R). Hence we have σr(R) ⊆ σr(S).
(ii) Suppose now that λ 6∈ σe(S). By Lemma 2.2, σre(S) = σe(S) when S has
SVEP. Since S ∈ Heltonk(R), it follows from [12, Theorem 3.1] that λ 6∈ σre(R).
But R has SVEP, hence σre(R) = σe(R) by Lemma 2.2. Therefore λ 6∈ σe(R), and
hence σe(R) ⊆ σe(S). Next, we show that σ(R) ⊆ σ(S). Since R has SVEP and
S ∈ Heltonk(R), it follows from Lemma 2.1 that S has SVEP. Therefore σr(R) =
σ(R) and σr(S) = σ(S) by Lemma 2.2, and hence σ(R) ⊆ σ(S). Now we show
that σB(R) ⊆ σB(S). Observe that σB(T ) = σe(T ) ∪ acc σ(T ) for any T ∈ B(H).
So we have σB(R) = σe(R) ∪ acc σ(R) ⊆ σe(S) ∪ acc σ(S) = σB(S), and hence
σB(R) ⊆ σB(S). Finally, we show that σW (R) ⊆ σW (S). Since R and S have SVEP,
Browder’s theorem holds for R and S, respectively. Therefore σW (R) = σB(R) and
σW (S) = σB(S), and hence σW (R) ⊆ σW (S).

Theorem 2.4. Suppose that Browder’s theorem holds for R and let S ∈ Heltonk(R).
Then S satisfies Browder’s theorem when σW (R) ⊆ σW (S).
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Proof. Suppose that Browder’s theorem holds for R. Then σW (R) = σB(R), and
so R has SVEP at each λ ∈ C \ σW (R). Now we first show that S has SVEP at
each λ ∈ C \σW (R). Let U be any open set containing λ and let f : U → H be any
analytic function such that (µ − S)f(µ) = 0 for all µ ∈ U . Since S ∈ Heltonk(R)
and the terms of the equation below are equal to zero when j + s 6= r, it suffices to
consider only the case of j + s = r. Then we have the following equations:

k∑

j=0

(
k
j

)
(R− µ)j(µ− S)k−j

=
k∑

j=0

j∑
r=0

k−j∑
s=0

(−1)k−(s+r)

(
k
j

)(
j
r

)(
k − j

s

)
Rrµj+s−rSk−(j+s)

=
k∑

j=0

(−1)k−j

(
k
j

)
RjSk−j .

Hence we have
k∑

j=0

(−1)k−j

(
k
j

)
RjSk−jf(µ)− (R− µ)kf(µ)

=
k∑

j=0

(
k
j

)
(R− µ)j(µ− S)k−jf(µ)− (R− µ)kf(µ)

=
k−1∑

j=0

(
k
j

)
(R− µ)j(µ− S)k−jf(µ)

= [
k−1∑

j=0

(
k
j

)
(R− µ)j(µ− S)k−j−1](µ− S)f(µ) = 0.

Since
∑k

j=0(−1)k−j

(
k
j

)
RjSk−j = 0, we get that (R−µ)kf(µ) = 0 for all µ ∈ U .

Since R has SVEP at each λ ∈ C \ σW (R) and U is any open neighborhood of λ,
(R − µ)k−1f(µ) = 0 for all µ ∈ U . By induction, we have f(µ) = 0 for all µ ∈ U .
Therefore S has SVEP at each λ ∈ C \ σW (R). But σW (R) ⊆ σW (S); hence S has
SVEP at each λ ∈ C \ σW (S). Therefore Browder’s Theorem holds for S.

The following example shows that although R has SVEP and S ∈ Heltonk(R),
Weyl’s theorem may not hold for S.

Example 2.5. Let R ∈ B(l2) be defined by

R(x0, x1, x2, · · · , xn, · · · ) := (
1
3
x1,

3
10

x2,
5
21

x3, · · · ,
2n + 1

(n + 1)(2n + 3)
xn, · · · )
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for all {xn} ∈ l2. Then R has SVEP. Suppose that S is the weighted shift operator
which satisfy Sxn = βnxn+1 for all {xn} ∈ l2 and an operator S belongs to Helton
class of R with order 2. We can find that for all nonnegative integer n

S(x0, x1, x2, · · · , xn, · · · ) := (
1
2
x1,

1
3
x2,

1
4
x3, · · · ,

1
(n + 1)

xn, · · · ).

Indeed, set αn := 2n+1
(n+1)(2n+3) and βn := 1

n+1 . Then

βn+1βn − 2αn+1βn + αnαn+1

=
1

n + 2
1

n + 1
− 2

2n + 3
(n + 2)(2n + 5)

1
n + 1

+
2n + 1

(n + 1)(2n + 3)
2n + 3

(n + 2)(2n + 5)

=
1

n + 2
{ 1
n + 1

− 2(2n + 3)
(2n + 5)(n + 1)

+
2n + 1

(n + 1)(2n + 5)
}

=
1

n + 2
{ 2n + 5
(n + 1)(2n + 5)

− 2(2n + 3)
(2n + 5)(n + 1)

+
2n + 1

(n + 1)(2n + 5)
}

= 0 for every nonnegative integer n,

and so
‖Sk‖ =

1
(k + 1)!

for all k = 0, 1, 2, · · · . Therefore S is quasinilpotent, and hence it has SVEP. Hence
a-Browder’s theorem holds for S. However, S does not satisfy Weyl’s theorem
because σ(S) = σW (S) = {0} and Π00(S) = {0}.

However, a-Browder’s theorem performs better. Recall that an operator X ∈
B(H) is called a quasiaffinity if it has trivial kernel and dense range. S ∈ B(H)
is said to be a quasiaffine transform of T ∈ B(H) (notation: S ≺ T ) if there is a
quasiaffinity X ∈ B(H) such that XS = TX. If both S ≺ T and T ≺ S, then we
say that S and T are quasisimilar. In the following theorem, recall that H(σ(T ))
is the space of functions analytic in an open neighborhood of σ(T ).

Theorem 2.6. Let R have SVEP and S ∈ Heltonk(R). Suppose that T ≺ S. Then
a-Browder’s theorem holds for f(T ) for every f ∈ H(σ(T )).

Proof. Since R has SVEP and S ∈ Heltonk(R), it follows from Lemma 2.1 that S has
SVEP. Now we show that T has SVEP. Let U be any open set and let f : U −→ H
be any analytic function such that (T − λ)f(λ) = 0 for all λ ∈ U . Since T ≺ S,
there exists a quasiaffinity X such that XT = SX. So X(T − λ) = (S − λ)X for
all λ ∈ U . Since (T − λ)f(λ) = 0 for all λ ∈ U , 0 = X(T − λ)f(λ) = (S − λ)Xf(λ)
for all λ ∈ U . But S has SVEP; hence Xf(λ) = 0 for all λ ∈ U . Since X is a
quasiaffinity, f(λ) = 0 for all λ ∈ U . Therefore T has SVEP. Since T has SVEP,
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a-Browder’s theorem holds for T . Hence σea(T ) = σab(T ), and so we have by [5,
Theorem 3.1]

σab(f(T )) = f(σab(T )) = f(σea(T )) = σea(f(T )) for all f ∈ H(σ(T )).

Therefore a-Browder’s theorem holds for f(T ) for each f ∈ H(σ(T )).

From the proof of Theorem 2.6, we obtain the following corollary.

Corollary 2.7. Let R have SVEP and S ∈ Heltonk(R). Then a-Browder’s theorem
holds for f(S) for every f ∈ H(σ(S)).

Lemma 2.8. Suppose that S ∈ Heltonk(R). Then Sn ∈ Heltonk(Rn) for any
positive integer n and any integer k ≥ 2.

Proof. Let S ∈ Heltonk(R). Then we obtain the inclusion:

Heltonk(R) ⊆ Heltonk+1(R). (2)

Indeed, we have the following relation:

RC(R,S)k(I)− C(R, S)k(I)S

=
k∑

i=0

(−1)k−i

(
k
i

)
Ri+1Sk−i −

k∑

j=0

(−1)k−j

(
k
j

)
RjSk+1−j

= Rk+1 +
k∑

j=1

(−1)k+1−j [
(

k
j − 1

)
+

(
k
j

)
]RjSk+1−j + (−1)k+1Sk+1

= Rk+1 +
k∑

j=1

(−1)k+1−j

(
k + 1

j

)
RjSk+1−j + (−1)k+1Sk+1

=
k+1∑

j=0

(−1)k+1−j

(
k + 1

j

)
RjSk+1−j

= C(R,S)k+1(I).

So we obtain that C(R, S)k+1(I) = 0 when C(R, S)k(I) = 0. Hence S ∈ Heltonk+1(R).
To see this lemma, we will use the induction. If n = 2, it is easy to check that
S2 ∈ Helton2(R2). Assume that Sm ∈ Helton2(Rm) holds when n = m. By induc-
tion, we want to show that Sm+1 ∈ Helton2(Rm+1). From [15, Lemma 3.5.3] we
get that

C(Rm+1, Sm+1)2(I) = 2RC(Rm, Sm)2(I)S −R2C(Rm−1, Sm−1)2(I)S2.
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Since C(Rm, Sm)2(I) = C(Rm−1, Sm−1)2(I) = 0 by induction hypotheses,

C(Rm+1, Sm+1)2(I) = 0.

Hence Sm+1 ∈ Helton2(Rm+1). Thus Sn ∈ Helton2(Rn) for any positive integer
n. Since Helton2(Rn) ⊆ Heltonk(Rn) for any positive integer k ≥ 2 by (2), Sn ∈
Heltonk(Rn) for any positive integer n. Now we will prove that Sn ∈ Heltonk(Rn)
for fix n. If k = 2, then the proof follows from the above results. Assume that
Sn ∈ Heltonm(Rn) holds for k = m. By (2), Sn ∈ Heltonm+1(Rn) holds for
k = m + 1. By induction, Sn ∈ Heltonk(Rn) for any positive integer n.

An operator T is said to have the property (H ) if H0(T − λ) = N(T − λ) for all
λ ∈ C, where H0(T − λ) = {x ∈ H : limn→∞ ‖(T − λI)nx‖ 1

n = 0}. Although the
property H seems to be strong, the class of operators having property (H) is large
([1]).

Theorem 2.9. Suppose that S ∈ Heltonk(R) with k ≥ 2. Then H0(S − λ) ⊆
H0(R− λ) for all λ ∈ C.

Proof. Suppose that x ∈ H0(S − λ). Since S ∈ Heltonk(R), we have S − λ ∈
Heltonk(R− λ). It follows from Lemma 2.8 that (S − λ)n ∈ Heltonk((R− λ)n) for
any positive integer n and any integer k ≥ 2. Hence

k∑

j=0

(−1)k−j

(
k
j

)
((R− λ)n)j((S − λ)n)k−j = 0.

Therefore for any x ∈ H0(S − λ) we have

[
k−1∑

j=0

(−1)k−j

(
k
j

)
((R− λ)n)j((S − λ)n)k−j−1](S − λ)nx = −(R− λ)nkx.

Since limn→∞ ‖(S − λ)nx‖ 1
n = 0 for all x ∈ H0(S − λ), it follows that

lim
n→∞

‖(R− λ)nkx‖ 1
n = 0

for all x ∈ H0(S−λ) and any integer k ≥ 2. Hence limn→∞ ‖(R−λ)nkx‖ 1
nk = 0 for

all x ∈ H0(S − λ) and any integer k ≥ 2. Thus limN→∞ ‖(R− λ)Nx‖ 1
N = 0 for all

x ∈ H0(S − λ). Therefore x ∈ H0(R− λ), and hence H0(S − λ) ⊆ H0(R− λ).

Corollary 2.10. Suppose that R has the property (H) and S ∈ Heltonk(R) with
k ≥ 2. Then S has the property (H) when H0(R− λ) ⊆ N(S − λ) for all λ ∈ C.
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Proof. Since R has the property (H), we have H0(R−λ) = N(R−λ) for all λ ∈ C.
Since S ∈ Heltonk(R) with k ≥ 2, it follows from Theorem 2.9 that H0(S − λ) ⊆
H0(R− λ) for all λ ∈ C. Therefore we obtain H0(S − λ) ⊆ H0(R− λ) = N(S − λ).
The converse inclusion is trivial. Hence H0(S − λ) = N(S − λ) for all λ ∈ C, and
so S has the property (H).

An operator T is said to have the property (Q) if H0(T − λ) is closed for every
λ ∈ C. If T is a quasinilpotent operator then it has the property (Q) because
H0(T − λ) = {0} for all λ ∈ C \ {0} and H0(T ) = H. It is well known that the
following implication holds:

Property (Q) =⇒ SVEP.

The following theorem shows that the Helton class of an operator preserves the
property (Q) under some condition.

Theorem 2.11. Suppose that R has the property (Q) and S ∈ Heltonk(R) with
k ≥ 2. If σS(x) is a singleton set for each nonzero x ∈ H0(S − λ) and each λ ∈ C
then S has the property (Q), where σS(x) is the local spectrum of S at the point x.

Proof. We need only to prove that H0(S − λ) ⊆ H0(S − λ). Since S ∈ Heltonk(R)
with k ≥ 2, it follows from Theorem 2.9 that H0(S − λ) ⊆ H0(R − λ) for each
λ ∈ C. Since R has the property (Q), H0(R− λ) is closed. Therefore H0(S − λ) ⊆
H0(R−λ). Now we shall show that the inclusion H0(R−λ) ⊆ H0(S−λ) holds. Let x

be a nonzero element in H0(R−λ). Since R has the property (Q), it has SVEP. Since
S ∈ Heltonk(R), it follows from Lemma 2.1 that S has SVEP. It is well known that
if T has SVEP then H0(T − λ) = XT ({λ}), where XT (Ω) = {x ∈ H | σT (x) ⊆ Ω}.
So we obtain that H0(R − λ) = XR({λ}) and H0(S − λ) = XS({λ}), respectively.
Therefore x ∈ XR({λ}), and hence σR(x) ⊆ {λ}. Since R has SVEP and since
x 6= 0, σR(x) = {λ}. On the other hand, it follows from [15, Theorem 3.6.4] that
σR(x) ⊆ σS(x) when S ∈ Heltonk(R) and R has SVEP. Since σS(x) is a singleton
set for each nonzero x ∈ H0(S − λ), σS(x) = {λ}. Hence x ∈ XS({λ}), and so
x ∈ H0(S−λ). Thus H0(R−λ) ⊆ H0(S−λ). Therefore the proof is complete.
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