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COMMUTATOR AND SELF-COMMUTATOR
APPROXIMANTS II

P. J. Maher

Abstract
We minimize the quantities (i) ||T" — (AX — XA)|, (i) ||IT — (X*X —
XX™)| and (iii) ||T'— (AX — X B)|| where T is isometric and where in (i)
A is paranormal and commutes with T, in (ii)) X* (or X) is paranormal
and commutes with 7', and in (iii) A and B are paranormal and AT = T'B
and TA = BT. The upshot is that these quantities are minimized when
0=AX -XA=X"X—-XX"=AX — XB. To prove these results we obtain

the power norm equality for paranormal operators: if A is paranormal then
|A™]| = ||A||" if n € N.

1 Introduction

As in [11] and [12] we approximate an operator by a commutator AX — XA of
operators, by a self-commutator X*X — XX* and, as in [4], by a ”generalized
commutator” AX — X B. There, in [4], [11] and [12] the approximation is in the
von Neumann-Schatten norm ||-||,, where 1 < p < oo, on the von Neumann-Schatten
classes Cp; here, the approximation is in the sup norm on L(H) (For operators on
Banach space, see the recent paper by Duggal [6]).

The pertinent concept is that of paranormality which, as is well known from [9],
is a strong generalization of hyponormality.

For self-commutator approximation with paranormal X we have to restrict our-
selves to the sup norm. Consider the more transparent hyponormal special case
of this: that is, approximation by a self-commutator X*X — X X* for hyponormal
X; that is, approximation by a positive self-commutator. This topic may be re-
garded as an obvious extension of [12] since there can be no question of minimizing
IT — (X*X — XX*)||, where X*X — X X* is compact and X is hyponormal. For
if X*X — XX* is compact then X*XP = (X*X — XX*)P is compact where P is
the orthogonal projection onto Ker X X* (that is, I — P is the orthogonal projec-
tion onto (Ker X X*)* = (Ker X*)* = Ran X); hence X is compact and therefore,
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being hyponormal, is normal [10, Problem 206]. Thus, if X*X — X X* is compact
for hyponormal X then X*X — X X* = (0. The same result holds if, more generally,
X is paranormal; for, as is proved in Theorem 2.2 below, a compact paranormal
operator is normal.

Another property the paranormal operators share with the hyponormal ones is
the power norm equality: if A is paranormal then ||A"|| = ||A||™ if n € N as is
proved in Theorem 2.1.

We use the power norm equality to obtain the approximation results here (The-
orems 3.1, 3.2 and 3.3). Theorem 3.1 says that if A is a paranormal operator
commuting with the isometry T then ||T'— (AX — X A)|| > T. Theorem 3.2 gives
a similar result about minimizing |7 — (X*X — X X*)|| for (a) paranormal X*
commmuting with the isometry 7" and for (b) paranormal X commuting with T’
Example 3.1 shows that this commutativity assumption is necessary. From Theo-
rem 3.1 we obtain - via operator matrices - Theorem 3.3, a result about minimizing
IT — (AX — X B)| for paranormal A and B. Those minimization results are inter-
preted geometrically in Corollaries 3.1 and 3.4.

2 Paranormality

Definition 2.1. An operator A in L(H) is paranormal if
(A*)* A% —2XA*A+ X2 >0
for all real X > 0.

With the definition of positivity in L(H) and the discriminant criterion for the
quadratic in A, Definition 2.1 is easily proved to be equivalent to Definition 2.2 [3,
Theorem 4].

Definition 2.2. An operator A in L(H) is paranormal if

IAFIP < A2 FIILAI
for all f in H.

The class or paranormal operators strictly contains many other classes of oper-
ators including the hyponormal operators [5, §3], [7, §1], [9]. Paranormal operators
share with the hyponormal ones the following properties given in Theorems 2.1 and
2.2 below.

Theorem 2.1 (Power norm equality). If A is paranormal, ||A™| = ||A||™ where
n € N.

Proof. Equality is trivial for n = 1. Proceed by induction. Now, by Definition 2.2
[A™ 11 = [A(A" 1 )]1? = [|Agll®, say
< 4%l gl
= A" A A
< AFHIAT I



Commutator and self-commutator approximants II 3

for all f in H. Therefore, using the induction hypothesis ||A¥|| = || A||¥ for 1 < k <
n, we get
lA™][* = [A*" < A Am Y

whence ||A||"Tt < ||A"FY|. Since [[A"TL]| < ||A||**T! automatically the inductive
step follows. O

Theorem 2.2. A compact paranormal operator is normal.

Proof. Since the paranormal operator A, say, is compact it has a countable spec-
trum (cf. [13, Theorem 1.8.2]). Isolated points of the spectrum are poles, hence
eigenvalues; further, the eigenspaces corresponding to these eigenvalues are mutu-
ally orthogonal. So if one generates the space corresponding to these eigenvalues
one obtains a diagonal operator. What is left is at best the limit point which is the
limit point of the diagonal entries. Conclusion: A is normal. O

3 Approximation results

The proofs of the approximation results below use Theorem 2.1 and hinge on the
following identity: if AT = T A then

n—1
nTA"™' = A"B — BA" + ) A"""HT — (AB — BA))A' (3.1)
=0

for all B in L(H).
The next result is a variant of the well-known result of Anderson [1, Theorem
1.7] on minimizing |7 — (AX — X A)|| for normal A.

Theorem 3.1. If A is paranormal and T is an isometry such that AT =T A then
IT = (AX = XA)|| = [T

for all X in L(H).

Proof. Let ”B” = X in (3.1). Take norms:

n—1
l|TA™ | < 2 A™|IX]| + (1T = (AX = XA)| D A" )] A7)
=0

Since A is paranormal then, by Theorem 2.1, ||A*|| = ||A||* for all k£ in N and

so the summation above equals n||A||"~!; and, further, since T is isometric then
n||TA" | = n||A"~ || = n||A||"~!. Dividing through by n|A[|"~! gives

2
1< —(JAIIXI+ T~ (AX = XA)].

Since this holds for all n we have ||T — (AX — XA)|| > 1= T O
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This result may be expressed geometrically. Consider the linear map A4 :
L(H) — L(H) given by
Ay=AX - XA

for fixed A and varying X. Let the linear subsets Ran A4 and Ker A 4 be given by
RanAg ={Y € L(H) : Y = A4(X) for varying X in L(H)},
KerAy ={X € L(H) : As(X) =0}.

Let M and N be linear subsets of a normed space £, say. We say M is orthogonal
to N, denoted M LN, if for all m in M and n in N/

m +n|| > [lm].
For historical remarks on this asymmetric definition of orthogonality see [8, p. 93].

Corollary 3.1. If A is paranormal and T is an isometry in Ker A s then

KerAalRan/ 4

The next result generalizes a well-known result for hyponormal A [10, Problem
233].

Corollary 3.2. If A is paranormal then
I —(AX — XA)|| = [[1]
for all X in L(H).

Theorem 3.2. (a) If X* is paranormal and T is an isometry such that X*T = TX*
then

1T — (X" X = XX)|| = T
(b) The same conclusion holds if, instead, X is paranormal and T is an isometry

such that XT =TX.

Proof. (a) In the identity (3.1) take ”A” = X* and ” B” = X and proceed as in the
proof of Theorem 3.1: then

2 * * *
1< XX+ 1T = (XX = X X)) (3.2)

which gives the result.

(b) In (3.1) take ”A” = —X and "B” = X*. Then, because X is paranor-
mal, |47 = [[(—X)"| = |X"| = [IX]" = || A" and because |IT — ((—X)X* —
X*(=X)| = IT — (X*X — XX*)|| we get, as in the proof of Theorem 3.1, the
inequality 3.2 above, giving the result. O

The following example shows that Theorem 3.2 (b) fails if XT # TX.
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Example 3.1. Let H = Iy, the space of square-summable sequences of complex
numbers, and let X = S, the simple unilateral shift. Then S is hyponormal and
hence paranormal: for, with f = (x,)5°,

((5*S = 8S*)f, f) =|z1|* > 0

Let T be given by T(z1,x2,23,...) = (z2,21,23,...). Then ||[Tf]| = ||f|| and
ST #TS. Now,

1T = (575 = 55%)|| = sup [(T'f, ) = (575 = S5)f, f)

llFll=1
= sup |[{(w2,21,23,...)(Z1, T2, T3, ...)) — |21|?|
ll£ll=1
o0
= sup |weTy +a1Ta + D [aal — |21, (3.3)
llfll=1 n=3

Without loss of generality suppose that Rx; > Rxa, Jz1 > Jx2 and 22 # 0 and
| fIl = 1. Then one can check that

(3.3) < S 21 ? + D [aal? = |21]?|
= n=3

s [11IF =l < I = 1= 71|

The next result deals with minimizing |7 — (AX — XB)|| > ||T||. It reduces to
Theorem 3.1 if A = B.

Theorem 3.3. If A and B are paranormal and T is an isometry such that AT =
TB and TA = BT then

IT = (AX = XB)[| = |[T].

(N A 0 0 X
Proof. OnHEBH,letT-(T 0>7A—< 0 B)andX—<O O).Then

T is isometric on H @ H (since T is isometric on H) and AT = T A (since AT =TB
and TA = BT). Further, A is paranormal on H & H: for, with f = ( ;1 ), on
2

using the paranormality of A and B we get

A =15 g || ] 1= danie s

< (142 AllllA =+ 182 £211 1 £211)
= [ A2 AP NAIR + 1B2 2021 207 + 201 A% Al A NIB2 f2 L fol
< (142 A0 + 1B2 Ll P) (L1 + 1 f20%) (3-4)

2
1[4 s || e g e = s



6 P. J. Maher

so that ||Af||? < [ A%f|||If]| as desired (The inequality (3.4) comes from 0 <
A2 £ 20l = 1B2 f2llll f11)?). Therefore, A and T satisfy Theorem 3.1 and so
1T — (AX — X A)|| > || T| whence

IT = (AX = XA)|| = [|T].
O

Let the linear map A4 g : L(H) — L(H) and the linear subsets Ran A 4 g and
Ker A4 g be given by, for fixed A and B,

Aap(X)=AX — XB,
RanAyp={Y € L(H) : Y = A4 p(X) for varying X in L(H)},
KerAA,B = {X € L(H) : AA7B(X) = O}

Theorem 3.3 can be expressed geometrically as follows.

Corollary 3.3. If A and B are paranormal and T is an isometry such that T €
KerAapNKerAp a then KerAap N KerAg alRanAa p.

It is proved in [2, Theorem 1.5] that if A and B are normal and T is such that
AT =TB then
IT = (AX = XB)|| = [|T]] (A= F)

Geometrically: if A and B are normal and if Ker A4 g # {0} then
KerAy plRanAy p.

This last result, (A-F), together with the rest of this paper, prompts the following
questions.

Question 1. Can the condition in Theorems 3.1, 3.2 and 3.3 (and in Corollaries
3.1 and 3.3) that T is isometric be dropped?

Question 2. More generally, can the condition of normality in (A-F) be weak-
ened to that of paranormality?

Acknowledgement I thank Professor B. P. Duggal for very helpful conversa-
tions about paranormality and for giving me his proof of Theorem 2.2.
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