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Gs-BLUMBERG SPACES

M. R. Ahmadi Zand

Abstract

A topological space X is called a Gs-Blumberg space If for every real-
valued function f on X, there exists a dense Gs-set D in X such that the
restriction of f to D is continuous. In this paper, the behaviour of this space
under taking subspaces and superspaces, images and preimages are studied,
and a Gs-Blumberg space which is a generalization of an almost P-space is
characterized. Some unsolved problems are posed.

1 Introduction

Let X be a topological space and A C X, intx A denotes the interior of A in X,
clx A denotes the closure of A in X. Where no ambiguity can arise, the interior of
A in X is denoted by A° and the closure of A in X is denoted by A. In this paper
I(X) denotes the set of all isolated points of topological space X. A topological
space X is said to be almost discrete if [(X) = X, and if I(X) = (), then X is called
crowded or dense-in-itself.

Recall that a topological space X is Baire if the intersection of any sequence of
dense open sets of X is dense.

Let X be crowded, if D = (X\D) = X for some subset D of X, then X is called
resolvable, otherwise X is called irresolvable.
Let X and Y be topological spaces and let FI(X,Y) be the set of functions on
X into Y. In this paper F(X,R) is denoted by F(X). It is clear that F(X) with
addition and multiplication defined pointwise, is a commutative ring. The collection
of continuous members of F(X) is denoted by C(X). The zero-set of f € F(X) is
denoted by Z(f) and is defined by Z(f) = {z € X : f(z) = 0}. The complement
of Z(f) in X, is called cozero-set of f and it is denoted by Coz(f). Let X be a
topological space. D(X), DO(X) and DG(X) denote the set of dense, dense open
and dense G5 subspaces of X, respectively. Let X be a topological space. If for
every f € F(X) there exists a D € DG(X) such that f|D € C(D), then X is
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called a Gs-Blumberg space. In Section 2, we introduce Gs-Blumberg spaces and
we give examples. In Theorem 2.6 and Corollary 2.7 we give characterizations of
Gs-Blumberg spaces. In Section 3, we characterize some subspaces and superspaces
of a Gs-Blumberg space, which are Gs-Blumberg spaces. In Theorem 3.7 we show
that a preimage of a Gs-Blumberg space under irreducible mapping is also a Gg-
Blumberg space. Section 4 of our paper is devoted to a generalization of almost
P-spaces which are Gs-Blumberg spaces.
As usual, we let ¢ denote the cardinality of the continuum.

2 A generalized S-Z function

Let X and Y be a topological spaces. Let T'(X,Y") denote the set of all f in FI(X,Y)
such that there exists a D in D(X) and f|D is continuous. In this paper T(X,R)
is denoted by T'(X).

In 1922, Blumberg [1] proved that if X is a separable complete metric space
then for every real valued function f defined on X, there is a dense subset D of
X such that f|D € C(D). e, T(X) = F(X). A topological space X is called a
Blumberg space if T(X) = F(X). In 1960, Bradford and Goffman [2] showed that if
X is metric, then X is a Blumberg space if and only if X is a Baire space. In 1974,
White proved in [3] that if X is a Baire space having a o-disjoint pseudo-base, then
X is a Blumberg space. In 1976, Alas [4] improved White’s result by showing that,
if X is a Baire space having a o-disjoint pseudo-base and Y is a second countable
Hausdorff space, then F(X,Y) = T(X,Y). In 1984, Piotrowski and Szymanski [5]
proved that if X is a Baire space having a o-disjoint pseudo-base and Y is a second
countable space then F(X,Y) =T(X,Y). They also showed that T(X) = F(X) if
and only if T(X,Y) = F(X,Y) for every second countable space Y.

Definition 1. Let X be a topological space and let

’

T'(X) = {f € F(X)|3D € DO(X) such that f[D e C(D)}.

If T'(X) = F(X), then X is called a strongly Blumberg space, abbreviated as S.B.
space.

Strongly Blumberg spaces are introduced and studied in [6]. It was shown in [6]
that under V = L, a topological space X is a strongly Blumberg space if and only
if it is almost discrete.

Definition 2. Let X and Y be topological spaces and
TG(X,Y)={f € F(X,Y)|3D € DG(X) such that f|D € C(D,Y)},

where C(D,Y) denotes the collection of all continuous functions from D into Y.
TG(X,R) is denoted by TG(X). If TG(X) = F(X) then X is called a Gs -
Blumberg space, abbreviated as Gs-B. space.

The fact that the class of G5-B. spaces properly contained in the class of Blum-
berg spaces follows from the next example.
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Example 1. (CH) Sierpinski and Zigmund in [7] showed that there exists an f €
F(R) = T(R), called S-Z function, such that for every M € D(R) of cardinality
c, fIM ¢ C(M). Since R has no countable dense Gs-set [8], f has no continuous
restriction to any dense Gg-set. So the Blumberg space R is not a Gs-B. space.

In the following definition we give a generalization of a S — Z function to some
topological spaces:

Definition 3. Let X be a Blumberg space which is not a Gs-B. space and f €
F(X)\TG(X). Then f is called a generalized S-Z function.

We now show that the class of G5-B. spaces properly contains the class of
strongly Blumberg spaces.

Example 2. Let X =40,1 ,2, e 77117" I3 and define
x = {{0, 1, %_H,} : n € N}, as a topology on X. Since clx{0} = X, and

{0} is G5, X is a Gs-B. space, but X is not an almost discrete space.

Recall that a commutative ring R is called (von Neumann) regular if for each
r € R there exists an s € R such that r = r%s. Clearly F/(X) is a regular ring.

Proposition 1. If TG(X) is a subring of F(X), then TG(X) is a regular subring.

Proof. f € TG(X) implies that there exists a D € DG(X) such that f|D € C(D).
Let g(x) = ﬁ if # is in cozero-set of f, and g(z) = 0 if x € Z(f). It is easily
seen that Dy = Coz(f|D) U intpZ(f|D) is dense Gs in X and g|D; € C(Dy).
So g € TG(X), and f2g = f and ¢g>f = g. Thus TG(X) is a regular subring of
F(X). O

If X is Baire, then TG(X) is a subring of F(X), and so by the above proposition
TG(X) is its regular subring. In [9] some characterizations of a space X that TG(X)
is a subring of F'(X) is given.

The following theorem and corollary are proved in the same ways as Theorem 1
and Corollary 2 in [5], respectively.

Theorem 1. A space X is a Gs-B. space, if and only if for every countable cover
(Po)nen of X, there exists a D € DG (X) such that P, (D is a Gs in X for every
n € N.O

Corollary 1. Let X be a topological space. Then the following conditions are equiv-
alent.

1. For every real-valued function f on X there exists a D € DG (X) such that f|D
18 continuous.

2. LetY be a second countable space. Then for every function f on X into Y there
exists a D € DG (X) such that f|D is continuous.C]
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3 Subspaces and pre-images of Gs-B. spaces

Theorem 2. Let U be a Gs-set in a space X, U C A C U and let A be Baire.
Then U is a Gs-B. space if and only if A is so.

Proof. =:Let U be a Gs-B. space. Suppose g € F(A). Since U is a G4-B. space
and g|U € F(U), there exists a B € DG(U) such that g|B € C(B). Since U is a G5
in X, Bis a G5 and dense subset of A. Therefore A is a G§-B. space.

<: Suppose A is a G5-B. space and g € F(U). We can extend ¢ to a function
h € F(A), then by hypothesis there exists a B € DG(A) such that h|B € C(B).
Since U is a G set in X, and U is Baire, BNU € DG(U). So g|(BNU) € C(BNU).
Therefore U is a G5-B. space. O

Corollary 2. a.) Let W be a G5 dense subset of X. Let X be Baire. Then W is
a Gg-B. space if and only if X is a Gs-B. space.

b.) Every open subset of a Gs-B. space is a Gs-B. space.

c.) Every regular closed subset of a Gs-B. space is a Gs-B. space.

Proof. a.). It is an immediate consequence of the above theorem. b.) It is clear. For
proof c.), let A be a regular closed in a G5-B. space X. So by b.) A? is a G5-B.
space, and so by Theorem 2 A = A° is a G5-B. space. O

Corollary 3. Let X be a topological space, then the following statements are equiv-
alent.

a.) X is a Gs-B. space.

b.) Every dense Gs subset D of X is a Gs-B. space.

c.) There exists a dense Gg subset D of X which is a G5-B. space.

Proof. a.) = b.) Let X be a G;-B. space, and let D be a dense Gs in X. Then
X is Baire, and since every dense G5 in a Baire space is Baire, D is Baire. So by
Theorem 2, D is a Gs-B. space.

b) = ¢) It is obvious.

¢) = a) It follows from Corollary 2. O

Example 3. (CH) Let § = {{r}| r € Q} U T, where T is the natural topology on
the real line. Then (3 is a base for a topology on X = R and X is a G5-B. space.
G =R\Q is a closed G5 set in X. G is not a Gs-B. space. Otherwise by Corollary
3, the real line, with ordinary topology, is a Gs-B. space. But by Example 1 there
1s a real-valued function f defined on X, such that for every Gs and dense subset
D of the real line f|D ¢ C(D) and this is a contradiction.

Example 3 shows that the property of being Gs-B. space need not be inherited
by arbitrary subspaces. This example shows that a closed Gs in a Gs-B. space,
need not be a Gs-B. space.

Remark 1. If (X, 7X) is not a Gs-B. space, where 7X is the topology on X. Then
when X is retopologised with the discrete topology, X becomes a Gs-B. space. So
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the identity function from X with the discrete topology to (X,7X) is a continuous
mapping from a Gs-B. space to a space which is not a Gs-B. space. Thus the image
of a Gs-B. space under a continuous mapping need not be a Gs-B. space.

Recall that a continuous mapping f : X — Y of X onto Y is irreducible, if
f(F) £ Y for every proper closed subset F' in X. In the light of Theorem 1 we
show that a preimage of a G5-B. space under irreducible mapping is also a Gs-B.
space.

Theorem 3. Let Y be a Gs-B. space and let f : X — 'Y be an irreducible mapping.
Then X is a G5-B. space.

Proof. Let P = (P,)nen be an arbitrary countable cover of X. Then f(P) =
{f(P) | P € P} is a countable cover of Y. Since Y is a Gs-B. space, Theorem
1 implies that there exists a dense G subset D’ of Y such that for every P € P,
f(P) ﬂD/ is a Gy-set. For every y € D' we select one member in f(y), and let
D be the set of these selected members. Since f is an irreducible mapping and
D' is dense in Y we conclude that D is dense in X. If P € P, then PND =
PN D/), and since f is a continuous mapping, P () D is a Gs-set. Thus by
Theorem 1, X is a G§-B. space.

O

4 When almost GP-spaces are GG5-B. spaces

Recall that a completely regular space in which every non-empty Gs-set has non-
empty interior is called an almost P-space [10].
Almost P-spaces are generalized in [9] as follows:

Definition 4. Let X be a topological space. If every dense G5 subset of X has
nonempty interior, then X is called an almost GP-space.

Proposition 2. Let X be crowded. If X is an almost GP-space and X is a Gs-B.
space, then X is an irresolvable space.

Proof. Suppose to the contrary that D and D¢ = X \ D are dense dense in X.
Let f be the characteristic function of D¢. Then by hypothesis there exists a G
and dense subset W of X such that f|W € C(W). Since D and D¢ are dense,
flintxW ¢ C(intxW), and this is a contradiction. Thus X is an irresolvable
space. O

Theorem 4. The following conditions are equivalent in ZFC:
(1) there exists an irresolvable Blumberg space X .
(2) there exists a crowded almost GP-space which is a Gs-B. space.

Proof. (1) = (2). Let X be an irresolvable Blumberg space. By [[11], Fact 3.1]
X has a non-empty open hereditarily irresolvable subspace Y. So Y is an almost
GP-space and by [12] T'(Y) = T(Y). It is clear that ¥ will be a Blumberg space
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as well, so T(Y) = F(Y). Since T (Y) C TG(Y) C F(Y), we have TG(Y) = F(Y),
ie., Y is a G§-B. space. (2) = (1). Suppose that X is a crowded almost GP-space
which is a G5-B. space. Then by Proposition 2 X is irresolvable. Since every Gs-B.
space is Blumberg we are done. O

Theorem 5. Let X be an almost P-space. Then X is a Gs-B. space if and only if
X is an S.B. space.

Proof. If X is a G§-B. space and f € F(X,R), then there exists a dense and Gj
subset D of X such that f|D € C(D). Since X is a completely regular space, int x D
is dense in D [10]. Since D is dense in X, intxD is dense in X and flintxD €
C(intx D). So X is a S.B. space. The converse is obvious. O

An almost GP-space X is called a GID-space if every dense Ggs-set of X has
dense interior in X [9]. With slight changes in the proof of the above theorem, we
note that Theorem 5 is true for a GID-space.

Lemma 1. If V = L, then there is no crowded irresolvable G5-S.B. space (respec-
tively Blumberg space and strongly Blumberg space).

Proof. To the contrary, suppose that X is a crowded G4-B. space. Since every
Gs-B. space (respectively Blumberg space and strongly Blumberg space) is a Baire
space [3], we have a Baire irresolvable space under V=L, and by [13] this is a
contradiction. O

Let X be a crowded topological space, then it was shown in [12] that if T'(X) =
T (X), then X is an irresolvable space.

Proposition 3. Let X be a G§-B. space. If X is a crowded almost P-space, then
X is an open-hereditarily irresolvable space.

Proof. Let U be a nonempty open set, by Corollary 3 U is a Gs-B. space and
Theorem 5 imply that U is a S.B. space. So by [12] U is an irresolvable space.
Therefore X is an open-hereditarily irresolvable space. O

Corollary 4. Under V=L, every almost P-space X which is a G5-B. space is almost
discrete.

Proof. Let U be a nonempty subset of X. Then by Corollary 2 U is a G5-B. space,
so U is Baire. By [10], U is an almost P-space. Thus by [13] and Proposition 3 U
has an isolated point and so X is an almost discrete space. O

Remark 2. Not every almost P-subspace of a Gs-B. space need be a Gs-B. space.
For exzample, X = ON | the Stone C'ech compactification of natural numbers, is a
Gs-B. space since the set of all isolated points of BN is dense in fN. Y = GN\N
is a closed subset of BN, I(Y) =0 and Y is a compact almost P-space [1}]. By [12]
the closed subset Y = BN\N is not a S.B. space, and so by Theorem 5Y is not
a Gs-B. space. We note that by [3] Y is a Blumberg space, and so there exists a
generalized S-Z function in F(Y').
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5 Open problems

In the following we list a number of questions which we could not answer.

Problem 1. Is there a Hausdorff Gs-B. space which is not a strongly Blumberg
space?

By the first paragraph after proof of Theorem 5, we know that in the class of
GID-spaces every G§-B. space is a strongly Blumberg space. This gives a partial
answer to Problem 1. We note that if the answer of the Problem 1 is negative, then
under V = L, for every crowded Blumberg space X there exists a generalized S — Z
function in F(X).

Problem 2. Are the following conditions equivalent in ZFC?
(1) There exists a Baire irresolvable space.
(2) There exists a crowded almost GP-space which is a Gs-B. space.

Problem 3. Let X be crowded and let X be an almost GP-space. Are the following
conditions equivalent in ZFC?

(1) X is a Gs-B. space.

(2) X is a S.B. space.
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