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SOME COUNTEREXAMPLES RELATED TO
THE THEORY OF HQC MAPPINGS

Vladimir Božin and Miodrag Mateljević

Abstract

We give examples that show that several of the theorems in the theory of
HQC mappings cannot be strenghtened by weakening or omitting some of the
conditions. In particular, we study Kellogg type problems and characteriza-
tions of HQC condition.

1 Introduction

This note deals with several examples that clarify necessity of conditions in theorems
related to the problems of harmonic quasiconformal maps, or short HQC maps.
These maps have been studied extensively in recent years, cf [6],[9],[19],[10] [11],[12]
[13], [15], [16], [21], [23], [24], [25],[27], [31][30],[29], [7], [28].

In particular, our attention will be on the extensions of the classical Kellogg
theorem, cf [20], as we will show that this result is not possible to extend even
in the context of the conformal maps, where various relaxations of smoothness
of the boundary condition are examined. Also, we will examine various possible
relaxations of the known characterizations of the HQC condition.

Let U denote the unit disc {z : |z| < 1}, and T the unit circle, {z : |z| = 1} and
we will use notation z = reiθ and z = x + iy. Also, H will denote the upper half
plane {z : Rez > 0}. By ∂θh and ∂rh (or h′r and h′θ if it is convenient), h′x and h′y
we denote partial derivatives with respect θ and r, x and y respectively.

Every harmonic function h in U can be written in the form h = f + ḡ, where f
and g are holomorphic functions in U. We have

∂θh(z) = i(zf ′(z)− zg′(z)), h′r = eiθf ′ + eiθg′, h′θ + irh′r = 2izf ′ and therefore
rh′r is the harmonic conjugate of h′θ. Let

Pr(t) =
1− r2

2π(1− 2r cos(t) + r2)
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denote the Poisson kernel.
If ψ ∈ L1[0, 2π] and

h(z) =
1
2π

∫ 2π

0

Pr(θ − t)ψ(t) dt,

then the function h = P [ψ] so defined is called Poisson integral of ψ. It gives a
harmonic extension of given boundary values to the unit disc.

For f : U→ C, define

f∗(θ) = f∗(eiθ) = lim
r→1

f(reiθ)

when this limit exists. For f : T→ C, define f∗(θ) = f∗(eiθ).
The Hilbert transform H(ψ) is defined as

H(ψ)(ϕ) =
∫ π

0

ψ(ϕ + t)− ψ(ϕ− t)
tan t/2

dt,

where ψ is considered to be 2π periodic, or alternatively a function from L1(T).
Hilbert transform has the property that it maps radial limits of a harmonic

function on U to radial limits of its conjugate harmonic function a.e. on T.
Note that, if ψ is 2π-periodic, absolutely continuous on [0, 2π] (and therefore

ψ′ ∈ L1[0, 2π]), then

h′θ = P [ψ′].

Hence, since rh′r is the harmonic conjugate of h′θ, we find

rh′r = P [H(ψ′)] (1.1)
(h′r)

∗(eiθ) = H(ψ′)(θ) a.e. (1.2)

A homeomorphism f : D 7→ G, where D and G are subdomains of the complex
plane C, is said to be K-quasiconformal (K-qc), K ≥ 1, if f is absolutely continuous
on a.e. horizontal and a.e. vertical line and

|fz̄| ≤ k|fz| a.e. on D (1.3)

where K = 1+k
1−k i.e. k = K−1

K+1 .

2 Kellogg type problems

Kellogg theorem states that Riemann maps between domains with C1,α boundary
have to be bi-Lipschitz. This result has finally been generalized to the case of HQC
maps in [6], after series of partial results in this direction.

The question then arises can one make further generalizations, for instance, by
considering C1 domains instead. Even in the case of conformal maps this cannot
be done, as the following example shows.
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Example 2.1. Let w = A(z) = z ln 1
z , U+

r = {z : |z| < r, y > 0}.
For r small enough, A maps interval (0, r) onto interval (0, r ln 1

r ), interval (−r, 0)
onto arc γ1(x) = x ln 1

x = x ln 1
|x| + iπx, semicircle C+

r = {reit : 0 ≤ t ≤ π} onto a
curve close the semicircle of radius r ln 1

r . For r small enough A is univalent in U+
r .

We can check that there is a smooth domain D ⊂ U+
r st interval (−r0, r0), r0 > 0,

is a part of the boundary of D, A(D) is C1 domain and A is not bi-Lipschitz on D.
We can also consider

w =
z

ln 1
z

, w(0) = 0 .

Note ln 1
z = − ln z, w′(z) = −(ln z)−1 + (ln z)−2 and w′(z) → 0 if z → 0

throughout H.

We can make a more delicate example which has boundary that is even ”smoother”
than in the case just described. The boundary can be C2 everywhere except at one
point, but at that point, it will be twice differentiable. The map will however not be
Lipschitz. This shows that Kellogg type theorems cannot rely on pointwise property
of the boundary curve, but on properties of global character.

Example 2.2. Let g : R 7→ R be the function defined as g(x) = e−1/x2
for x < 0

and g(x) = 0 for x ≥ 0. Define D = {z : Imz > g(Rez)} and let f : D 7→ C be given
as

f(z) = z +
∞∑

n=3

2−n(z + 2−n)1−3−n

(here we take a branch of the argument that is between −π and π to define expo-
nentiation). Let D∗ = f(D).

Proposition 2.3. Mapping f defined above is not Lipschitz, yet it is biholomorphic
and the boundary of D∗ is C2 except at f(0), and at f(0) the boundary is also twice
differentiable.

Proof. The derivative f ′ is

f ′(z) = 1 +
∞∑

n=3

(1− 3−n)2−n(z + 2−n)−3−n

.

Our function f is analytic except at zero, where it has an essential singularity. We
can see that the map f is not Lipschitz by considering points zn = −2−n + ie−22n

.
Also, we conclude that except at f(0), boundary of D∗ is of class C2, in fact it will
be analytic.

Note that argument of the derivative is certainly between −π/4 and π/4, and
from this it follows that we will have a bijection. To see this, consider
f(z0)− f(z1) =

∫
s(z0,z1)

f ′(z)dz, where s(z0, z1) is the straight line segment joining
z0 and z1. Suppose that |Re(z0 − z1)| ≥ |Im(z0 − z1)|, then we will have from the
integration formula and condition −π/4 < arg(f ′) < π/4 that Ref(z0) 6= Ref(z1)
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is not zero. When |Re(z0 − z1)| < |Im(z0 − z1)| similarly we will have Imf(z0) 6=
Imf(z1), in any case, f(z0) 6= f(z1). Alternatively, this follows from the argument
principle.

The main point of the example is that the boundary will also be twice differen-
tiable at f(0), though clearly from the Kellogg theorem it cannot be C2.

Note that the series for f ′ converges for z = 0 and that this sum is real valued.
Of course, f ′ is not continuous on ∂D, as it is not bounded near 0. However,
arg(f ′) is continuous on the real line. Moreover, f ′ is absolutely integrable on ∂D,
and s(z), the path length from point f(0) to point f(z) on the boundary of D∗, is
commensurable with |z|. In fact arg(f ′(z)) will be o(z) when z is approaching 0.
Indeed, argument for each term in the series satisfies this: when |z| ≤ 2−n−1, the
real part of z +2−n is at least third of |z|, and imaginary part is clearly o(z2); when
|z| > 2−n−1 the argument of the term is O(3−n), which is clearly o(z).

Thus, we conclude that in the natural parameter, ∂D will also be twice differ-
entiable at zero, as required.

Note that we can take part of ∂D containing zero and make a smooth bounded
domain, which by Kellogg theorem can be mapped to the disc with the Riemann
map which is bi-Lipschitz, so that we get an example of the same sort but with disc
as the domain of definition.

Continuity of the argument of the derivative was a key point in the original
proof of the Kellogg theorem. However, in the case of HQC maps, there is no such
continuity. Derivatives do not have to extend continuously to the boundary, which
can happen even at a dense subset of the boundary.

Example 2.4. Consider h : H → H, a harmonic function given by the following
expression

h(z) = hφ(z) = Φ1(z) + icy + c1,

where c > 0, c1 ∈ R, Φ(z) =
∫ z

i
φ(ζ)dζ, and Φ1 = Re Φ.

Note that h′x(z) = Re φ(z) and h′y(z) = −Imφ(z) + ic.
Let φ(z) = 2 + e−i/z = 2 + e−y/|z|2(cos x

|z|2 − i sin x
|z|2 ) and h = hφ. Then

h′x(z) = Re φ(z) = 2 + e−y/|z|2 cos x
|z|2 .

Hence h′(x) = Re φ(x) = 2 + cos 1
x ; so h′ is not continuous at 0. In polar

coordinates, h′y(z) = −Imφ(z) + ic = e− sin θ/ρ sin(cos θ/ρ) + ic; hence h′y(z) →
sin(1/ρ) + ic when θ → 0 for fixed ρ > 0.

Let G ⊂ H be a smooth domain such that ∂G ∩ R = [−a, a], a > 0, φ be
conformal mapping of U onto G, φ(1) = 0, z = φ(ζ), and h̆ = h ◦ φ. One can check
that h̆r is not continuous at 1. However h̆ is bi-Lipschitz.

We can give a more delicate example. Let φk(z) = 2 + ei/(xk−z) and xk, k ∈ N
be a sequence of real numbers. Define

φ(z) = 2 +
∞∑

k=1

2−kφk(z) .
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For example if xk is a sequence of all rational numbers, i.e. enumerating Q, then
hy will have no continuous extension to Q, where h = hφ.

These examples can also be translated to the unit disc.
Note that in [6] a continuous function on the closure of the domain was found,

that is in some sense analogous for HQC maps to the argument of the derivative in
the case of conformal maps. It plays an essential role in the proof of the full version
of the generalization of the Kellogg theorem to HQC maps.

3 Characterization of HQC

David Kalaj, in [12], has stated the following characterization for HQC maps.

Theorem 3.1 ([12]). Let f : T → γ be an orientation preserving homeomorphism
of the unit circle onto the Jordan convex curve γ = ∂Ω ∈ C1,µ.

Then h = P [f ] is a quasiconformal mapping if and only if

0 < ess inf |f ′(ϕ)|, (3.1)

ess sup |f ′(ϕ)| < ∞ (3.2)

and
ess sup

ϕ
|H(f ′)(ϕ)| < ∞, (3.3)

where

H(f ′)(ϕ) =
∫ π

0

f ′(ϕ + t)− f ′(ϕ− t)
tan t/2

dt,

denotes the Hilbert transformations of f ′.

In the proof the assumption of absolute continuity was tacitly used. The follow-
ing example shows that we cannot get rid of this condition.

Example 3.2. Let c : [0, 1] 7→ [0, 1] denote the Cantor staircase function. Let ψ :
[0, 2π] 7→ [0, 2π] be defined as ψ(2πt) = tπ+c(t)π, f(t) = eiψ(t) and h = P [f ]. Then
f satisfies (3.1), (3.2) and (3.3), h maps U bijectively to U but is not quasiconformal.

Proof. By the fundamental theorem of Rado, Kneser and Choquet, h maps U bijec-
tively to U. Clearly, it is not going to be Lipschitz, and therefore this map cannot
be quasiconformal since all HQC maps from disc to disc are bi-Lipschitz.

The only point which is left to be clarified is that Hilbert transform of f ′(t)
will be bounded. Note that f ′(t) a.e. equals iπf(t), since derivative of c is a.e.
zero. Analysing the expression for the Hilbert transform, we see that essentially
it suffices to prove that

∫ 1

0
c(t)dt/t is finite. From this it will follow that Hilbert

transform of eπi(c(t)+t) is bounded. Indeed, we just need to examine the integral
on a δ neighbourhood of a point with small but fixed δ, and this is bounded if the
integral ∫ t0+δ

t0−δ

c(t)− c(t0) + t− t0
t− t0

dt
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is bounded.
The part coming from the Cantor function when point is on some interval where

function is constant is what we need to examine. Note that near the points 0 and
1 we need to extend the domain of c by setting c(t + n) = n + c(t), n ∈ Z. We look
at integrals to and from t0 separately. The pattern of I0 =

∫ 1

0
c(t)dt/t everywhere

repeats, rescaled on x and y axes by factors 3−n and 2−n. Rescaling the pattern on
x axis gives the same value of the integral. Rescaling it on y axis q times gives value
of integral q · I0, and hence pasting patterns that add together to a certain jump
on y axis gives integral that is no more than that for a single pattern of the same
jump on the y axis. We need to add contributions from intervals where function c
is constant that do not fit into any of the patterns. The size of the intervals has
to increase as we go away from t0, and if the value of difference c(t)− c(t0) is 2−n,
then t − t0 > 3−n. Contribution from this interval is at most

∫ δ

3−n 2−ndt/t which
is less than 2−nn · ln(3), and since we are adding contributions from n that will
be different (since interval sizes not fitting into a whole pattern increse as we go
away from t0), this will be bounded by O(

∑∞
n=1 2−nn · ln(3)), which is finite. So

we are left to prove that contribution from patterns is also finite, i.e. to prove that∫ 1

0
c(t)dt/t converges.
To estimate

∫ 1

0
c(t)dt/t we sum contribution of intervals of length 3−n, now con-

sidering the full pattern of the Cantor function. There will be 2n−1 such intervals.
The corresponding values of c will be of the form k2−(n−1) + 2−n, 0 ≤ k < 2n−1,
and for binary representation k =

∑
aj2j , aj ∈ {0, 1}, we have the corresponding

interval 3−n + T (k) < t < 2 · 3−n + T (k), where
T (k) =

∑
2aj3j−n+1. For k = 0 the contribution of the corresponding interval is

less than 2−n. For 1 < k < 2n−1 we get the contribution to the integral of corre-
sponding interval to be less than 3−n(k2−(n−1) + 2−n)/T . Now for 2j ≤ k < 2j+1,
this is less than 3−n2j+1−n/3j−n. There are 2j such values of k, and so the con-
tribution from all those intervals is less than 22j+1−n/3j = 21−n(4/3)j . Summing
over all j where j < n gives O(2−n(4/3)n) = O((2/3)n). Hence the corresponding
contribution to the integral on all intervals of size 3−n is O((2/3)n), which, summing
over all n, gives a finite bound.

4 The convexity condition and further results

In [27], we extend Theorem 3.1 and prove:

Theorem 4.1 (the characterization theorem). Suppose that C1, α domain D is
convex and denote by γ positively oriented boundary of D. Let h0 : T → γ be an
orientation preserving homeomorphism and h = P [h0].

The following conditions are then equivalent
a) h is K-qc mapping
b) h is bi-Lipschitz in the Euclidean metric
c) the boundary function h∗ is bi-Lipschitz in the Euclidean metric and Cauchy

transform C[h′∗] of its derivative is in L∞.
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d) the boundary function h∗ is absolutely continuous, ess inf |h′∗| > 0 and Cauchy
transform C[h′∗] of its derivative is in L∞.

e) the boundary function h∗ is bi-Lipschitz in the Euclidean metric and Hilbert
transform H[h′∗] of its derivative is in L∞.

f) the boundary function h∗ is absolutely continuous, ess sup|h′∗| < +∞, ess inf |h′∗| >
0 and Hilbert transform H[h′∗] of its derivative is in L∞.

Note that here, in our notation, (h0)∗ = h∗ and h0 = h∗.
Our last example in this note shows that in the mentioned characterization of

quasiconformality one cannot drop the convexity hypothesis.

Example 4.2 (three-cornered hat domain). Let h(z) = z + z2/2,
γ(t) = h(eit), zk = eπ/3+2kπ/3 and A = {z0, z1, z2}.
Suppose also that Γ is smooth Jordan closed curve, G = Int(Γ) such that G ⊂ U,

A ⊂ Ext(Γ) and Γ has a joint arc J0 with T.
Let φ be conformal mapping of U onto G, z = φ(ζ), and h̆ = h ◦ φ. Then
dh̆ = Pdζ + Qdζ and
H(h̆′∗) = ζP ∗ + ζQ∗ a.e. on T, where P = φ′ and Q = φφ′.
Since h∗(t) = h(eit) = eit − e−2it/2, we find
h′∗(t) = ie−2it(e3it − 1) and h′∗(t) = 0 iff t = tk = 2kπ/3.
It is easily to check that h̆ satisfies the all the hypothesis in the characterization

except for the convexity condition, but h̆ is not a qc on U because Jh̆ is zero on J0.
We can chose Γ to be C∞ curve, then h̆∗ is C∞; in particular H(h̆′∗) is in L∞.
The domain h(U) is known as a three-cornered hat domain.

Suppose that there is a bi-Lipschitz homeomorphism h from U onto a domain
G (in this setting we call G a bi-Lipschitz domain).
Then
1) partial derivatives of h are bounded and in particular 0 < s1 ≤ |h′∗| ≤ s2 a.e.
and
2) the boundary of G satisfies chord arc condition.
Also, if in addition h is harmonic then, by (1.1),
3) the Hilbert transform H(h′∗) ∈ L∞.

For example, C1, α domains are bi-Lipschitz.
One may ask whether there is a nice geometric characterization of bi-Lipschitz

domains and a version of the characterization theorem for such domains.
In [27], we have also outlined the proof of the following theorem.

Theorem 4.3. Suppose that
a1) D is C1, α domain and
a2) h is a harmonic orientation preserving map of the unit disc onto D and
homeomorphism of U onto D.
The following conditions are then equivalent
A1) h is K-qc mapping
A2) the boundary function h∗ is absolutely continuous, ess sup|h′∗| < +∞, Hh′∗ ∈
L∞ and ess inf|(Hh′∗, ih

′
∗)| > 0.
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If we only suppose the hypothesis a2), then A2) implies A1).
In an unpublished manuscript [14], cf Theorem 1.2 (stated below as Theorem A),

D. Kalaj has announced (as the main result) an extension of Rado-Choquet-Kneser
theorem and of a recent result of Alessandrini and Nesi [2] for the mappings with
Lipschitz boundary data and essentially positive Jacobian at the boundary, without
the convexity of the image domain assumption:

Theorem A. Suppose that
b1) γ is a C1,µ smooth Jordan curve and D the domain bounded by γ,
b2) h0 : T→ ∂D is an orientation preserving weak homeomorphic Lipschitz mapping
of the unit circle onto ∂D, h = P [h0] and
b3) essinf{Jh(eit) : t ∈ [0, 2π]} > 0 .
Then
B) the mapping h is a diffeomorphism of U onto D and h0 is bi-Lipschitz continuous.

A characterization of quasiconformal harmonic mappings between smooth Jor-
dan domains without hypothesis of the convexity of the image domains has also
been given in [14]:

Theorem B. Suppose that
c1) γ is a C2 smooth Jordan curve, D domain bounded by γ and
c2) h0 : T→ ∂D is an orientation preserving homeomorphism of the unit circle onto
the Jordan curve γ and h = P [h0].
The following conditions are equivalent:
C1) h is a qc mapping
C2) the boundary function h∗ is absolutely continuous, ess inf |h′∗| > 0, ess sup|h′∗| <
+∞, Hh′∗ ∈ L∞ and ess inf|λh∗ | > 0

Here for h = f + ḡ, a representation of a harmonic function h as sum of analitic
and antianalytic function, λh = |f ′| − |g′|.

Applications of Theorem 4.3 and Theorem A would lead to the following result:
Under hypotheses b1) and c2), A1) is equivalent to A2).
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