ON THE GENERALIZED RIESZ B-DIFFERENCE SEQUENCE SPACES

Metin Başarir

Abstract

In this paper, we define the new generalized Riesz B-difference sequence spaces $r_{\infty}^q(p,B)$, $r_c^q(p,B)$, $r_0^q(p,B)$ and $r^q(p,B)$ which consist of the sequences whose R^qB -transforms are in the linear spaces $l_{\infty}(p)$, c(p), $c_0(p)$ and l(p), respectively, introduced by I.J.Maddox[8],[9]. We give some topological properties and compute the $\alpha-$, $\beta-$ and $\gamma-$ duals of these spaces. Also we determine the neccesary and sufficient conditions on the matrix transformations from these spaces into l_{∞} and c.

1 Introduction

By w, we denote the space of all real valued sequences. Any vector subspace of w is called as a sequence space. We write l_{∞}, c, c_0 for the sequence spaces of all bounded, convergent and null sequences, respectively. Also by, bs, cs, l_1 and l_p we denote the spaces of all bounded, convergent, absolutely and p-absolutely convergent series, respectively; where 1 .

A linear topological space X over the real field R is said to be a paranormed space if there is a subadditive function $g: X \to R$ such that $g(\theta) = 0, g(x) = g(-x)$ and scalar multiplication is continuous, i.e., $|\alpha_n - \alpha| \to 0$ and $g(x_n - x) \to 0$ imply $g(\alpha_n x_n - \alpha x) \to 0$ for all α 's in R and all x's in X, where θ is the zero vector in the linear space X. Assume here and after that $p = (p_k)$ be a bounded sequence of strictly positive real numbers with $\sup p_k = H$ and $M = \max\{1, H\}$. Then the linear spaces $l_{\infty}(p), c(p), c_0(p)$ and l(p) were defined by Maddox [8],[9].

For simplicity notation, here and in what follows, the summation without limits runs from 0 to ∞ . We assume throughout $(p_k)^{-1} + (p'_k)^{-1} = 1$ provided 1 <

 $^{2010\} Mathematics\ Subject\ Classifications.\ 46A45,\ 46B45,46E30,46B20,40C05.$

Key words and Phrases. B-Riesz Sequence Space, Paranormed Sequence Space $\alpha-,\beta-$ duals. Received: Januar 9, 2010

Communicated by Dragan S. Djordjević

Thanks, The author would like to express his gratitude to the reviewer for his/her careful reading and valuable suggestions which is improved the presentation of the paper.

inf $p_k \leq H < \infty$ and denote the collection of all finite subsets of \mathbb{N} by \mathcal{F} , where $\mathbb{N} = \{0, 1, 2, ...\}$.

For the sequence spaces λ and μ , define the set $S(\lambda, \mu)$ by

$$S(\lambda, \mu) = \{ z = (z_k) \in w : xz = (x_k z_k) \in \mu \text{ for all } x \in \lambda \}$$

$$(1.1)$$

With the notation (1.1), the α -, β -, γ -duals of a sequence space λ , which are respectively denoted by λ^{α} , λ^{β} and λ^{γ} , are defined by

$$\lambda^{\alpha} = S(\lambda, l_1)$$
, $\lambda^{\beta} = S(\lambda, cs)$ and $\lambda^{\gamma} = S(\lambda, bs)$.

If a sequence space λ paranormed by h contains a sequence (b_n) with the property that for every $x \in \lambda$ there is a unique sequence of scalars (α_n) such that

$$\lim_{n \to \infty} h\left(x - \sum_{k=0}^{n} \alpha_k b_k\right) = 0$$

then (b_n) is called a Schauder basis (or briefly basis) for λ . The series $\sum \alpha_k b_k$ which has the sum x is then called the expansion of x with respect to (b_n) and written as $x = \sum \alpha_k b_k$.

Let λ and μ be two sequence spaces and $A=(a_{nk})$ be an infinite matrix of real numbers a_{nk} , where $n,k\in\mathbb{N}$. Then, we say that A defines a matrix mapping from λ into μ and we denote it by writing $A:\lambda\to\mu$, if for every sequence $x=(x_k)\in\lambda$ the sequence $Ax=\{(Ax)_n\}$, the A-transform of x, is in μ ; where

$$(Ax)_n = \sum_k a_{nk} x_k \quad (n \in \mathbb{N}).$$
 (1.2)

By $(\lambda : \mu)$, we denote the class of all matrices A such that $A : \lambda \to \mu$. Thus, $A \in (\lambda : \mu)$ if and only if the series on the right side of (1.2) converges for each $n \in \mathbb{N}$ and every $x \in \lambda$ and we have $Ax = \{(Ax)_n\}_{n \in \mathbb{N}} \in \mu$ for all $x \in \lambda$. A sequence x is said to be A-summable to α if Ax converges to α which is called as the A-limit of x

The matrix domain λ_A of an infinite matrix A in sequence space λ is defined by

$$\lambda_A = \{ x = (x_k) \in w : Ax \in \lambda \} \tag{1.3}$$

which is a sequence space. In the most cases, the new sequence space λ_A generated by the limitation matrix A from a sequence space λ is the expansion or the contraction of the original space λ .

Let (q_k) be a sequence of positive numbers and

$$Q_n = \sum_{k=0}^n q_k \ , \quad (n \in \mathbb{N}) \, .$$

Then the matrix $R^q = (r_{nk}^q)$ of the Riesz mean is given by

$$r_{nk}^{q} = \begin{cases} \frac{q_k}{Q_n} &, & (0 \le k \le n) \\ 0 &, & (k > n) \end{cases}$$

The Riesz sequence space introduced in [1] is;

$$r^{q}(p) = \left\{ x = (x_{k}) \in w : \sum_{k} \left| \frac{1}{Q_{k}} \sum_{j=0}^{k} q_{j} x_{j} \right|^{p_{k}} < \infty \right\}; \text{ with } (0 < p_{k} \le H < \infty)$$

which is sequence space of the R^q -transform of x are in l(p). Recently, Başarır and Öztürk [11] defined the Riesz difference sequence space $r^q(p, \Delta)$ which consist of the sequences whose Δ -transforms are in the linear space $r^q(p)$, where Δ denotes the matrix $\Delta = (\Delta_{nk})$ defined by

$$\Delta_{nk} = \begin{cases} (-1)^{n-k} &, (n-1 \le k \le n), \\ 0 &, (k < n-1) \text{ or } (k > n) \end{cases}.$$

Altay and Başar [3] introduced the generalized difference matrix $B = (b_{nk})$ by

$$b_{nk} = \begin{cases} r & , & (k=n) \\ s & , & (k=n-1) \\ 0 & , & (0 \le k < n-1) \text{ or } (k > n) \end{cases}$$

for all $k, n \in \mathbb{N}$, $r, s \in \mathbb{R} - \{0\}$. The matrix B can be reduced the difference matrix Δ in case r = 1, s = -1. The results related to the matrix domain of the matrix B are more general and more comprehensive than the corresponding consequences of matrix domain of Δ , and include them [11], [6].

Then main purpose of this paper is to introduce the Riesz B-difference sequence spaces $r_{\infty}^{q}\left(p,B\right), r_{c}^{q}\left(p,B\right), r_{0}^{q}\left(p,B\right)$ and $r^{q}\left(p,B\right)$ and to investigate some topological properties.

2 The Riesz B-Difference Sequence Spaces

Let define the sequence $y = \{y_k(q)\}$, which is used, as the (R^qB) -transform of a sequence $x = (x_k)$, i.e.,

$$y_k(q) = \frac{1}{Q_k} \left[\sum_{j=0}^{k-1} (q_j \cdot r + q_{j+1} \cdot s) x_j + q_k \cdot r \cdot x_k \right] \quad (k \in \mathbb{N}).$$
 (2.1)

We define the Riesz B-difference sequence spaces $r_{\infty}^{q}\left(p,B\right), r_{c}^{q}\left(p,B\right), r_{0}^{q}\left(p,B\right)$ and $r^{q}\left(p,B\right)$ by

$$r_{\infty}^{q}(p, B) = \{x = (x_{j}) \in w : y_{k}(q) \in l_{\infty}(p)\},$$

$$r_{c}^{q}(p, B) = \{x = (x_{j}) \in w : y_{k}(q) \in c(p)\},$$

$$r_{0}^{q}(p, B) = \{x = (x_{j}) \in w : y_{k}(q) \in c_{0}(p)\}$$

and

$$r^{q}(p, B) = \{x = (x_{i}) \in w : y_{k}(q) \in l(p)\}.$$

Where the linear spaces $l_{\infty}(p), c(p), c_0(p)$ and l(p) were defined as follows;

$$l_{\infty}(p) = \left\{ x = (x_k) \in w : \sup_{k \in \mathbb{N}} |x_k|^{p_k} < \infty \right\},$$

$$c(p) = \left\{ x = (x_k) \in w : \lim_{k \to \infty} |x_k - l|^{p_k} = 0 \text{ for some } l \in \mathbb{R} \right\},$$

$$c_0(p) = \left\{ x = (x_k) \in w : \lim_{k \to \infty} |x_k|^{p_k} = 0 \right\}$$

which are the complete spaces paranormed by

$$g_1(x) = \sup_{k \in \mathbb{N}} |x_k|^{\frac{p_k}{M}}$$

and

$$l(p) = \left\{ x = (x_k) \in w : \sum_k |x_k|^{p_k} < \infty \right\},$$

which is the complete spaces paranormed by

$$g_2(x) = \left(\sum_k |x_k|^{p_k}\right)^{\frac{1}{M}}.$$

If we take r=1 and s=-1 in the matrix B as in the Riesz B-difference sequence spaces $r_{\infty}^{q}\left(p,B\right),r_{c}^{q}\left(p,B\right),\,r_{0}^{q}\left(p,B\right)$ and $r^{q}\left(p,B\right)$ then these spaces reduce the sequence spaces $r_{\infty}^{q}\left(p,\Delta\right),\,r_{c}^{q}\left(p,\Delta\right)$, $r_{0}^{q}\left(p,\Delta\right)$ and $r^{q}\left(p,\Delta\right)$.

quence spaces $r_{\infty}^{q}\left(p,\Delta\right),\,r_{c}^{q}\left(p,\Delta\right)$, $r_{0}^{q}\left(p,\Delta\right)$ and $r^{q}\left(p,\Delta\right)$.

If we take $p_{k}=p$ for all k then we denote $r_{\infty}^{q}\left(p,B\right)=r_{\infty}^{q}\left(B\right),\,r_{c}^{q}\left(p,B\right)=r_{c}^{q}\left(B\right)$, and $r^{q}\left(p,B\right)=r_{\infty}^{q}\left(B\right)$.

We may begin with the following theorem .

Theorem 1. (a) $r_0^q(p, B)$ is a complete linear metric space paranormed by g_B , defined by

$$g_B(x) = \sup_{k \in \mathbb{N}} \left| \frac{1}{Q_k} \left[\sum_{j=0}^{k-1} (q_j \cdot r + q_{j+1} \cdot s) x_j + q_k \cdot r \cdot x_k \right] \right|^{\frac{p_k}{M}}$$
 (2.2)

g is paranorm for the spaces $r_{\infty}^{q}(p,B)$ and $r_{c}^{q}(p,B)$ only in the trivial case with $\inf p_{k} > 0$ when $r_{\infty}^{q}(p,B) = r_{\infty}^{q}(B)$ and $r_{c}^{q}(p,B) = r_{c}^{q}(B)$.

(b) $r^{q}(p, B)$ is a complete linear metric space paranormed by

$$g_B^*(x) = \left(\sum_k \left| \frac{1}{Q_k} \left[\sum_{j=0}^{k-1} (q_j \cdot r + q_{j+1} \cdot s) x_j + q_k \cdot r \cdot x_k \right] \right|^{p_k} \right)^{\frac{1}{M}}$$
(2.3)

with $0 < p_k \le \sup p_k = H < \infty$ and $M = \max\{1, H\}$.

Proof. We only prove the theorem for the space $r_0^q(p, B)$. The proof of other spaces can be done similarly. The linearity of $r_0^q(p, B)$ with respect to the co-ordinatewise addition and scalar multiplication follows from the inequalities which are satisfied for $u, v \in r_0^q(p, B)$ [10].

$$\sup_{k \in \mathbb{N}} \left| \frac{1}{Q_k} \left[\sum_{j=0}^{k-1} (q_j \cdot r + q_{j+1} \cdot s) (u_j + v_j) + q_k \cdot r \cdot (u_k + v_k) \right] \right|^{\frac{p_k}{M}}$$
 (2.4)

$$\leq \sup_{k \in \mathbb{N}} \left| \frac{1}{Q_k} \left[\sum_{j=0}^{k-1} (q_j \cdot r + q_{j+1} \cdot s) u_j + q_k \cdot r \cdot u_k \right] \right|^{\frac{p_k}{M}}$$
 (2.1)

$$+\sup_{k\in\mathbb{N}} \left| \frac{1}{Q_k} \left[\sum_{j=0}^{k-1} (q_j.r + q_{j+1}.s) v_j + q_k.r.v_k \right] \right|^{\frac{p_k}{M}}$$
 (2.2)

and for any $\alpha \in \mathbb{R}$ [8]

$$\left|\alpha_k\right|^{p_k} \le \max\left\{1, \left|\alpha\right|^M\right\}. \tag{2.5}$$

It is clear that $g_B(\theta) = 0$ and $g_B(-x) = g_B(x)$ for all $u \in r_0^q(p, B)$. Again the inequalities (2.4) and (2.5) yield the subadditivity of g_B and

$$g_B(\alpha u) \le \max\{1, |\alpha|\} g_B(u). \tag{2.3}$$

Let $\{x^n\}$ be any sequence of the elements of the space $r_0^q(p,B)$ such that

$$g_B\left(x^n - x\right) \to 0\tag{2.4}$$

and (λ_n) also be any sequence of scalars such that $\lambda_n \to \lambda$. Then, since the inequality

$$g_B(x^n) \le g_B(x) + g_B(x^n - x)$$
 (2.5)

holds by subadditivity of g_B , $\{g_B(x^n)\}$ is bounded, and thus we have

$$g_{B}(\lambda_{n}x^{n} - \lambda x) = \sup_{k \in \mathbb{N}} \left| \frac{1}{Q_{k}} \left[\sum_{j=0}^{k-1} (q_{j}.r + q_{j+1}.s) \left(\lambda_{n}x_{j}^{n} - \lambda x_{j} \right) + q_{k}.r \left(\lambda_{n}x_{k}^{n} - \lambda x_{k} \right) \right] \right|^{\frac{p_{k}}{M}}$$

$$(2.6)$$

$$= |\lambda_n - \lambda|^{\frac{1}{M}} \sup_{k \in \mathbb{N}} \left| \frac{1}{Q_k} \left[\sum_{j=0}^{k-1} (q_j \cdot r + q_{j+1} \cdot s) x_j^n + q_k \cdot r \cdot x_k^n \right] \right|^{\frac{p_k}{M}}$$
 (2.7)

$$+ |\lambda|^{\frac{1}{M}} \sup_{k \in \mathbb{N}} \left| \frac{1}{Q_k} \left[\sum_{j=0}^{k-1} (q_j \cdot r + q_{j+1} \cdot s) \left(x_j^n - x_j \right) + q_k \cdot r \left(x_k^n - x_k \right) \right] \right|^{\frac{p_k}{M}}$$
 (2.8)

$$\leq |\lambda_n - \lambda|^{\frac{1}{M}} g_B(x^n) + |\lambda|^{\frac{1}{M}} g_B(x^n - x) \tag{2.9}$$

which tends to zero as $n \to \infty$. Hence the continuity of the scalar multiplication has shown. Finally; it is clear to say that g_B is a paranorm on the space $r_0^q(p,B)$. Moreover; we will prove the completeness of the space $r_0^q(p, B)$. Let $\{x^i\}$ be a Cauchy sequence in the space $r_0^q\left(p,B\right),$ where $x^i=\left\{x_k^{(i)}\right\}$ = $\left\{x_0^i,x_1^i,x_2^i,\ldots\right\}$ \in $r_0^q(p,B)$. Then, for a given $\varepsilon > 0$ there exists a positive integer $n_0(\varepsilon)$ such that

$$g_B\left(x^i - x^j\right) < \varepsilon \tag{2.6}$$

for all $i, j \geq n_0(\varepsilon)$. If we use the definition of g_B we obtain for each fixed $k \in \mathbb{N}$

$$\left| \left(R^q B x^i \right)_k - \left(R^q B x^j \right)_k \right| \le \sup_{k \in \mathbb{N}} \left| \left(R^q B x^i \right)_k - \left(R^q B x^j \right)_k \right|^{\frac{p_k}{M}} < \varepsilon \tag{2.7}$$

for $i, j \geq n_0(\varepsilon)$ which leads us to the fact that

$$\{(R^q B x^0)_k, (R^q B x^1)_k, (R^q B x^2)_k, ...\}$$
 (2.10)

is a Cauchy sequence of real numbers for every fixed $k \in \mathbb{N}$. Since \mathbb{R} is complete, it converges, so we write $\left(R^qBx^i\right)_k \to (R^qBx)_k$ as $i\to\infty$. Hence by using these infinitely many limits $\left(R^qBx\right)_0$, $\left(R^qBx\right)_1$, $\left(R^qBx\right)_2$, ..., we define the sequence $\left\{\left(R^qBx\right)_0,\left(R^qBx\right)_1,\left(R^qBx\right)_2,\ldots\right\}$. From (2.7) with $j\to\infty$ we have

$$\left| \left(R^q B x^i \right)_k - \left(R^q B x \right)_k \right| \le \varepsilon \tag{2.8}$$

 $i \geq n_0(\varepsilon)$ for every fixed $k \in \mathbb{N}$. Since $x^i = \left\{x_k^{(i)}\right\} \in r_0^q(p, B)$,

$$\left| \left(R^q B x^i \right)_k \right|^{\frac{p_k}{M}} < \varepsilon \tag{2.11}$$

for all $k \in \mathbb{N}$. Therefore, by (2.8) we obtain that

$$\left|\left(R^qBx\right)_k\right|^{\frac{p_k}{M}} \leq \left|\left(R^qBx\right)_k - \left(R^qBx^i\right)_k\right|^{\frac{p_k}{M}} + \left|\left(R^qBx^i\right)_k\right|^{\frac{p_k}{M}} < \varepsilon \tag{2.9}$$

for all $i \geq n_0(\varepsilon)$. This shows that the sequence $R^q B x$ belongs to the space $c_0(p)$. Since $\{x^i\}$ was an arbitrary Cauchy sequence, the space $r_0^q(p,B)$ is complete. \square

If we take r=1, s=-1 in the theorem 1 then we have the following result.

Corollary 1. (a) $r_0^q(p,\Delta)$ is a complete linear metric space paranormed by g_{Δ} , defined by $g_{\Delta}(x) = \sup_{k \in \mathbb{N}} \left| \frac{1}{Q_k} \left[\sum_{j=0}^{k-1} (q_j - q_{j+1}) x_j + q_k . x_k \right] \right|^{\frac{p_k}{M}}$

 g_{Δ} is paranorm for the spaces $r_{\infty}^{q}(p,\Delta)$ and $r_{c}^{q}(p,\Delta)$ only in the trivial case with inf $p_k > 0$ when $r_{\infty}^q(p, \Delta) = r_{\infty}^q(\Delta)$ and $r_c^q(p, \Delta) = r_c^q(\Delta)$.

(b) [11] $r^q(p, \Delta)$ is a complete linear metric space paranormed by

$$g_{\Delta}^{\star}(x) = \left(\sum_{k} \left| \frac{1}{Q_{k}} \left[\sum_{j=0}^{k-1} \left(q_{j} - q_{j+1} \right) x_{j} + q_{k} . x_{k} \right] \right|^{p_{k}} \right)^{\frac{1}{M}} \text{ with } 0 < p_{k} \leq \sup p_{k} = H < \infty \text{ and } M = \max \left\{ 1, H \right\} .$$

Theorem 2. Let $rq_j + sq_{j+1} \neq 0$ for all j. Then the Riesz B-difference sequence spaces $r_{\infty}^q(p,B)$, $r_c^q(p,B)$, $r_0^q(p,B)$ and $r^q(p,B)$ are linearly isomorphic to the space $l_{\infty}(p)$, c(p), c(p) and l(p), respectively; where $0 < p_k \leq H < \infty$.

Proof. We establish this for the the space $r_{\infty}^{q}(p,B)$. For proof of the theorem, we should show the existence of a linear bijection between the space $r_{\infty}^{q}(p,B)$ and $l_{\infty}(p)$ for $0 < p_{k} \le H < \infty$. With the notation of

$$y_k = \frac{1}{Q_k} \left[\sum_{j=0}^{k-1} (q_j \cdot r + q_{j+1} \cdot s) x_j + q_k \cdot r \cdot x_k \right]$$

define the transformation T from $r_{\infty}^{q}(p, B)$ to $l_{\infty}(p)$ by $x \mapsto y = Tx$. T is a linear transformation, moreover; it is obvious that $x = \theta$ whenever $Tx = \theta$ and hence T is injective.

Let $y = (y_k) \in l_{\infty}(p)$ and define the sequence $x = (x_k)$ by

$$x_k = \sum_{n=0}^{k-1} (-1)^{k-n} \left(\frac{s^{k-n-1}}{r^{k-n}q_{n+1}} + \frac{s^{k-n}}{r^{k-n+1}q_n} \right) Q_n y_n + \frac{Q_k y_k}{r \cdot q_k} \quad \text{for} \quad k \in \mathbb{N}.$$

Then

$$g_{B}(x) = \sup_{k \in \mathbb{N}} \left| \frac{1}{Q_{k}} \left[\sum_{j=0}^{k-1} (q_{j}.r + q_{j+1}.s) x_{j} + q_{k}.r.x_{k} \right] \right|^{\frac{p_{k}}{M}}$$
$$= \sup_{k \in \mathbb{N}} \left| \sum_{j=0}^{k} \delta_{kj} y_{j} \right|^{\frac{p_{k}}{M}} = \sup_{k \in \mathbb{N}} |y_{k}|^{\frac{p_{k}}{M}} = g_{1}(y) < \infty$$

where

$$\delta_{kj} = \left\{ \begin{array}{l} 1 & , & k = j \\ 0 & , & k \neq j \end{array} \right. .$$

Thus, we have that $x \in r_{\infty}^{q}(p, B)$. Consequently; T is surjective and is paranorm preserving. Hence, T is linear bijection and this explains that the spaces $r_{\infty}^{q}(p, B)$ and $l_{\infty}(p)$ are linearly isomorphic, as was desired.

Corollary 2. Let $q_j - q_{j+1} \neq 0$ for all j. Then the Δ -Riesz sequence spaces $r_{\infty}^q(p,\Delta)$, $r_c^q(p,\Delta)$, $r_0^q(p,\Delta)$ and $r^q(p,\Delta)$ are linearly isomorphic to the spaces $l_{\infty}(p)$, c(p), c(p) and l(p), respectively; where $0 < p_k \leq H < \infty$.

And now we shall quote some lemmas which are needed in proving our theorems.

Lemma 1. [5] $A \in (l_{\infty}(p):l_1)$ if and only if

$$\sup_{K \in \mathcal{F}} \sum_{n} \left| \sum_{k \in K} a_{nk} K^{\frac{1}{p_k}} \right| < \infty \text{ for all integers } K > 1.$$
 (2.10)

Lemma 2. [7] Let $p_k > 0$ for every $k \in \mathbb{N}$. Then $A \in (l_{\infty}(p) : l_{\infty})$ if and only if

$$\sup_{n \in \mathbb{N}} \sum_{k} |a_{nk}| K^{\frac{1}{p_k}} < \infty \text{ for all integers } K > 1.$$
 (2.11)

Lemma 3. [7] Let $p_k > 0$ for every $k \in \mathbb{N}$. Then $A \in (l_\infty(p) : c)$ if and only if

$$\sum_{k} |a_{nk}| K^{\frac{1}{p_k}} \quad convergence \ uniformly \ in \ n \ for \ all \ integers \ K > 1, \qquad (2.12)$$

$$\lim_{n \to \infty} a_{nk} = \alpha_k \quad \text{for all } k \in \mathbb{N}. \tag{2.13}$$

Lemma 4. [5] (i) Let $1 < p_k \le H < \infty$ for every $k \in \mathbb{N}$. Then $A \in (l(p) : l_1)$ if and only if there exists an integer K > 1 such that

$$\sup_{K \in \mathcal{F}} \sum_{k} \left| \sum_{n \in K} a_{nk} K^{-1} \right|^{p_k'} < \infty.$$

(ii) Let $0 < p_k \le 1$ for every $k \in \mathbb{N}$. Then $A \in (l(p) : l_1)$ if and only if

$$\sup_{K\in\mathcal{F}}\sup_{k\in\mathbb{N}}\left|\sum_{n\in K}a_{nk}\right|^{p_k}<\infty.$$

Lemma 5. [7] (i) Let $1 < p_k \le H < \infty$ for every $k \in \mathbb{N}$. Then $A \in (l(p) : l_\infty)$ if and only if there exists an integer K > 1 such that

$$\sup_{n \in \mathbb{N}} \sum_{k} \left| a_{nk}^{-1} K^{-1} \right|^{p_k'} < \infty. \tag{2.14}$$

(ii) Let $0 < p_k \le 1$ for every $k \in \mathbb{N}$. Then $A \in (l(p) : l_{\infty})$ if and only if

$$\sup_{n,k\in N} |a_{nk}|^{p_k} < \infty. \tag{2.15}$$

Lemma 6. [7] Let $0 < p_k \le H < \infty$ for every $k \in \mathbb{N}$. Then $A \in (l(p):c)$ if and only if (2.6) and (2.7) hold, and

$$\lim_{n \to \infty} a_{nk} = \beta_k \quad for \quad k \in \mathbb{N}$$
 (2.16)

also holds.

Theorem 3. (a) Define the sets $R_1(p)$, $R_2(p)$, $R_3(p)$, $R_4(p)$, $R_5(p)$ and $R_6(p)$ as follows:

$$R_{1}\left(p\right) = \bigcap_{K>1} \left\{ a = \left(a_{k}\right) \in w : \sup_{N \in \mathcal{F}} \sum_{n} \left| \sum_{k \in N} \left[\nabla\left(k, n\right) Q_{k} a_{n} + \frac{Q_{n} a_{n}}{r.q_{n}} \right] K^{\frac{1}{p_{k}}} \right| < \infty \right\},$$

$$\begin{split} R_2\left(p\right) &= \bigcap\limits_{K>1} \left\{ a = (a_k) \in w : \sum\limits_k \left| \left(\frac{a_k}{r.q_k} + \nabla\left(k,n\right) \sum\limits_{i=k+1}^n a_i\right) Q_k \right| K^{\frac{1}{p_k}} < \infty \right. \\ & \quad and \left. \left(\frac{a_k Q_k}{r.q_k} K^{\frac{1}{p_k}}\right) \in c_0 \right\}, \\ R_3\left(p\right) &= \bigcap\limits_{K>1} \left\{ a = (a_k) \in w : \sum\limits_k \left| \left(\frac{a_k}{r.q_k} + \nabla\left(k,n\right) \sum\limits_{i=k+1}^n a_i\right) Q_k \right| K^{\frac{1}{p_k}} < \infty \right. \\ & \quad and \left. \left\{ \left(\frac{a_k}{r.q_k} + \nabla\left(k,n\right) \sum\limits_{i=k+1}^n a_i\right) Q_n \right\} \in l_\infty \right\}, \\ R_4\left(p\right) &= \bigcup\limits_{K>1} \left\{ a = (a_k) \in w : \sup\limits_{N \in \mathcal{F}} \sum\limits_n \left| \sum\limits_{k \in N} \left[\nabla\left(k,n\right) Q_k a_n + \frac{Q_n a_n}{r.q_n} \right] K^{\frac{-1}{p_k}} \right| < \infty \right\}, \\ R_5\left(p\right) &= \left\{ a = (a_k) \in w : \sum\limits_n \left| \sum\limits_{k \in N} \left[\nabla\left(k,n\right) Q_k a_n + \frac{Q_n a_n}{r.q_n} \right] \right| < \infty \right\} \end{split}$$

and

$$R_{6}\left(p\right)=\underset{K>1}{\cup}\left\{a=\left(a_{k}\right)\in w:\sum_{k}\left|\left(\frac{a_{k}}{r.q_{k}}+\nabla\left(k,n\right)\sum_{i=k+1}^{n}a_{i}\right)Q_{k}\right|K^{\frac{-1}{p_{k}}}<\infty\right\},$$

where

$$\nabla \left(k,n \right) = \left(-1 \right)^{n-k} \left(\frac{s^{n-k-1}}{r^{n-k}q_{k+1}} + \frac{s^{n-k}}{r^{n-k+1}q_k} \right).$$

Then

$$\{r_{\infty}^{q}(p,B)\}^{\alpha} = R_{1}(p) \qquad \{r_{\infty}^{q}(p,B)\}^{\beta} = R_{2}(p) \qquad \{r_{\infty}^{q}(p,B)\}^{\gamma} = R_{3}(p),$$

$$\{r_{c}^{q}(p,B)\}^{\alpha} = R_{4}(p) \cap R_{5}(p) \qquad \{r_{c}^{q}(p,B)\}^{\beta} = R_{6}(p) \cap cs \qquad \{r_{c}^{q}(p,B)\}^{\gamma} = R_{6}(p) \cap bs,$$

$$\{r_{0}^{q}(p,B)\}^{\alpha} = R_{4}(p) \qquad \{r_{0}^{q}(p,B)\}^{\beta} = \{r_{0}^{q}(p,B)\}^{\gamma} = R_{6}(p).$$

(b) (i) Let $1 < p_k \le H < \infty$ for every $k \in \mathbb{N}$. Define the sets R_7 (p) , R_8 (p) as follows:

$$R_{7}(p) = \bigcup_{K>1} \left\{ a = (a_{k}) \in w : \sup_{N \in \mathcal{F}} \sum_{k} \left| \sum_{n \in N} \left[\nabla (k, n) Q_{k} a_{n} + \frac{Q_{n} a_{n}}{r \cdot q_{n}} \right] K^{-1} \right|^{p_{k}'} < \infty \right\}.$$

$$R_{8}(p) = \bigcup_{K>1} \left\{ a = (a_{k}) \in w : \sum_{k} \left| \left[\left(\frac{a_{k}}{r \cdot q_{k}} + \nabla (k, n) \sum_{i=k+1}^{n} a_{i} \right) Q_{k} \right] K^{-1} \right|^{p_{k}'} < \infty \right\}.$$

$$Then; \left[r^{q}(p, B) \right]^{\alpha} = R_{7}(p), \left[r^{q}(p, B) \right]^{\beta} = R_{8}(p) \cap cs, \left[r^{q}(p, B) \right]^{\gamma} = R_{8}(p).$$

(ii) Let $0 < p_k \le 1$ for every $k \in \mathbb{N}$. Define the sets $R_9(p)$, $R_{10}(p)$ by

$$R_{9}\left(p\right) = \left\{a = \left(a_{k}\right) \in w : \sup_{N \in \mathcal{F}} \sup_{k \in \mathbb{N}} \left| \sum_{n \in N} \left[\nabla\left(k, n\right) Q_{k} a_{n} + \frac{Q_{n} a_{n}}{r.q_{n}}\right] K^{-1} \right|^{p_{k}} < \infty \right\}.$$

$$R_{10}\left(p\right) = \left\{a = \left(a_{k}\right) \in w : \sup_{k \in N} \left| \left[\left(\frac{a_{k}}{r \cdot q_{k}} + \nabla\left(k, n\right) \sum_{i=k+1}^{n} a_{i}\right) Q_{k} \right] \right|^{p_{k}} < \infty \right\}.$$

Then;
$$[r^q(p,B)]^{\alpha} = R_8(p)$$
, $[r^q(p,B)]^{\beta} = R_{10}(p) \cap cs$

$$, [r^{q}(p,B)]^{\gamma} = R_{10}(p).$$

Proof. We give the proof for the space $r^q_{\infty}(p, B)$. Let us take any $a = (a_n) \in w$. We easily derive with the notation

$$y_k = \frac{1}{Q_k} \left[\sum_{j=0}^{k-1} (q_j \cdot r + q_{j+1} \cdot s) x_j + q_k \cdot r \cdot x_k \right]$$

that

$$a_n x_n = \sum_{k=0}^{n-1} \nabla(k, n) a_n Q_k y_k + \frac{a_n Q_n y_n}{r \cdot q_n} = \sum_{k=0}^n u_{nk} y_k = (Uy)_n;$$
 (2.17)

 $(n \in \mathbb{N})$, where $U = (u_{nk})$ is defined by

$$u_{nk} = \begin{cases} \nabla(k, n) a_n Q_k & , & (0 \le k \le n - 1) \\ \frac{a_n Q_n}{r \cdot q_n} & , & (k = n) \\ 0 & , & (k > n) \end{cases}$$

for all $k, n \in \mathbb{N}$. Thus we deduce from (2.17) that $ax = (a_n x_n) \in l_1$ whenever $x = (x_k) \in r^q_{\infty}(p, B)$ if and only if $Uy \in l_1$ whenever $y = (y_k) \in l_{\infty}(p)$. From Lemma1, we obtain the desired result that

$$\left[r_{\infty}^{q}\left(p,B\right)\right]^{\alpha}=R_{1}\left(p\right).$$

Consider the equation

$$\sum_{k=0}^{n} a_k x_k = \sum_{k=0}^{n-1} \left(\frac{a_k}{r \cdot q_k} + \nabla (k, n) \sum_{i=k+1}^{n} a_i \right) Q_k y_k + \frac{a_k Q_k y_k}{r \cdot q_k} = (Vy)_n, (n \in \mathbb{N});$$
(2.18)

where $V = (v_{nk})$ defined by

$$v_{nk} = \begin{cases} \left(\frac{a_k}{r \cdot q_k} + \nabla(k, n) \sum_{i=k+1}^{n} a_i\right) Q_k &, & (0 \le k \le n-1) \\ \frac{a_k Q_k}{r \cdot q_k} &, & (k = n) \\ 0 &, & (k > n) \end{cases}$$

for all $k, n \in \mathbb{N}$. Thus we deduce by with (2.18) that $ax = (a_k x_k) \in cs$ whenever $x=(x_k)\in r^q_\infty(p,B)$ if and only if $Vy\in c$ whenever $y=(y_k)\in l_\infty(p)$. Therefore we derive from Lemma3 that

$$\sum_{k} \left| \left(\frac{a_k}{r \cdot q_k} + \nabla \left(k, n \right) \sum_{i=k+1}^{n} a_i \right) Q_k \right| K^{\frac{1}{p_k}} < \infty$$

and

$$\lim_{k \to \infty} \frac{a_k Q_k}{r.a_k} K^{\frac{1}{p_k}} = 0$$

which shows that $\left[r_{\infty}^{q}\left(p,B\right)\right]^{\beta}=R_{2}\left(p\right)$.

As this, we deduce by (2.18) that $ax = (a_k x_k) \in bs$ whenever $x = (x_k) \in bs$ $r_{\infty}^{q}(p,B)$ if and only if $Vy \in l_{\infty}$ whenever $y=(y_{k}) \in l_{\infty}(p)$. Therefore we obtain by Lemma that $\left[r_{\infty}^{q}\left(p,B\right)\right]^{\gamma}=R_{3}\left(p\right)$ and this completes proof.

Corollary 3. Define the sets $T_1(p)$, $T_2(p)$, $T_3(p)$, $T_4(p)$, $T_5(p)$ and $T_6(p)$ as fol-

$$\begin{split} T_1\left(p\right) &= \bigcap\limits_{K>1} \left\{ a = (a_k) \in w : \sup\limits_{N \in \mathcal{F}} \sum\limits_{n} \left| \sum\limits_{k \in N} \left[\Lambda\left(k,n\right) Q_k a_n + \frac{Q_n a_n}{q_n} \right] K^{\frac{1}{p_k}} \right| < \infty \right\}, \\ T_2\left(p\right) &= \bigcap\limits_{K>1} \left\{ a = (a_k) \in w : \sum\limits_{k} \left| \left(\frac{a_k}{q_k} + \Lambda\left(k,n\right) \sum\limits_{i=k+1}^n a_i \right) Q_k \right| K^{\frac{1}{p_k}} < \infty \right. \\ & \quad and \left. \left(\frac{a_k Q_k}{q_k} K^{\frac{1}{p_k}} \right) \in c_0 \right\}, \\ T_3\left(p\right) &= \bigcap\limits_{K>1} \left\{ a = (a_k) \in w : \sum\limits_{k} \left| \left(\frac{a_k}{q_k} + \Lambda\left(k,n\right) \sum\limits_{i=k+1}^n a_i \right) Q_k \right| K^{\frac{1}{p_k}} < \infty \right. \\ & \quad and \left. \left\{ \left(\frac{a_k}{q_k} + \Lambda\left(k,n\right) \sum\limits_{i=k+1}^n a_i \right) Q_n \right\} \in l_\infty \right\}, \\ T_4\left(p\right) &= \bigcup\limits_{K>1} \left\{ a = (a_k) \in w : \sup\limits_{N \in \mathcal{F}} \sum\limits_{n} \left| \sum\limits_{k \in N} \left[\Lambda\left(k,n\right) Q_k a_n + \frac{Q_n a_n}{q_n} \right] K^{\frac{-1}{p_k}} \right| < \infty \right\}, \\ T_5\left(p\right) &= \left\{ a = (a_k) \in w : \sum\limits_{n} \left| \sum\limits_{k \in N} \left[\Lambda\left(k,n\right) Q_k a_n + \frac{Q_n a_n}{r.q_n} \right] \right| < \infty \right\}. \end{split}$$

and

$$T_{6}\left(p\right) = \bigcup_{K>1} \left\{ a = \left(a_{k}\right) \in w : \sum_{k} \left| \left(\frac{a_{k}}{q_{k}} + \Lambda\left(k, n\right) \sum_{i=k+1}^{n} a_{i}\right) Q_{k} \right| K^{\frac{-1}{p_{k}}} < \infty \right\},$$

where

$$\Lambda(k,n) = (-1)^{n-k} \left(\frac{(-1)^{n-k-1}}{q_{k+1}} + \frac{(-1)^{n-k}}{q_k} \right).$$

Then

$$\{r_{\infty}^{q}(p,\Delta)\}^{\alpha} = T_{1}(p) \qquad \{r_{\infty}^{q}(p,\Delta)\}^{\beta} = T_{2}(p) \qquad \{r_{\infty}^{q}(p,\Delta)\}^{\gamma} = T_{3}(p) ,$$

$$\{r_{c}^{q}(p,\Delta)\}^{\alpha} = T_{4}(p) \cap T_{5}(p) \qquad \{r_{c}^{q}(p,\Delta)\}^{\beta} = T_{6}(p) \cap cs \qquad \{r_{c}^{q}(p,\Delta)\}^{\gamma} = T_{6}(p) \cap bs ,$$

$$\{r_{0}^{q}(p,\Delta)\}^{\alpha} = T_{4}(p) \qquad \{r_{0}^{q}(p,\Delta)\}^{\beta} = \{r_{0}^{q}(p,\Delta)\}^{\gamma} = T_{6}(p) .$$

3 The Basis for the Spaces $r_0^q(p, B)$ and $r_c^q(p, B)$

In the present section, we give two sequences of the points of the spaces $r_0^q(p, B)$ and $r_c^q(p, B)$ which form the basis for those spaces.

Theorem 4. Let $\mu_k(t) = (R^q B x)_k$ for all $k \in \mathbb{N}$ and $0 < p_k \le H < \infty$. Define the sequence $b^{(k)}(q) = \left\{b_n^{(k)}(q)\right\}_{n \in \mathbb{N}}$ of the elements of the space $r_0^q(p, B)$ for every fixed $k \in \mathbb{N}$ by

$$b_n^{(k)}(q) = \begin{cases} \nabla(k, n) Q_k &, & (0 \le n \le k - 1) \\ \frac{Q_k}{r, q_k} &, & (k = n) \\ 0 &, & (n > k - 1) \end{cases}$$
(3.1)

where

$$\nabla (k,n) = (-1)^{n-k} \left(\frac{s^{n-k-1}}{r^{n-k}q_{k+1}} + \frac{s^{n-k}}{r^{n-k+1}q_k} \right).$$

Then,

(a) The sequence $\left\{b^{(k)}\left(q\right)\right\}_{k\in\mathbb{N}}$ is a basis for the space $r_0^q\left(p,B\right)$ and any $x\in r_0^q\left(p,B\right)$ has a unique representation of the form

$$x = \sum_{k} \mu_k(q) b^{(k)}(q).$$
 (3.2)

(b) The set $\left\{ \left(R^qB\right)^{-1}e, b^{(k)}\left(q\right)\right\}$ is a basis for the space $r_c^q\left(p,B\right)$ and any $x\in r_c^q\left(p,B\right)$ has a unique representation of the form

$$x = le + \sum_{k} |\mu_{k}(q) - l| b^{(k)}(q);$$
(3.3)

where

$$l = \lim_{k \to \infty} (R^q B x)_k \,. \tag{3.4}$$

Proof. It is clear that $\left\{ b^{(k)}\left(q\right)\right\} \subset r_{0}^{q}\left(p,B\right),$ since

$$R^{q}Bb^{(k)}(q) = e^{(k)} \in c_{0}(p), \text{ (for } k \in \mathbb{N})$$
 (3.5)

for $0 < p_k \le H < \infty$; where $e^{(k)}$ is the sequence whose only non-zero term is a 1 in k^{th} place for each $k \in \mathbb{N}$.

Let $x \in r_0^q(p, B)$ be given. For every non-negative integer m, we put

$$x^{[m]} = \sum_{k=0}^{m} \mu_k(q) b^{(k)}(q).$$
 (3.6)

Then, we obtain by applying $R^q B$ to (3.6) with (3.5) that

$$R^{q}Bx^{[m]} = \sum_{k=0}^{m} \mu_{k}(q) R^{q}Bb^{(k)}(q) = \sum_{k=0}^{m} (R^{q}B)_{k} e^{(k)}$$

and

$$\left(R^q B\left(x-x^{[m]}\right)\right)_i = \left\{ \begin{array}{ll} 0 & , & (0 \le i \le m) \\ \left(R^q B x\right)_i & , & (i > m) \end{array} \right. ; (i, m \in \mathbb{N}).$$

Given $\varepsilon > 0$, then there exists an integer m_0 such that

$$\sup_{i>m} |(R^q B x)_i|^{\frac{p_k}{M}} < \frac{\varepsilon}{2}$$

for all $m \geq m_0$. Hence,

$$g_B\left(x-x^{[m]}\right) = \sup_{i \geq m} \left|\left(R^q B x\right)_i\right|^{\frac{p_k}{M}} \leq \sup_{i \geq m_0} \left|\left(R^q B x\right)_i\right|^{\frac{p_k}{M}} < \frac{\varepsilon}{2} < \varepsilon$$

for all $m \ge m_0$ which proves that $x \in r_0^q(p, B)$ is represented as in (3.2).

To show the uniqueness of this representation, we suppose that

$$x = \sum_{k} \lambda_k (q) b^{(k)} (q).$$

Since the linear transformation T, from $r_0^q(p, B)$ to $c_0(p)$ used in Theorem 2, is continuous we have

$$\left(R^{q}Bx\right)_{n}=\sum_{k}\lambda_{k}\left(q\right)\left\{ R^{q}Bb^{\left(k\right)}\left(q\right)\right\} _{n}=\sum_{k}\lambda_{k}\left(q\right)e_{n}^{\left(k\right)}=\lambda_{n}\left(q\right);\ n\in\mathbb{N}$$

which contradicts the fact that $(R^{q}Bx)_{n} = \mu_{k}(q)$ for all $n \in \mathbb{N}$. Hence, the repre-

sentation (3.2) of $x \in r_0^q(p, B)$ is unique. Thus the proof of the part (a) of Theorem is completed.

(b) Since $\{b^{(k)}(q)\} \subset r_0^q(p,B)$ and $e \in c$, the inclusion $\{e,b^{(k)}(q)\} \subset r_c^q(p,B)$ trivially holds. Let us take $x \in r_c^q(p,B)$. Then, there uniquely exists an l satisfying (3.4). We thus have the fact that $u \in r_0^q(p,B)$ whenever we set u = x - le. Therefore, we deduce by part (a) of the present theorem that the representation of x given by (3.3) is unique and this step concludes the proof of the part (b) of Theorem.

Now we characterize the matrix mappings from the spaces $r_{\infty}^{q}\left(p,B\right),r_{c}^{q}\left(p,B\right)$

, $r_0^q(p,B)$ and $r^q(p,B)$ to the spaces l_∞ and c. The following theorems can be proved by used standart methods and we omit the detail.

Theorem 5. (i) $A \in (r_{\infty}^q(p, B) : l_{\infty})$ if and only if

$$\lim_{k \to \infty} \frac{a_{nk}}{a_k} Q_k M^{\frac{1}{p_k}} = 0, (\forall n, M \in \mathbb{N})$$
(3.7)

and

$$\sup_{n\in\mathbb{N}}\sum_{k}\left|\frac{a_{nk}}{r.q_{k}}+\nabla\left(k,n\right)\sum_{i=k+1}^{n}a_{ni}\right|Q_{k}M^{\frac{1}{p_{k}}}<\infty,\left(\forall M\in\mathbb{N}\right)$$
(3.8)

hold.

 $(ii) \ A \in \left(r_{c}^{q}\left(p,B\right):l_{\infty}\right) \ if \ and \ only \ if \ \left(3.7\right),$

$$\sup_{n\in\mathbb{N}}\sum_{k}\left|\left(\frac{a_{nk}}{r.q_{k}}+\nabla\left(k,n\right)\sum_{i=k+1}^{n}a_{ni}\right)Q_{k}\right|M^{\frac{1}{p_{k}}}=0,\left(\exists M\in\mathbb{N}\right)$$
(3.9)

and

$$\sup_{n\in\mathbb{N}}\sum_{k}\left|\left(\frac{a_{nk}}{r.q_{k}}+\nabla\left(k,n\right)\sum_{i=k+1}^{n}a_{ni}\right)Q_{k}\right|<\infty\tag{3.10}$$

hold.

(iii) $A \in (r_0^q(p, B) : l_\infty)$ if and only if (3.7) and (3.9) hold.

(iv) Let $1 < p_k \le H < \infty$ for every $k \in \mathbb{N}$. Then $A \in (r^q(p, B) : l_\infty)$ if and only if there exists an integer K > 1 such that

$$R(K) = \sup_{n \in \mathbb{N}} \sum_{k} \left| \left[\left(\frac{a_k}{r \cdot q_k} + \nabla(k, n) \sum_{i=k+1}^{n} a_{ni} \right) Q_k \right] K^{-1} \right|^{p_k'} < \infty$$
 (3.11)

and

$$\{a_{nk}\}_{k\in\mathbb{N}}\in cs$$

for each $n \in \mathbb{N}$.

(v) Let $0 < p_k \le 1$ for every $k \in \mathbb{N}$. Then $A \in (r^q(p, B) : l_\infty)$ if and only if

$$\sup_{n,k\in\mathbb{N}}\left|\left[\left(\frac{a_k}{r.q_k}+\nabla\left(k,n\right)\sum_{i=k+1}^na_{ni}\right)Q_k\right]\right|^{p_k}<\infty$$
 3.12

and

$$\{a_{nk}\}_{k\in\mathbb{N}}\in cs$$

for each $n \in \mathbb{N}$.

Theorem 6. (i) $A \in (r_{\infty}^q(p, B) : c)$ if and only if (3.7),

$$\sup_{n \in \mathbb{N}} \sum_{k} \left| \left(\frac{a_{nk}}{r \cdot q_k} + \nabla \left(k, n \right) \sum_{i=k+1}^{n} a_{ni} \right) Q_k \right| M^{\frac{1}{p_k}} < \infty, (\forall M \in \mathbb{N})$$
 (3.13)

and

$$\exists (\alpha_{k}) \subset \mathbb{R} \text{ such that } \lim_{n \to \infty} \left[\sum_{k} \left| \left(\frac{a_{nk}}{r \cdot q_{k}} + \nabla (k, n) \sum_{i=k+1}^{n} a_{ni} \right) Q_{k} - \alpha_{k} \right| M^{\frac{1}{p_{k}}} \right] = 0,$$

$$(3.14)$$

 $(\forall M \in \mathbb{N}) \ hold.$

(ii) $A \in (r_c^q(p, B) : c)$ if and only if (3.7), (3.9),

$$\exists \alpha \in \mathbb{R} \text{ such that } \lim_{n \to \infty} \left| \left(\frac{a_{nk}}{r \cdot q_k} + \nabla \left(k, n \right) \sum_{i=k+1}^n a_{ni} \right) Q_k - \alpha \right| = 0, \tag{3.15}$$

$$\exists (\alpha_k) \subset \mathbb{R} \text{ such that } \lim_{n \to \infty} \left| \left(\frac{a_{nk}}{r \cdot q_k} + \nabla (k, n) \sum_{i=k+1}^n a_{ni} \right) Q_k - \alpha_k \right| = 0, (\forall k \in \mathbb{N})$$
(3.16)

and

$$\exists (\alpha_k) \subset \mathbb{R} \quad such \ that \ \sup_{n \in \mathbb{N}} L \sum_{k} \left| \left(\frac{a_{nk}}{r \cdot q_k} + \nabla (k, n) \sum_{i=k+1}^{n} a_{ni} \right) Q_k - \alpha_k \right| M^{\frac{-1}{p_k}} < \infty,$$

$$(3.17)$$

 $(\forall L, \exists M \in \mathbb{N}) \ hold.$

 $(iii) \ A \in \left(r_0^q\left(p,B\right) : c\right) \ if \ and \ only \ if \left(3.7\right), \left(3.9\right), \left(3.16\right) \ and \left(3.17\right).$

Corollary 4. (i) $A \in (r_{\infty}^{q}(p, \Delta) : l_{\infty})$ if and only if

$$\lim_{k \to \infty} \frac{a_{nk}}{q_k} Q_k M^{\frac{1}{p_k}} = 0, (\forall n, M \in \mathbb{N})$$
(3.18)

and

$$\sup_{n\in\mathbb{N}}\sum_{k}\left|\frac{a_{nk}}{q_{k}}+\Lambda\left(k,n\right)\sum_{i=k+1}^{n}a_{ni}\right|Q_{k}M^{\frac{1}{p_{k}}}<\infty,\left(\forall M\in\mathbb{N}\right)$$
(3.19)

hold.

(ii) $A \in (r_c^q(p, \Delta) : l_\infty)$ if and only if (3.18),

$$\sup_{n \in \mathbb{N}} \sum_{k} \left| \left(\frac{a_{nk}}{q_k} + \Lambda(k, n) \sum_{i=k+1}^{n} a_{ni} \right) Q_k \right| M^{\frac{1}{p_k}} = 0, (\exists M \in \mathbb{N})$$
 (3.20)

and

$$\sup_{n\in\mathbb{N}}\sum_{k}\left|\left(\frac{a_{nk}}{q_{k}}+\Lambda\left(k,n\right)\sum_{i=k+1}^{n}a_{ni}\right)Q_{k}\right|<\infty\tag{3.21}$$

hold.

(iii) $A \in (r_0^q(p, \Delta) : l_\infty)$ if and only if (3.18) and (3.20) hold.

Corollary 5. (i) $A \in (r^q_{\infty}(p, \Delta) : c)$ if and only if (3.18),

$$\sup_{n \in \mathbb{N}} \sum_{k} \left| \left(\frac{a_{nk}}{q_k} + \Lambda(k, n) \sum_{i=k+1}^{n} a_{ni} \right) Q_k \right| M^{\frac{1}{p_k}} < \infty, (\forall M \in \mathbb{N})$$
 (3.22)

and

$$\exists (\alpha_k) \subset \mathbb{R} \text{ such that } \lim_{n \to \infty} \left[\sum_k \left| \left(\frac{a_{nk}}{q_k} + \Lambda(k, n) \sum_{i=k+1}^n a_{ni} \right) Q_k - \alpha_k \right| M^{\frac{1}{p_k}} \right] = 0,$$
(3.23)

 $(\forall M \in \mathbb{N}) \ hold.$

(ii) $A \in (r_c^q(p, \Delta) : c)$ if and only if (3.18), (3.20),

$$\exists \alpha \in \mathbb{R} \text{ such that } \lim_{n \to \infty} \left| \left(\frac{a_{nk}}{q_k} + \Lambda(k, n) \sum_{i=k+1}^n a_{ni} \right) Q_k - \alpha \right| = 0, \tag{3.24}$$

$$\exists (\alpha_k) \subset \mathbb{R} \text{ such that } \lim_{n \to \infty} \left| \left(\frac{a_{nk}}{q_k} + \Lambda(k, n) \sum_{i=k+1}^n a_{ni} \right) Q_k - \alpha_k \right| = 0, (\forall k \in \mathbb{N})$$
(3.25)

and

$$\exists (\alpha_k) \subset \mathbb{R} \quad such \ that \ \sup_{n \in \mathbb{N}} L \sum_{k} \left| \left(\frac{a_{nk}}{q_k} + \Lambda(k, n) \sum_{i=k+1}^n a_{ni} \right) Q_k - \alpha_k \right| M^{\frac{-1}{p_k}} < \infty,$$

$$(3.26)$$

 $(\forall L, \exists M \in \mathbb{N}) \ hold.$

(iii) $A \in (r_0^q(p, \Delta) : c)$ if and only if (3.18), (3.20), (3.25) and (3.26).

References

- [1] B. Altay, F. Başar, On The Paranormed Riesz Sequence Spaces Of Non-Absolute Type, Southeast Asian Bull. Math. 26 (2002), 5, 701–715.
- [2] B. Altay, F. Başar, Some Euler Sequence Spaces of Non-Absolute Type, Ukranian Math. J. 57 (2005), 1-17.
- [3] B. Altay, F. Başar, On The Space of Sequences of p-Bounded Variation and Related Matrix Mappings, Ukranian Math. J. 55 (2003), 1, 136-147.
- [4] B. Altay, H. Polat, On Some Euler Difference Sequence Spaces, Southeast Asian Bull. Math. 30 (2006), 209-220.
- [5] K.G., Grosse-Erdmann, Matrix Transformations Between The Sequence Space Of Maddox, J. Math. Anal. Appl. 180 1993, 223-238.
- [6] H.Kizmaz, On Certain Sequence Space, Canad. Math. Bull. 24(2) 1981,169-176.
- [7] C.G.Lascarides, I.J.Maddox, Matrix Transformations Between Some Classes Of Sequences, Proc.Comb. Phil. Soc. 68 1970, 99-104.
- [8] I.J.Maddox, Paranormed Sequence Spaces Generated By Infinite Matrices, Proc.Comb. Phil. Soc. 64 1968, 335-340.
- [9] I.J.Maddox, Spaces Of Strongly Summable Sequences, Quart. J. Math. Oxford, 18(2) 1967,345-355.

- [10] I.J.Maddox, $Element\ Of\ Functional\ Analysis$, The University Press, Cambridge, 1970.
- [11] M.Başarır, M.Öztürk, On The Riesz Difference Sequence Space, Rendiconti del Circolo Matematico di Palermo, 2008, **57**, 377-389.

Address:

Department of Mathematics, Sakarya University, 54187, Sakarya, Turkey E-mail: basarir@sakarya.edu.tr