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ON THE GENERALIZED RIESZ B-DIFFERENCE
SEQUENCE SPACES

Metin Basarir

Abstract

In this paper, we define the new generalized Riesz B-difference sequence
spaces rd, (p, B),r¢(p,B) , rd(p,B) and r?(p, B) which consist of the se-
quences whose R?B-transforms are in the linear spaces I« (p),c(p) , co (p)
and [ (p) , respectively, introduced by I.J.Maddox[8],[9]. We give some topo-
logical properties and compute the a—, 5— and y—duals of these spaces. Also
we determine the neccesary and sufficient conditions on the matrix transfor-
mations from these spaces into [~ and c.

1 Introduction

By w, we denote the space of all real valued sequences. Any vector subspace of w is
called as a sequence space. We write I, ¢, ¢g for the sequence spaces of all bounded,
convergent and null sequences, respectively. Also by, bs, cs,l; and [, we denote the
spaces of all bounded, convergent, absolutely and p-absolutely convergent series,
respectively; where 1 < p < co.

A linear topological space X over the real field R is said to be a paranormed
space if there is a subadditive function ¢g : X — R such that g(0) = 0, g(z) = g(—x)
and scalar multiplication is continuous, i.e.,|a, — a| — 0 and g(x,, —x) — 0 imply
glanx, —ax) — 0 for all o’s in R and all 2’s in X, where 6 is the zero vector in
the linear space X. Assume here and after that p = (px) be a bounded sequence
of strictly positive real numbers with supp, = H and M = max{1, H}. Then the
linear spaces oo (p), ¢(p), co(p) and I(p) were defined by Maddox [8],[9] .

For simplicity notation, here and in what follows, the summation without limits

N —1
runs from 0 to co. We assume throughout (pk)_1 + (pk) = 1 provided 1 <
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inf pp, < H < oo and denote the collection of all finite subsets of N by F, where
N={0,1,2,...}.
For the sequence spaces A and p, define the set S(A, u) by

S\ p)={z=(zr) €w:xz=(xkz) € pfor all z € A} (1.1)

With the notation (1.1), the a—, 3—,y—duals of a sequence space A, which are
respectively denoted by A*, A and A7, are defined by

XY =S\ 1) , M =5(\ cs) and X7 = S()\, bs).

If a sequence space A paranormed by h contains a sequence (b, ) with the property
that for every x € A there is a unique sequence of scalars («;,) such that

n
nh_)rréoh (x — Zakbk> =0
k=0
then (by,) is called a Schauder basis (or briefly basis) for A. The series > aby, which
has the sum x is then called the expansion of & with respect to (b,) and written as
T = E Otkbk.

Let A and p be two sequence spaces and A = (a,x) be an infinite matrix of real
numbers a,j, where n, k € N. Then, we say that A defines a matrix mapping from
A into p and we denote it by writing A : A — p, if for every sequence z = (x) € A
the sequence Az = {(Ax),, }, the A—transform of z, is in p; where

(Az), = Zankxk (neN). (1.2)
k

By (A: u), we denote the class of all matrices A such that A : A — p. Thus,
A € (X\: p) if and only if the series on the right side of (1.2) converges for each ne N
and every x€ A and we have Az = {(Az), }, .y € p for all x€ A\. A sequence z is
said to be A—summable to « if Ax converges to a which is called as the A—limit
of x.

The matrix domain A4 of an infinite matrix A in sequence space A is defined by

A={r=(xp) cw: Axr € \} (1.3)

which is a sequence space. In the most cases, the new sequence space A4 gener-
ated by the limitation matrix A from a sequence space )\ is the expansion or the
contraction of the original space A.

Let (gx) be a sequence of positive numbers and

Qn:ZQka (TLEN)'
k=0

Then the matrix RY = (r!,) of the Riesz mean is given by

q _ % ) (nggn)
0 , (k>n)
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The Riesz sequence space introduced in [1] is ;

Pk

k

1

ri(p) = x:(:vk)szg Q—E gjzj| <oop; with (0<pr <H <o0)

k
k 7=0

which is sequence space of the R?—transform of x are in {(p). Recently, Bagarir and
Oztiirk [11] defined the Riesz difference sequence space ¢ (p, /A) which consist of
the sequences whose A-transforms are in the linear space r? (p) , where A denotes
the matrix A = (A,x) defined by

— (71)nik ) (Tl*lgkgn),
Ank_{O , (k<n—=1)or (k>n)

Altay and Basar [3] introduced the generalized difference matrix B = (bnx) by

o, (k=n)
bpp =14 s (k=n-1)
0, (O0<k<n-1) or (k>n)

forall k,n € N, r,s € R—{0} . The matrix B can be reduced the difference matrix
A in case r = 1,s = —1. The results related to the matrix domain of the matrix B
are more general and more comprehensive than the corresponding consequences of
matrix domain of A , and include them [11],[6].

Then main purpose of this paper is to introduce the Riesz B—difference se-
quence spaces rl (p, B),r?(p, B), r{ (p, B) and r?(p, B) and to investigate some
topological properties.

2 The Riesz B-Difference Sequence Spaces

Let define the sequence y = {yx (¢)}, which is used , as the (R?B) —transform of
a sequence z = (zy), i.e.,

kS
—

n @) = 5 |3 (@ + 0090, +aerae| (k). (2.1)

=0

<.

We define the Riesz B—difference sequence spaces rZ (p, B),r? (p, B), rd (p, B) and
r?(p,B) by

e (p,B) ={z = (7;) €w:yy (q) €l (P)},
ré(p,B) ={z = (zj) €ew:yr(q) €Ec(p)},
3 (0, B) ={z = (zj) €w:yr(q) €co(p)}

and
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r’(p,B)={x=(z;) cw:yx(q) €l(p)}.
Where the linear spaces I (p), ¢(p), co(p) and I(p) were defined as follows ;

loo(p) = {:17 = (zg) €w: sup |zt < oo},
keN

C(p) = {.’E = (xk) cw: khm |5Ek — l‘pk =0 for somel € R}’
co(p) = {J: = (x) € w: lim |zx/"* = o}
k—o0
which are the complete spaces paranormed by

Pl
g1(w) = sup |z | M
keN

l(p)z{x:(xk)ewzzxk|p’“<oo},

k
which is the complete spaces paranormed by

o ()
k

and

If we take r=1 and s=-1 in the matrix B as in the Riesz B—difference sequence
spaces L (p, B) , 74 (p, B), rd (p, B) and r? (p, B) then these spaces reduce the se-
quence spaces 1% (p, A), rd (p,A) , r (p, A) and 7% (p, A) .

If we take pyp = p for all k then we denote % (p, B) = r% (B), r1(p,B) =
r2.(B), & (p, B) = 1 (B) and 17 (p, B) = 1 (B).

We may begin with the following theorem .

Theorem 1. (a) rl (p, B) is a complete linear metric space paranormed by gg,
defined by

= 5
gp(x) =sup |— Z (gj.r+gj+1.8) xj + qp.1. 2k (2.2)
ke | Qi |1

g is paranorm for the spaces vl (p,B) and rd(p, B) only in the trivial case with
inf pg, > 0 when rd (p, B) =rL (B) and rl(p,B) =r%(B).
(b) r?(p, B) is a complete linear metric space paranormed by

S

b—1 Pk

(gj.r + gjt1.5) x; + qp.r.a) (2.3)
=0

J

‘() = 1
gp(z) = zk: Ox

with 0 < pr, <suppy = H < o0 and M =max{l,H} .
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Proof. We only prove the theorem for the space 7¢ (p, B). The proof of other spaces
can be done similarly. The linearity of r{ (p, B) with respect to the co-ordinatewise
addition and scalar multiplication follows from the inequalities which are satisfied
for u,v € rd (p, B) [10].

Pr
1 k—1 M
sup | —— (g7 + qj41-8) (w5 + v5) + @7 (uk + vk) (2.4)
keN | @k |
— Pk
k-1 M
1
<sup|— (gj.r + qj41.5) uj + q.rug (2.1)
keN | @k | =
] v
k—1 M
1
+sup |— (gj.r + qj+1.5) vj + Q.. (2.2)
keN | Qr | =5
and for any o € R [§]
| [”* < max {1, \a|M} . (2.5)

It is clear that gp(8) = 0 and gp(—z) = gp(z) for all u € r (p, B). Again the
inequalities (2.4) and (2.5) yield the subadditivity of g and

g5 (au) < max {1, |a|} g5 (u). (2.3)

Let {z"} be any sequence of the elements of the space r{ (p, B) such that
g (2" —2) =0 (2.4)
and (\,,) also be any sequence of scalars such that \,, — A. Then, since the inequality
g9 (¢") < g5 () + gp (¢" — x) (2.5)

holds by subadditivity of gg, {gs (™)} is bounded, and thus we have

k-1
1
98 (Ana" = Ax) = sup | = | Y (g1 + ¢j11.8) (A2} = Az;) + gr (Anzft — Az)
keN | Qr |1
(2.6)
Pr
1 k—1 M
1
= |An — A|M sup |— (qj-r+ qjt1.5) 2] + qr.r.o) (2.7)
keN | Qr |

k-1
e 1 n n
+ |A| ™ sup | — (gj.r + qjt1-5) (xj — a:j) + qr.r (2 — k) (2.8)
=0

keN | Qk ‘
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< A =A™ g (@) + A7 g (a" — ) (2.9)

which tends to zero as n — oo. Hence the continuity of the scalar multiplication
has shown. Finally; it is clear to say that gp is a paranorm on the space r{ (p, B).
Moreover; we will prove the completeness of the space r¢ (p, B). Let {xl} be a

Cauchy sequence in the space r (p, B), where z' = {x,(f)} = {xé,xﬁ,mé, } €
rd (p, B) . Then, for a given € > 0 there exists a positive integer ng (¢) such that

gp (z' —27) <e (2.6)

for all 7,5 > ng (¢) . If we use the definition of gp we obtain for each fixed k¥ € N
that

‘(Rqui)k - (RqBa:j)k| < 2161%)]’(]%‘1396")]c - (Rquj)k‘pﬁk <e (2.7)

for 4, j > ng (¢) which leads us to the fact that
{(R?Bz"), , (R'Bz"),, (R'Bz?), ,...} (2.10)

is a Cauchy sequence of real numbers for every fixed & € N. Since R is com-
plete, it converges, so we write (Rqui)k — (R%Bx), as i — oo. Hence by using
these infinitely many limits (R?Bx), , (RYBx), , (R?Bx),, ..., we define the sequence
{(RiBx),, (R'Bx), ,(RBx),,...}. From (2.7) with j — oo we have

|(RBz"), — (R'Bx), | <e (2.8)
i > ng (&) for every fixed k € N. Since z° = {x,(;)} erd(p,B),

|(RQBxi)k|ka <e (2.11)

for all k € N. Therefore, by (2.8) we obtain that
o e
(R'Bz),|™ < |(R!Bx), — (R'Ba') | ™ + |(R'Ba') |™ <& (2.9)

for all ¢ > ng (€) . This shows that the sequence R?Bx belongs to the space ¢ (p) .
Since {JIZ} was an arbitrary Cauchy sequence, the space r¢ (p, B) is complete. [

If we take r=1, s=-1 in the theorem 1 then we have the following result.

Corollary 1. (a) rd(p,A) is a complete linear metric space paranormed by ga,
P

M

defined by ga (@) = supers | [ 420 (a5 = a541) 5 + .
ga is paranorm for the spaces rl (p,A) and rl(p,A) only in the trivial case
with inf pr, > 0 when rl, (p,A) =1L (A) and vl (p,A) =ri (A).
(b) [11] r9(p,A) is a complete linear metric space paranormed by

1
_ PN
ga(z) = (Zk ’é [Z?;é (9 — gj+1) Tj + qk~5€k” ) with 0 < p < suppg =
H < oo and M = max{1,H} .
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Theorem 2. Let rq; + sqjy1 # 0 for all j. Then the Riesz B—difference se-
quence spaces vl (p, B),r4(p, B), r{ (p, B) and r? (p, B) are linearly isomorphic to
the space loo (p), ¢(p) , co (p) and I (p) , respectively; where 0 < py, < H < 0.

Proof. We establish this for the the space r% (p, B) . For proof of the theorem, we
should show the existence of a linear bijection between the space r% (p, B) and
loo (p) for 0 < pr, < H < co. With the notation of

[

k—

_ 1
T 0k |4

(g7 + gj+1.5) xj + g1k
7=0

define the transformation T' from r% (p, B) to lo (p) by 2 — y = Tz. T is a linear
transformation, morever; it is obviuos that = § whenever Tx = 6 and hence T is
injective.

Let y = (yx) € loo (p) and define the sequence x = () by

k—1 k—m—1 k—n
ar=Y (-1 ( > + ) Qg + T for hen,

Tk—n

n—0 dn+1 Tk_"+1q T.qr
Then
Pr
k—1 M
gp(x) = sup |— Z (gj.r + qjt1-8) xj + q.1. Tk
ke | Qr |
Pr
k M ,
PE
=sup | Y dky;| = suplyk| T = g1 (y) < oo
keN |20 keN
where

S 1, k=j
MTL0, k£

Thus, we have that = € r% (p, B). Consequently; T is surjective and is paranorm
preserving. Hence, T is linear bijection and this explains that the spaces rZ, (p, B)
and I, (p) are linearly isomorphic, as was desired. O

Corollary 2. Let ¢; — qj+1 # 0 for all j. Then the A-Riesz sequence spaces
rd (p, A),r(p,A), ¢ (p,A) and r?(p,A) are linearly isomorphic to the spaces
loo (p),c(p) , co (p) and I (p) , respectively; where 0 < pr, < H < 0.

And now we shall quote some lemmas which are needed in proving our theorems.
Lemma 1. [5] A € (I (p) : 11) if and only if

sup Z Z ankKi

Ker =, keK

< oo for all integers K > 1. (2.10)
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Lemma 2. [7] Let pr, > 0 for every k € N. Then A € (loo () : loo) if and only if

sup Z |ank] K7 < oo for all integers K > 1. (2.11)
neN "

Lemma 3. [7] Let px >0 for every k € N. Then A € (I (p) : ¢) if and only if

Z |ank] Kwr convergence uniformly in n for all integers K > 1, (2.12)
k
lim a,; = ax for all k € N. (2.13)

Lemma 4. [5] (i) Letl <py < H < oo for every k € N. Then A € (I(p) : 11) if
and only if there exists an integer K > 1 such that

’

Py

sup Z

KeF &

Z ankK_l

nekK

< 00.

(#4) Let 0 < pp <1 for every k € N. Then A € (I (p) : l1) if and only if

Pk

sup sup
KEF keN

Ank < 00.

nekK

Lemma 5. [7] (i) Let 1< p, < H < oo for every k € N. Then A € (I(p) :ls) if
and only if there exists an integer K > 1 such that

supz |a;,iK*1|p’“ < 0. (2.14)
neN &
(it) Let 0 < pgr <1 for everyk € N. Then A € (I(p) : lx) if and only if

sup |ank|"* < oo. (2.15)

n,keN

Lemma 6. [7] Let 0 < pp < H < o for every k € N. Then A € (I(p) : ¢) if and
only if (2.6) and (2.7) hold, and

lim an, = Bx for keN (2.16)
also holds.

Theorem 3. (a) Define the sets Ry (p), Rz (p), Rs (p),R4(p),Rs (p) and Rg (p)
as follows:

Ri(p)= N {a:(ak)Ew:supZ

NeF <

> [v (k,n) Qran +

keN

Qnan ] L

4n
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1
Kre < o0

(ak +V (k) Y ai) o

T.
Ik =kt 1

Rg(p):Kgl{a:(ak)Ew:Z

k

<aka Km) c Co} ,
T4k

R:s(P):Kgl{a:(ak)GWZZ <ak+V(k,n) Z ai)Qk

T.
% Tk =kt 1

and { <ak + V (k,n) i ai) Qn} € loo} )
TGk i=ht1

Z [V (k,n) Qran + Q:;" ] Ko

keEN

1
Kre < o0

Ry (p) = Ul{a—(ak) cw: supz

NeF

n

R5(p)={a:(ak)6wzz Z{ (kn)QkanvLQn”} <oo}
n k n
and
Ra(p):KLil{ ) € w: Z(W—I—an)Zai)QkK;k<oo}7
k i=k+1
where - .
— (-1 n—Fk S S '
Vi == (T"_k%ﬂ " T”_k“%)
Then

{r&, . B)}*=Ri(p) {rL(»B)} =R:(p) {rl (».B)} = Rs(p),

{r8(», B)}* = Ri(p) NR5(p) {r?(p,B)}’ = Rs(p)Nes  {rd (p, B)}" = Re (p)Nbs,

{r{ (0, B = Ra(p)  {r§ (0. B)Y = {1 (0, B)}" = R (p).
(b) (i) Letl <pp <H < oo for every k € N. Define the sets Rz (p) , Rs (p) as
follows:

- [P+ 2]

neN

Re(p)= U {amk)ew sup 3

K>1 NeF .

(:;+V(k7ﬂ) > ai) Qk]K '

i=k+1

k

Rg(p)KLil{a(ak)Gw:Z

Then; [r? (p, B)]* = Rz (p) , [r* (p, B)]” = Rs (p) Nes , [r4 (p, B)]” = Rs (p).



44 METIN BASARIR

(13) Let 0 < pr, <1 for every k € N. Define the sets Rg (p) , Rio (p) by

Qna’n :| K_1
T.4n

Pk
<oo}.

Then; [r1 (p, B)]* = Rs (p) . [r (p, B))” = Rio (p) Nes

Ry (p) = {a = (ag) € w: sup sup Z [V (k,n) Qran +
NeF keN | =y

Q. -
l(w + V(k,n) Z Gi) Qk]

i=k+1

Rip (p) = {a = (ar) € w: sup

keEN

 [r (p, B)]” = Rio (p) -

Proof. We give the proof for the space r% (p, B). Let us take any a = (a,) € w. We
easily derive with the notation

k-1
Z (gj.r + qj4+1-8) xj + qi.7-Tk
=0

that

n—1

ApTp = Z \Y k n aanyk + nQnyn Zunkyk = Uy (217)
k=0

(n € N), where U = (uny) is defined by

V (k,n) a,Qx , (0<k<n-1)
U = 4 S : (h=n)
, (k> n)

for all k,n € N. Thus we deduce from (2.17) that ax = (anx,) € l; whenever
x = (x) € 14 (p,B) if and only if Uy € l; whenever y = (yx) € l (p). From
Lemmal , we obtain the desired result that

[rd, (p, B)]" = R (p).

Consider the equation

n n—1 n
Zakxk = Z ( +V (k,n) Z ai> Qryx + ak?#yk =Vy),, ,(neN);
=k+1 ’

k=0 k=0 \"9k ikt
(2.18)
where V' = (v,) defined by
S LV (kn) > oai | Qn , (0<k<n-1)
v _ ak i=k+1
nk arQr (k =n)
T4k ?
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for all k,n € N. Thus we deduce by with (2.18) that ax = (arxi) € cs whenever
x = (x) € r% (p, B) if and only if Vy € ¢ whenever y = (yx) € loo (p) . Therefore
we derive from Lemma3 that

Z (&—&-V(k,n) z”: ai> Qx

k i=k+1

1
Kre < o0

and
lim 9 g g
k—oo T.qL
which shows that [r%, (p, B)]’B = Rz (p).
As this, we deduce by (2.18) that ax = (agzr) € bs whenever z = (xj) €
rd (p, B) if and only if Vy € I whenever y = (yx) € I (p) . Therefore we obtain
by Lemma2 that [r%, (p, B)]” = R3 (p) and this completes proof. O

Corollary 3. Define the sets Ty (p), T (p), T3 (p), T4 (p) , T5 (p) and T (p) as fol-

lows:
Ti(p)= N <a=(ag) Ew: supz Z {A(k,n)@kan—FQnan ]Kplk <00y,
K>1 NeF 7 |icn dn
a n 1
TQ(p):Kgl{a:(ak)Ew:Z (q:—&—A(k‘,n) Z ai> Qr| K7x < 00
k i=k+1

and <aka Kplk> € co},
qk

T3(p)Kﬂl{a(ak)€w;Z <ak+A(7€,n) Z ai> Qr| K7 < o0
- k Qk i=k+1
and {(m“—l—A(k’,n) Z ai) Qn} Eloo}7
1 i=k+1
Qnan =1
T4(P)Kti1{a(ak)€w:;1£__; k;v[/\(k,n)@kan+ . }ka <OO}’

> [A(k,n) Qran +

k

Qnan :|

4N
n

T5(p)={a=(ak)€wzz

s

-1
Kre <oo},

and

<ak+A(ka”) > ai) o

Ik imkt1

Tg(p)—KLil{a—(ak)Gw:Z
k
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where
_1\n—k—1 _1\n—k

qk+1 dk

Then
(LAY =Ti(p) L @AY =Tp) (@A)} =T (@),

{rd (0, AN =Ta(p) NT5(p)  {rd(p, )} =Ts (p)nes  {r? (p, A)}” = Ts (p)ibs,
(A} =Tilp) {80, A = {8 (0, A)) = Ts (p).

3  The Basis for the Spaces r{ (p, B) and 7! (p, B)

In the present section, we give two sequences of the points of the spaces r¢ (p, B)

and 74 (p, B) which form the basis for those spaces.

Theorem 4. Let uy, (t) = (R?Bx),, for allk € N and 0 < p, < H < 0o. Define the

sequence b¥) (q) = {bﬁ{‘” (q)} . of the elements of the space r{ (p,B) for every
ne

fized k € N by

V (k,n) Qk , (0<n<k-1)
b (q) = & ;. (k=n) (3.1)
, (n>k-1)
where et .
— (-1 n—k S S .
Vikn) =(=1) (T”k%ﬂ * 7“”’““(11@)
Then,

(a) The sequence {b(k) (q)}kGN is a basis for the space vl (p,B) and any x €
rd (p, B) has a unique representation of the form

z=> e (0)b® (g). (3.2)
p

(b) The set {(RqB)_1 e, b (q)} is a basis for the space rl(p,B) and any x €

rd (p, B) has a unique representation of the form
r=le+ Y | (q) — 116%™ (q); (3.3)
k

where
l = lim (R'Bz),. (3.4)

k—o0
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Proof. 1t is clear that {b(k) (¢)} € rl (p, B), since

RIBb ™ (q) = e®) € ¢y (p), (for ke N) (3.5)
for 0 < pp < H < 0o; where e(®) is the sequence whose only non-zero term is a 1

in k*" place for each k € N.
Let « € r{ (p, B) be given. For every non-negative integer m, we put

2™ =" () b (q) . (3.6)
k=0

Then, we obtain by applying RIB to (3.6) with (3.5) that

R'Bal™ ="y (q) R*Bb™ () = Y (R'B), eV

k=0 k=0
and
0 , (0<i<m)
(ReB (2 —a)) = (RiBx), .,  (i>m) mEN).

Given € > 0, then there exists an integer mg such that

pe €
sup [(R'Bx);| ™ < =

for all m > mg. Hence,

9B (:p - gc“'”) = sup |(RqBac)i|% < sup |(RqB;v)i|% < % <e

i>m i>mo
for all m > mg which proves that = € r{ (p, B) is represented as in (3.2).

To show the uniqueness of this representation, we suppose that

T = Z)\k )b*) (g
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Since the linear transformation 7', from r{ (p, B) to ¢o (p) used in Theorem 2, is
continuous we have

(BB, = 30 (@ (BB (@} =3 M@ el = Ana)i e

k

n

which contradicts the fact that (R?Bz),, = ui (q) for all n € N. Hence, the repre-

sentation (3.2) of z € r{ (p, B) is unique. Thus the proof of the part (a) of Theorem
is completed.

(b) Since {6 (q)} C 7§ (p.B) and e € ¢, the inclusion {e,b* (q)} C 77 (p,B)
trivially holds. Let us take z € % (p, B). Then, there uniquely exists an [ satisfy-
ing (3.4). We thus have the fact that u € rl (p, B) whenever we set u = z — le.
Therefore, we deduce by part (a) of the present theorem that the representation
of = given by (3.3) is unique and this step concludes the proof of the part (b) of
Theorem. 0

Now we characterize the matrix mappings from the spaces r%, (p, B),r% (p, B)

, ré(p, B) and r%(p, B) to the spaces lo and c¢. The following theorems can be
proved by used standart methods and we omit the detail.

Theorem 5. (i) A€ (ri (p,B) :lx) if and only if

lim —QkMph =0,(Vn,M € N) (3.7
k—oo (qf
and
supz =k LV (k , M) Z Uni QkMi < 00, (VM € N) (3.8)
neN "4k i=k+1
hold.

(ii) A€ (r&(p,B):ls) if and only if (3.7),

Ank ”

sup — +V(k,n ani | Q| MPe =0,(IM € N 3.9
"EN§ (qu ( )z:;-l > ’ ( : 39

and

Ank

— +V (k,n i < 00 3.10
neN (qu )zz;Ll ) Qk ( )

hold.

(i15) A€ (r§ (p,B) :ls) if and only if (3.7) and (3.9) hold.
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(iv) Letl <pp < H < oo foreveryk € N. Then A € (r?(p,B) : loo) if and
only if there exists an integer K > 1 such that

l<+v (k, n) zn: am-> Qk] K

1=k+1

Py
< o0 (3.11)

nEN

and
{ank}yen € cs

for each n € N.

(v) Let 0 <pg <1 for every k € N.-Then A € (r?(p,B) :ls) if and only if

n Pk
ak
su — +Vi(k,n Ani < 00 3.12
| (Fa v 32 o)
and
{ank}ren € s
for each n € N.
Theorem 6. (i) A€ (ri (p,B):c¢) if and only if (3.7),
(a"’“ +V (k) > am> Q| M7 < oo, (VM € N) (3.13)
neN i—kt1
and
J(ax) C R such that lim lZ‘(ank—i—V k,n) Z am> Qr — ag Mpkl =0,
e "k i=k+1
(3.14)
(VM € N) hold.
(i5) A€ (rd(p,B):c) if and only if (3.7),(3.9),
3a € R such that lim |[ ™ £V (kn) Y @ | Qe —al=0,  (3.15)
S AN i=k+1
I (ax) C R such that lim (ank +V (k,n) Z am> Qr — ax| =0, (Vk € N)
e\ Tk i—kt 1

(3.16)
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and
I () %—i—V(kn) Zam- Qr — ag M;Tc1<oo,
neN .4k i=kt1
(3.17)
(VL,3M € N) hold.
(its) A€ (r§(p,B):c) if and only if (3.7),(3.9),(3.16) and (3.17).
Corollary 4. (i) A€ (r% (p,A) :ls) if and only if
klm q—QkMPk =0,(Vn,M € N) (3.18)
—00 k
and
;) Z ani| QeM P < o0, (VM € N) (3.19)
neN i—kt1
hold.
(i) A€ (re(p,A):ls) if and only if (3.18),
(““’“ ) > am-> Qr| M7 =0,(3M € N) (3.20)
neN i=k+1
and
(“”’“ +A (k) Y am-> Qr| <0 (3.21)
neN i=k+1
hold.
(1i1) A€ (r§(p,A):ls) if and only if (3.18) and (3.20) hold.
Corollary 5. (i) A€ (r% (p,A):¢) if and only if (3.18),
(“”’“ +A (k) Y am> Q| M7 < o0, (VM € N) (3.22)
neN i=k+1
and
. Ank - 1
J(a) C R such that lim — +A(k,n i | Qr — ag| M>x | =0,
0 o (e 32 o) |
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(VM € N) hold.

(i) A€ (rd(p,A):c) if and only if (3.18),(3.20),

Ja € R such that lim <ank +A(k,n) Z am-> Qr —al =0, (3.24)
Sl AN =kt 1
F(ag) C R such that lim <ank + A (k,n) Z am> Qr — ag| =0, (Vk € N)
Sl AN =kt 1
(3.25)
and
F(ag) C R such that supLZ dnk + A(k,n) Z ani | Qr — oy Mo < 00,
neN & gk imht1
(3.26)

(VL,3M € N) hold.

(iti) A€ (r§ (p,A):c) if and only if (3.18),(3.20), (3.25) and (3.26).
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