BANDS OF λ -SIMPLE SEMIGROUPS

Stojan Bogdanović, Žarko Popović and Miroslav Ćirić

Abstract

Semigroups having a decomposition into a band of semigroups have been studied in many papers. In the present paper we give characterizations of various special types of bands of λ - semigroups and semilattices of matrices of λ - semigroups.

1. Introduction and preliminaries

Semigroups which can be decomposed into a band of left Archimedean semigroups have been studied by many authors. M. S. Putcha [17] proved a general theorem that characterizes such semigroups. Some other characterizations in the general case are given by S. Bogdanović, M. Ćirić and Ž. Popović [7] and P. Protić [14]. Some special decompositions of this type have been also treated in a number of papers. S. Bogdanović [1], [2], [3], P. Protić [13], [14], [15], S. Bogdanović and M. Ćirić [4] and S. Bogdanović, M. Ćirić and B. Novikov [6] studied bands of left Archimedean semigroups whose related band homomorphic images belong to several very important varieties of bands.

In this paper we give some results concerning decompositions into a band of λ -simple semigroups in the general and some special cases (Theorem 2).

Let a semigroup S be a semilattice Y of semigroups S_{α} , $\alpha \in Y$, and for any $\alpha \in Y$, let S_{α} be a matrix (left zero band, right zero band) I_{α} of semigroup S_i , $i \in I_{\alpha}$. The partition of S whose components are semigroups S_i , $i \in I$, where $I = \bigcup_{\alpha \in Y} I_{\alpha}$, will be called a semilattice-matrix (semilattice-left, semillattice-right) decomposition of S. All band decompositions are special cases of semilattice-matrix decompositions. The general lattice theoretical properties of semilattice-matrix decompositions of semigroups are investigated by M. Ćirić and S. Bogdanović [11]. A semilattice of matrix of left Archimedean semigroups were studied by S. Bogdanović and M. Ćirić [4].

 $^{2000\} Mathematics\ Subject\ Classifications.\ 20 M10.$

Key words and Phrases. λ -simple semigroup, band of semigroups, semilattice of semigroups. Received: May 1, 2010.

Communicated by Dragan S. Djordjević

Research supported by Ministry of Science and Environmental Protection, Republic of Serbia, Grant No. 144011

It is well known that a band of semigroups from a class \mathcal{K} of a semigroups is a semilattice of matrices of semigroups from \mathcal{K} . Semilattices of matrices of λ -simple semigroups are described by Theorem 3. The characterizations of semilattices of hereditary weakly left Archimedean semigroups are given by Theorem 5. At the end semilattice of λ -simple semigroups are described by Theorem 6.

By \mathbb{Z}^+ we denote the set of all positive integers. By S^1 we denote a semigroup S with identity 1.

A semigroup in which all its elements are idempotents is a *band*. A commutative band is a *semilattice*. By $\mathcal{B}(\mathcal{S})$ we denote the class of all bands (semilattices).

Let ϱ be an arbitrary binary relation on a semigroup S. The intersection of all transitive relations on S containing ϱ is a transitive relation on S, denoted by ϱ^{∞} . It is easy to prove that $\varrho^{\infty} = \bigcup_{n \in \mathbb{Z}^+} \varrho^n$. The relation ϱ^{∞} we call the *transitive closure* of ϱ .

Let ϱ be an arbitrary relation on a semigroup S. Then radical $R(\varrho)$ of ϱ is a relation on S defined by:

$$(a,b) \in R(\rho) \Leftrightarrow (\exists p, q \in \mathbf{Z}^+) \ (a^p, b^q) \in \rho.$$

The radical $R(\varrho)$ was introduced by L. N. Shevrin in [19].

An equivalence relation ξ is a *left (right) congruence* if for all $a,b \in S$, $a \xi b$ implies $ca \xi cb$ ($ac \xi bc$). An equivalence ξ is a congruence if it is both left and right congruence. A congruence relation ξ is a *band congruence* on S if S/ξ is a band, i.e. if $a \xi a^2$, for all $a \in S$.

Let ξ be an equivalence on a semigroup S. By ξ^{\flat} we define the largest congruence relation on S contained in ξ . It is well-known that

$$\xi^{\flat} = \{(a, b) \in S \times S \mid (\forall x, y \in S^1) \ (xay, xby) \in \xi\}.$$

For an element a of a semigroup S, the left ideal (the ideal) of S generated by a we denote with L(a) (J(a)) and it we call the principal left ideal (the principal ideal) of S generated by a. Also, a subsemiogroup $\langle a \rangle$ of a semigroup S generated by one element subset $\{a\}$ of S is a monogenic or a cyclic subsemigroup of S.

Let a and b be elements of a semigroup S. Then:

$$\begin{split} a \mid b \Leftrightarrow b \in J(a), & a \mid_{l} b \Leftrightarrow b \in L(a), \\ a \longrightarrow b \Leftrightarrow (\exists n \in \mathbf{Z}^{+}) \ a \mid b^{n}, & a \stackrel{l}{\longrightarrow} b \Leftrightarrow (\exists n \in \mathbf{Z}^{+}) \ a \mid_{l} b^{n}, \\ \text{and} & \longrightarrow - = \longrightarrow \cap (\longrightarrow)^{-1}. \end{split}$$

Also, on a semigroup S the relation \uparrow_l is defined by

$$a \uparrow_l b \Leftrightarrow (\exists n \in \mathbf{Z}^+) b^n \in \langle a, b \rangle a.$$

Recall that a semigroup S is left Archimedean if $a \xrightarrow{l} b$, for all $a, b \in S$. A semigroup S is weakly left Archimedean if $ab \xrightarrow{l} b$, for all $a, b \in S$. A semigroup S is hereditary weakly left Archimedean if

$$(\forall a, b \in S)(\exists i \in \mathbf{Z}^+) \ b^i \in \langle a, b \rangle ab.$$

A semigroup S is power-joined if for every $a, b \in S$ there exists $n, m \in \mathbf{Z}^+$ such that $a^n = b^m$.

For an element a of a semigroup S we introduce the following notation

$$\Sigma(a) = \{ x \in S \mid a \longrightarrow^{\infty} x \}, \qquad \Lambda(a) = \{ x \in S \mid a \stackrel{l}{\longrightarrow} {}^{\infty} x \},$$
$$\Lambda_n(a) = \{ x \in S \mid a \stackrel{l}{\longrightarrow} {}^{n} x \}.$$

On a semigroup S we define the following equivalences by

$$a \sigma b \Leftrightarrow \Sigma(a) = \Sigma(b),$$
 $a \lambda b \Leftrightarrow \Lambda(a) = \Lambda(b),$ $a \lambda_n b \Leftrightarrow \Lambda_n(a) = \Lambda_n(b).$

In [10] is proved that the relation σ is the greatest semilattice congruence on a semigroup, λ is an equivalence and it is a generalization of the well-known Green's equivalence \mathcal{L} .

A semigroup S is λ -simple (σ -simple, λ_n -simple) if $a \lambda b$ ($a \sigma b$, $a \lambda_n b$), for all $a, b \in S$. We denote by Λ the class of all λ -simple semigroups.

2. Special bands of λ -semigroups

For two classes \mathcal{X}_1 and \mathcal{X}_2 of semigroups, $\mathcal{X}_1 \circ \mathcal{X}_2$ will denote the *Mal'cev product* of \mathcal{X}_1 and \mathcal{X}_2 , i.e. the class of all semigroups S on which there exists a congruence ϱ such that S/ϱ belongs to \mathcal{X}_2 and each ϱ -class of S which is a subsemigroup of S belongs to \mathcal{X}_1 .

By \mathcal{LZ} we denote the variety of left zero bands.

Lemma 1. Let S be a semigroup. Then

$$\Lambda = \Lambda \circ \mathcal{LZ}.$$

Proof. Let S be a left zero band Y of λ -simple semigroups S_{α} , $\alpha \in Y$. Assume $a,b \in S$, then $a \in S_{\alpha}$, $b \in S_{\beta}$, for some $\alpha,\beta \in Y$, whence $ab \in S_{\alpha}S_{\beta} \subseteq S_{\alpha\beta} = S_{\alpha}$. Hence, $ab,a \in S_{\alpha}$. So $ab \stackrel{l}{\longrightarrow} {}^{\infty}a$, whence $b \stackrel{l}{\longrightarrow} {}^{\infty}a$. In a similar way it can be prove that $a \stackrel{l}{\longrightarrow} {}^{\infty}b$. Thus $a \stackrel{l}{\longrightarrow} {}^{\infty} \cap (\stackrel{l}{\longrightarrow} {}^{\infty})^{-1}b$ and by Lemma 6 [10] we have that $a\lambda b$. Therefore, S is a λ -simple semigroup.

The converse follows immediately.

Lemma 2.. [6] Let \mathcal{X} be a class of semigroups and let \mathcal{B}_1 and \mathcal{B}_2 be two classes of bands. Then

$$\mathcal{X} \circ (\mathcal{B}_1 \circ \mathcal{B}_2) \subseteq (\mathcal{X} \circ \mathcal{B}_1) \circ \mathcal{B}_2.$$

The lattice **LVB** of all varieties of bands was studied by P. A. Birjukov, C. F. Fennemore, J. A. Gerhard, M. Petrich and others. Here we use the characterization

of \mathbf{LVB} given by J. A. Gerhard and M. Petrich in [12]. They defined inductively three systems of words as follows:

$$\begin{array}{ll} G_2 = x_2 x_1, & H_2 = x_2, & I_2 = x_2 x_1 x_2, \\ G_n = x_n \overline{G}_{n-1}, & H_n = x_n \overline{G}_{n-1} x_n \overline{H}_{n-1}, & I_n = x_n \overline{G}_{n-1} x_n \overline{I}_{n-1}, \end{array}$$

(for $n \ge 3$), and they shown that the lattice **LVB** can be represented by the graph given in Figure 1.

Figure 1.

Theorem 1. [6] Let V be an arbitrary variety of bands. Then

$$\mathcal{LZ} \circ \mathcal{V} = \begin{cases} \mathcal{LZ}, & \text{if } \mathcal{V} \in [\mathcal{O}, \mathcal{LZ}]; \\ \mathcal{RB}, & \text{if } \mathcal{V} \in [\mathcal{RZ}, \mathcal{RB}]; \\ [G_2 = I_2], & \text{if } \mathcal{V} \in [\mathcal{S}, [G_2 = I_2]]; \\ [G_3 = I_3], & \text{if } \mathcal{V} \in [\mathcal{RN}, [G_3 = H_3]]; \\ [G_{n+1} = I_{n+1}], & \text{if } \mathcal{V} \in \left[[\overline{G}_n = \overline{I}_n], [G_{n+1} = I_{n+1}] \right], n \geq 2; \\ [G_{n+1} = H_{n+1}], & \text{if } \mathcal{V} \in \left[[\overline{G}_n = \overline{H}_n], [G_{n+1} = H_{n+1}] \right], n \geq 3. \end{cases}$$

Our next goal is to characterize semigroups from $\Lambda \circ \mathcal{V}$, for an arbitrary variety of bands \mathcal{V} .

Theorem 2. Let V be an arbitrary variety of bands. Then

$$\Lambda \circ \mathcal{V} = \left\{ \begin{array}{ll} \Lambda, & \text{if } \mathcal{V} \in [\mathcal{O}, \mathcal{L}\mathcal{Z}]; \\ \Lambda \circ \mathcal{R}\mathcal{Z}, & \text{if } \mathcal{V} \in [\mathcal{R}\mathcal{Z}, \mathcal{R}\mathcal{B}]; \\ \Lambda \circ \mathcal{S}, & \text{if } \mathcal{V} \in [\mathcal{S}, [G_2 = I_2]]; \\ \Lambda \circ \mathcal{R}\mathcal{N}, & \text{if } \mathcal{V} \in [\mathcal{R}\mathcal{N}, [G_3 = H_3]]; \\ \Lambda \circ \left[\overline{G}_n = \overline{I}_n\right], & \text{if } \mathcal{V} \in \left[\left[\overline{G}_n = \overline{I}_n\right], \left[G_{n+1} = I_{n+1}\right]\right], n \geq 2; \\ \Lambda \circ \left[\overline{G}_n = H_n\right], & \text{if } \mathcal{V} \in \left[\left[\overline{G}_n = \overline{H}_n\right], \left[G_{n+1} = H_{n+1}\right]\right], n \geq 3. \end{array} \right.$$

Proof. By Lemma 1 we have that $\Lambda \circ \mathcal{LZ} = \Lambda$. Let $\mathcal{V} \in [\mathcal{V}_1, \mathcal{V}_2]$, whence $[\mathcal{V}_1, \mathcal{V}_2]$ is some of the intervals of the lattice **LVB** from the theorem. By Theorem 1 we have that $\mathcal{V}_2 = \mathcal{LZ} \circ \mathcal{V}_1$, whence

$$\Lambda \circ \mathcal{V}_1 \subseteq \Lambda \circ \mathcal{V} \subseteq \Lambda \circ \mathcal{V}_2 = \Lambda \circ (\mathcal{LZ} \circ \mathcal{V}_1) \subseteq (\Lambda \circ \mathcal{LZ}) \circ \mathcal{V}_1 = \Lambda \circ \mathcal{V}_1 \text{ (by Lemma 1)}.$$
 Therefore, $\Lambda \circ \mathcal{V}_1 = \Lambda \circ \mathcal{V} = \Lambda \circ \mathcal{V}_2.$

3. Semilattices of matrices of λ -simple semigroups

By the well-known result of A. H. Clifford, any band of λ -simple semigroups is a semillatice of matrices of λ -simple semigroups. These semigroups will be characterized by the following theorem.

Theorem 3.. A semigroup S is a semilattice of matrices of λ -simple semigroups if and only if

$$(2) a \longrightarrow {}^{\infty}b \implies ab \stackrel{l}{\longrightarrow} {}^{\infty}b,$$

for every $a, b \in S$.

Proof. Let S be a semilattice Y of matrices of λ -simple semigroup S_{α} , $\alpha \in Y$. Assume that $a \longrightarrow {}^{\infty}b$, for $a \in S_{\alpha}$, $b \in S_{\beta}$, $\alpha, \beta \in Y$. Then by Lemma 1.4 [18] or Lemma 9 [10] is $\beta \leq \alpha$, whence $b, ba \in S_{\beta}$ and by Theorem 1 [4] we have that $ba \cdot b \xrightarrow{l} {}^{\infty}b$, i.e. $ab \xrightarrow{l} {}^{\infty}b$.

Conversely, since every semigroup S is a semilattice Y of semilattice indecomposable semigroups S_{α} , $\alpha \in Y$, then for $a, b \in S_{\alpha}$, $\alpha \in Y$ we have that $a\sigma b$ (where σ is corresponding the greatest semilattice congruence on S), whence by Lemma 6 [10] $a \longrightarrow {}^{\infty}b$. By Lemma 9 [10] we have that $a \longrightarrow {}^{\infty}b$ in S_{α} , $\alpha \in Y$. From this it follows by (2) that $ab \stackrel{l}{\longrightarrow} {}^{\infty}b$. By Lemma 11 [10] we have that $ab \stackrel{l}{\longrightarrow} {}^{\infty}b$ in S_{α} , $\alpha \in Y$ and by Theorem 1 [4] S_{α} is a matrix of λ -simple semigroups, for all $\alpha \in Y$.

The next theorem gives an explanation why the notion "hereditary weakly left Archimedean" is used.

Theorem 4. The following conditions on a semigroup S are equivalent:

- (i) S is hereditary weakly left Archimedean;
- (ii) any subsemigroup of S is weakly left Archimedean;
- (iii) \uparrow_l is a symmetric relation on S.
- *Proof.* (i) \Longrightarrow (ii) Let T be a subsemigroup of S. For $a,b \in T$ we have that $b^i \in \langle a,b \rangle ab \subseteq Tab$, for some $i \in \mathbf{Z}^+$. Hence, T is a weakly left Archimedean semigroup and therefore S is a hereditary weakly left Archimedean semigroup.
- (ii) \Longrightarrow (i) Assume $a, b \in S$, then $\langle ba, b \rangle$ is a weakly left Archimedean semigroup, whence

$$b^i \in \langle ba, b \rangle ba \cdot b \subseteq \langle a, b \rangle ab$$

for some $i \in \mathbf{Z}^+$.

- (i) \Longrightarrow (iii) Let $a, b \in S$ such that $a \uparrow_l b$, i.e. $b^n \in \langle a, b \rangle a$, for some $n \in \mathbf{Z}^+$. Then $b^n = xa$, for some $x \in \langle a, b \rangle$. For x and a there exists $m \in \mathbf{Z}^+$, $y \in \langle x, a \rangle \subseteq \langle a, b \rangle$ such that $a^m = yax = yb^n$, i.e. $b \uparrow_l a$.
- (iii) \Longrightarrow (i) Let $a,b \in S$, then $b \uparrow_l ab$, whence $ab \uparrow_l b$, i.e. $b^i \in \langle ab,b \rangle ab \subseteq \langle a,b \rangle ab$, for some $i \in \mathbf{Z}^+$.
- T. Tamura [20] proved that in the general case a semilattices of Archimedean semigroups are not subsemigroup closed. Here, we prove that a semilattices of hereditary weakly Archimedean semigroups are subsemigroup closed. By the following theorem we generalize some results obtained in [5].

Theorem 5.. The following conditions on a semigroup S are equivalent:

- (i) S is a semilattice of hereditary weakly left Archimedean semigroups;
- (ii) $(\forall a, b \in S) \ a \longrightarrow b \implies (\exists i \in \mathbf{Z}^+) \ b^i \in \langle a, b \rangle ab;$
- (iii) every subsemigroup of S is a semilattice of hereditary weakly left Archimedean semigroups.

Proof. (i) \Longrightarrow (ii) Let S be a semilattice Y of hereditary weakly left Archimedean semigroups S_{α} , $\alpha \in Y$. Assume $a, b \in S$ such that $a \longrightarrow b$. If $a \in S_{\alpha}$, $b \in S_{\beta}$ for some $\alpha, \beta \in Y$, then $\beta \leq \alpha$, whence $b, ba \in S_{\beta}$. Now

$$b^n \in \langle ba, b \rangle bab \subseteq \langle a, b \rangle ab,$$

for some $n \in \mathbf{Z}^+$. Hence, (ii) holds.

- (ii) \Longrightarrow (i) Assume $a,b \in S$. Since $a \longrightarrow ab$, then by the hypothesis $a \cdot ab \uparrow_l ab$, i.e. $(ab)^n \in \langle a,ab \rangle a^2b$, for some $n \in \mathbf{Z}^+$. Now by Theorem 1 [9] S is a semilattice Y of Archimedean semigroups S_{α} , $\alpha \in Y$. Further, assume $\alpha \in Y$, $a,b \in S_{\alpha}$. Then $a \longrightarrow b$, so by the hypothesis $b^n \in \langle a,b \rangle ab$, for some $n \in \mathbf{Z}^+$. Therefore, S_{α} , $\alpha \in Y$ is an hereditary weakly left Archimedean semigroup.
- (ii) \Longrightarrow (iii) Let T be a subsemigroup of S and $a, b \in T$ such that $a \longrightarrow b$ in T, then $a \longrightarrow b$ in S and by (ii), $b^n \in \langle a, b \rangle ab \subseteq Tab$, for some $n \in \mathbf{Z}^+$. Thus, T is a semilattice of hereditary weakly left Archimedean semigroups.

 $(iii) \Longrightarrow (i)$ This implication follows immediately.

A semilattices of λ -simple semigroups were described in [6] and [9]. Here, by the following theorem we give some new interesting characterizations of these semigroups.

Theorem 6. The following conditions on a semigroup S are equivalent:

- (i) S is a semilattice of λ -simple semigroups;
- (ii) $(\forall a, b \in S) \ a \longrightarrow {}^{\infty}b \implies a \stackrel{l}{\longrightarrow} {}^{\infty}b;$
- (iii) $(\forall a, b \in S) \ a \longrightarrow^{\infty} b \implies a \stackrel{l}{\longrightarrow} {}^{\infty} b$

Proof. (i) \Longrightarrow (ii) Let S be a semilattice Y of λ -simple semigroups S_{α} , $\alpha \in Y$. Assume $a,b \in S$ such that $a \longrightarrow {}^{\infty}b$. Then by Lemma 1.4 (2) [18] (or Lemma 9 (b) [10]) $a \in S_{\alpha}$, $b \in S_{\beta}$, for some $\alpha, \beta \in Y$ and $\beta \leq \alpha$, whence $ba, b \in S_{\beta}$. So $ba \stackrel{l}{\longrightarrow} {}^{\infty}b$. Since $a \stackrel{l}{\longrightarrow} ba \stackrel{l}{\longrightarrow} {}^{\infty}b$, we then have that $a \stackrel{l}{\longrightarrow} {}^{\infty}b$.

(ii) \Longrightarrow (i) Let (ii) hold. By Theorem 1 [10] every semigroup S is a semilattice Y of σ -simple semigroups S_{α} , $\alpha \in Y$. Then for $a,b \in S_{\alpha}$, $\alpha \in Y$, by Theorem 1.1 [18] we have that $a - \!\!\!-^\infty b$, and by Lemma 1.4 (3) [18] $a - \!\!\!-^\infty b$ in S_{α} , $\alpha \in Y$, whence $a - \!\!\!-^\infty b$ in S_{α} , $\alpha \in Y$. So by hypothesis $a - \!\!\!-^1 \!\!\!-^\infty b$ and by Lemma 11 (a) [10] $a - \!\!\!\!-^1 \!\!\!-^\infty b$ in S_{α} , $\alpha \in Y$, since $a,b \in S_{\alpha}$. Thus $a - \!\!\!\!-^1 \!\!\!-^\infty b$ in S_{α} , $\alpha \in Y$, for all $a,b \in S_{\alpha}$ and by Lemma 6 [10] S_{α} , $\alpha \in Y$ is a λ -simple semigroup. Therefore, S is a semilattice of λ -simple semigroups.

(i) \Longrightarrow (iii) Let S be a semilattice Y of λ -simple semigroups S_{α} , $\alpha \in Y$. Assume $a, b \in S$ such that $a - \infty b$. Then by Lemma 1.4 (3) [18] $a, b \in S_{\alpha}$ and $a - \infty b$ in S_{α} , for some $\alpha \in Y$, whence $a\lambda b$ and by Lemma 6 (iv) [10] $a \xrightarrow{l} \infty b$.

(iii) \Longrightarrow (i) Let (iii) hold. Since every semigroup S is a semilattice Y of σ -simple semigroups S_{α} , $\alpha \in Y$, then for $a,b \in S_{\alpha}$, $\alpha \in Y$, by Theorem 1.1 [18] we have that $a - \infty b$, whence $a \stackrel{l}{\longrightarrow} \infty b$ and $a \stackrel{l}{\longrightarrow} \infty)^{-1} b$ in S_{α} . Thus $a \stackrel{l}{\longrightarrow} \infty \cap (\stackrel{l}{\longrightarrow} \infty)^{-1} b$ and by Lemma 6 (iv) [18] S_{α} is a λ -simple semigroup.

Problem 1. By M we denote the class of all matrices (rectangular bands). Let

$$\Lambda \circ \mathcal{M}^{k+1} = (\Lambda \circ \mathcal{M}^k) \circ \mathcal{M}, \quad k \in \mathbf{Z}^+.$$

Describe the structure of semigroups from the following classes

$$\Lambda \circ \mathcal{M}^{k+1}, \quad \left(\Lambda \circ \mathcal{M}^{k+1}\right) \circ \mathcal{B}, \quad \left(\Lambda \circ \mathcal{M}^{k+1}\right) \circ \mathcal{S}.$$

The previous problem can be formulated in the same way if instead the class Λ we take the class of all power-joined semigroups or the class of all λ_n -simple semigroups.

4. Some remarks on λ -equivalence

In this section we give some characterization of λ congruence.

Lemma 3. The following conditions on a semigroup S are equivalent:

- (i) λ is a congruence;
- (ii) $\lambda = \lambda^{\flat}$;
- (iii) λ is a band congruence.

Proof. This assertion follows by Lemma 2.2 [8].

Lemma 4. The following conditions on a semigroup S are equivalent:

- (i) λ^{\flat} is a band congruence;
- (ii) $\lambda^{\flat} = R(\lambda^{\flat});$
- (iii) $(\forall a \in S)(\forall x, y \in S^1)$ $(xay, xa^2y) \in \lambda$.

Proof. (i)⇔(ii) This follows by Lemma 2.1 [8] and Lemma 2.3 [8].

(i)⇔(iii) This follows by Lemma 2.4 [8].

Corollary 1.. If $S \in \Lambda \circ \mathcal{B}$, then

$$(\forall a \in S)(\forall x, y \in S^1) (xay, xa^2y) \in \lambda.$$

Proof. Let S be a band Y of λ -simple semigroups S_{α} , $\alpha \in Y$. Assume $a \in S$ and $x, y \in S$, then $xay, xa^2y \in S_{\alpha}$, for some $\alpha \in y$, whence $(xay, xa^2y) \in \lambda$.

Problem 2. Is the converse of the Corollary 1 holds?

References

- [1] S. Bogdanović, Some characterizations of bands of power-joined semigroups, Algebric conference 1981, Novi Sad, 121–125.
- [2] S. Bogdanović, About weakly commutative semigroup, Mat. Vesnik 5 (18)(33) (1981), 145–148.
- [3] S. Bogdanović, Bands of power-joined semigroups, Acta Sci. Math. 44 (1982), 3-4.
- [4] S. Bogdanović and M. Ćirić, Semilattices of weakly left Archimedean semigroups, FILOMAT (Niš) 9:3 (1995), 603–610.
- [5] S. Bogdanović, M. Ćirić and M. Mitrović, Semilattices of hereditary Archimedean semigroups, Filomat (Niš) 9:3 (1995), 611–617.
- [6] S. Bogdanović, M. Ćirić and B. Novikov, Bands of left Archimedean semigroups, Publ. Math. Debrecen 52/1-2 (1998), 85–101.
- [7] S. Bogdanović, M. Ćirić and Ž. Popović, Semilattice decompositions of semigroups revisited, Semigroup Forum 61 (2000), 263-276.
- [8] S. Bogdanović, Ž. Popović and M. Ćirić, Bands of k-Archimedean semigroups, Semigroup Forum 80 (2010), 426-439.
- [9] M. Čirić and S. Bogdanović, Decompositions of semigroups induced by identities, Semigroup Forum 46 (1993), 329–346.
- [10] M. Ćirić and S. Bogdanović, Semilattice decompositions of semigroups, Semigroup Forum 52 (1996), 119–132.
- [11] M. Ćirić and S. Bogdanović, The lattice of semilattice-matrix decompositions of semi-groups, Rocky Mauntain Math. J. 29 (4) (1999), 1225–1235.

- [12] J. A. Gerhard and M. Petrich, Varieties of bands revisited, Proc. London Math. Soc. 58 (3) (1989), 323–350.
- [13] P. Protić, The band and the semilattice decompositions of some semigroups, Pure Math. and Appl. Ser A 2/1-2 (1991), 141–146.
- [14] P. Protić, On some band decompositions of semigroups, Publ. Math. Debrecen **45/1-2** (1994), 205–211.
- [15] P. Protić, Bands of nil-extensions of right simple semigroups, Publications de l'institut mathématique **62** (76) (1997), 41–45.
- [16] M. S. Putcha, Semilattice decompositions of semigroups, Semigroup Forum 6 (1973), 12–34.
- [17] M. S. Putcha, Bands of t-Archimedean semigroups, Semigroup Forum 6 (1973), 232–239.
- [18] M. S. Putcha, Minimal sequences in semigroups, Trans. Amer. Math. Soc. 189 (1974), 93–106
- [19] L. N. Shevrin, Theory of epigroups I, Mat. Sbornik 185, no. 8 (1994), 129-160 (in Russian).
- [20] T. Tamura, Quasi-orders, generalized Archimedeaness, semilattice decompositions, Math. Nachr. 68 (1975), 201–220.

Addresses:

Stojan Bogdanović

University of Niš, Faculty of Economics, Trg Kralja Aleksandra 11, P.O. Box 121, 18000 Niš, Serbia

E-mail: sbogdan@eknfak.ni.ac.rs

Žarko Popović

University of Niš, Faculty of Economics, Trg Kralja Aleksandra 11, P.O. Box 121, 18000 Niš, Serbia

 $E ext{-}mail: {\tt zpopovic@eknfak.ni.ac.rs}$

Miroslav Ćirić

University of Niš, Faculty of Science, Department of Mathematics, Višegradsa 33, P.O. Box 224, 18000 Niš, Serbia

E-mail: ciricm@bankerinter.net mciric@pmf.pmf.ni.ac.rs