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Summation formulae involving harmonic numbers

Wenchang Chu

Abstract

Several summation formulae for finite and infinite series involving the clas-
sical harmonic numbers are presented.

The classical harmonic numbers are defined by

for m e N.

el

Hy=0 and H,, = Z
k=1

They have interesting applications in various fields, such as analysis, number the-
ory, combinatorics, and computer science. Several important properties of these
numbers can be found, for example, in [10, Sections 6.3 and 6.4].

There exist many elegant identities for finite sums involving harmonic numbers
(cf. [4, 5, 7]). For instance, we have

Xn: (Z)QH,C - <2:) (2H,, — Hay,) (1)

k=0
and
- m\ k(Hpix — Hp)  m(m? —m —n?)
kz_:l(l)k<k> ("HF) T (m4n)2(m+n-—1)2 @)

Identity (1) is due to Paule-Schneider [11] and (2) was proved by Sofo [13].
Of special interest are series involving H,, and related expressions, which can be
exemplified by

> H, * = H? 177t

n_ d Zn_ 217
Z n3 72 an Z n2 360
n=1 n=1

The first formula is a classical result discovered by Euler in 1775. For their proofs
and more series involving H,, refer to [1, 2, 3, 7].
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Continuing the study of harmonic numbers, the aim of this paper is three fold.
First, we offer new identities for sums involving H,. Among others we prove the
following counterpart of identitiy (2) due to Sofo

i(il)k (m> k(Hpqr — Hy) mn(l — Hyyn)

("‘]L‘k) S (mAn)(m+n—-1)

k=1

Second, for an arbitrary natural numbers n, we find the following infinite series
expression (see Theorem 2.3):

> - - 23 (V) St -

1 m=0 k=0

Finally, we review an algebraic identity (see Theorem 3.1 and Theorem 3.2) whose
special case results in

n
Seo(l) Y -k
k=1 1<51 << <ip<ki=1 j‘

which may be a natural extension of the identity proposed by Diaz-Barrero [8].

In order to assure accuracy of the results, the identities involving harmonic
numbers displayed in this paper are verified through Mathematica. This can also be
done by the computer algebra package Sigma developed by Schneider [12], which
has been shown to be efficient in dealing with binomial-harmonic sums .

1 Finite sums involving harmonic numbers

The convolution formula of Chu—Vandermonde is one of the fundamental binomial
identities, which may be restated as

é(—l)k<m2k)<$i—z):(y—x;m—l) )

As has been done by Chu-DeDonno [4, 5] and Paule-Schneider [11], applying deriva-
tive operators to the known binomial identities may lead to summation formulae
involving harmonic numbers. Following this approach, we shall derive, from the bi-
nomial convolution just displayed, several harmonic number identities, resembling
those obtained recently by Sofo [13].

It is not hard to check that (3) can be rewritten in the equivalent form

Where the rlSlng fac‘orla] S gl\/e“ by

(¥)o=1 and (Y)m=yly+1)---(y+m—1) for meN.
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Extending slightly the classical harmonic numbers, we define

for meN.

m
Hy(z) =0 and H,, Z
Now computing the derivative with respect to & and then letting y = n, we get
from (4) the following identity.
Theorem 1.1.

e R

=0

Three special cases of this identity are worthwhile to examine in the sequel.
Firstly for = 0, the corresponding identity reads as

Corollary 1.2.

Z(_l)k(":> (ﬁz) = m+n{Hn 1= Hvrz+7z—1}~ (5)
k

k=0

Then for x =1 and n > 2, we have from Theorem 1.1 the following one

N H 1= nn —
S0 (7)o b T = ey e~ o}

which can easily be simplified through (4) into

i ( ) +k)Hy, _ n(n = 1)(Hnz — Hinin-2) —mn (6)

("*k) - (m+n)(m+n-1)

=0 k

The difference between (5) and (6) leads to the next formula.

Corollary 1.3 (n > 2).

zm: ( ) kHy, _ mn(Hpyn> = Hy o1 = 1) (7)

) (m+n)(m+n-—1)

=0

Finally for = 2 and n > 3, the identity in Theorem 1.1 becomes

“ Hypi2—3/2  2n(n—1)(n—2)(Hy—3 — Hiyn—3)
ZO ( >1+k)(2+k) (T mim(min-Dimin-2

which simplifies again through (4) into

zm: (1+K)(2+k) Hir1 _ n(n=1{(@n—m—)+2(n=2)(Ho—s—Hurn-3)} ®)
— ("‘]L‘k) (m+n)(m+n—1)(m+n—2)
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Observing the relation
(1+k)(2+ k)Hyy1 = K*Hy, + (2 + 3k)Hy + (2 + k)
and then simplifying the sum
Eq(8) — 2Eq(6) — Eq(7) — Eq(4: © = 0,y = n) — Eq(4: = = 1,y = n)
we find the next summation formula.

Corollary 1.4 (n > 3).

k) () - (m+n)(m+n—1)(m+n-—2)

i(—mk (m) K*Hy, _ mn{(2m —n) + (m —n)(Hy—1 — Hpin-3)}
k

k=0

Alternatively, if applying the derivative operator with respect to y at y = n,
then we get from (4) another identity.

Theorem 1.5.

Ié(—l)k (ZL) <fc Z k) f{%’; = EZ :L fim {Hmn — Hppn—1(—) + anl(_x)}'

This is again quite a general formula. First, we state the case x =0 as

Corollary 1.6 (Sofo [13, Corollary 1]).
i m\ Hptk nH,_1 n
(—1)’“( ) = + :
kZ:O k)("Fy m4n o (m+n)?
Then for x =1 and n > 2, the corresponding identity reads as

- m\ (k+1)Hyxe  n(n—1)H, o nin—1)2m+2n—1)
z_:(_l)k(k> "F (mAn)mtn—1)  (m4+n)?2(m+n—1)2"

(9)

k=0
Their difference leads to the following identity.
Corollary 1.7 (Sofo [13, Corollary 2]).

i(_l)k <m) kHpyr mn(2m + 2n — 1) mnH,_1

—~ k) () T (m+n)2m+n—12 (m+n)(m+n—1)

Finally for z = 2 and n > 3, the identity corresponding to Theorem 1.5 yields

Em:(—l)k <m> (L+ k) @2+ k) Hppr _ 20(n = 1)(n = 2)(Hy—3 + Hysn — Hpn—s)
i F ("t") (m+n)(m+n—1)(m+n-—2)

(10)
By combining (10) with Corollaries 1.6 and 1.7, we obtain the next identity.
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Corollary 1.8 (n > 3).

m ok m ]C2Hn+k B mn(m*n)Hn—l
kz:(:)( 1) <k:> (n;rk) T (m+n)(m+n—1)(m+n-2)

mn(4m? + 6m3n — 9m? — 6mn + 4m — 2n> + 3n?)
(m+n)2(m+n—1)2(m+n—2)>2

2 Infinite series involving harmonic numbers

Considering the differences between the expressions given in Corollaries 1.2 and 1.6,
Corollaries 1.3 and 1.7 as well as Corollaries 1.4 and 1.8, we find respectively the
following three identities.

Proposition 2.1.

m m Hn+k — Hk . nHm—i—n

kzzo(_l)k(k) (n:k) T mtn’ (11a)
ok (M E(Hnyr — Hy) — mn(l = Hpngn)

kZ:o( D <k> ("Zk)  (m+n)(m+n—1) (11b)
.- m\ k*(Hyqp, — Hy) ~mn(l+n—2m)+mn(m —n)Hy, iy
;}(l)k(k) (::k) = (m+n)(m+n—1)(m+n_2)+ . (11¢)

They can be considered as counterparts of (2) due to Sofo [13].
In addition, the difference between the expressions given in in Theorems 1.1 and
1.5 reads as

O L

For¢ = 0,1, 2, the special cases corresponding to x = ¢ and n = i+1 give respectively
the following three identities.

Proposition 2.2.

m m (_1)k B Hm .
;)(k>(k+1)2_m++1’ (13a)
Y m (_1)k — Hm 2 — 1

Z(k>(k+2)2_(m+;§(m+2)’ (13b)

b
Il
o

NE

432 maD)m+2m+3) (13¢)

m> (—1)F 2H 43 — 3
k

i

b
I
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Observe that
Hm+1 _ 1 Hm+1 _ Hm+2
(m+1)(m+2) (Mm+2)?2 m+1 m+2

Dividing both sides of (13a) by m + 2 and then summing over 0 < m < oo, we
derive through the telescoping method the formula

(71)]6 7’/T2
z:: n+1 T;O%mko(k)(kﬂ)?G (14)

which is well-known and can be found, for example, in [1, Equation 3.44].
Analogously, we can deduce from (13b) the identity

I R = 09

m=0 k=0
In view of
2Hm+3 -3 _ Hm+1 _ 2Hm+2 Hm+3
(m+1(m+2)(m+3) m+1 m+2 m+3
we get from (13c) further
= 2H,.»-3 s (m\ (=1)F 1
_Smi2 T S A 16
e e eI Vil = S
In general for z =n — 1, we can show from (12) that there holds the identity
m
m\ (=1)* (n—1)! {
= i = oo . 17
Z(k)(k+n)2 (m+1)n m+n n—1 ( )

k=0
According to the partial fraction decomposition
(n—1)! 2": n—1\(=1)"1!
(m+1), = \i-1) m+i

the three formulae just exhibited suggest that

(n—1)! { - o (n—1\ Hyyy
1N H?n n Hn— } = -1) . s 18
(m+1), - ! ;( ) i—1)m+i (18)
Writing
1
Heri = Hm+n - —
j=ir " T
we see that the last equality is equivalent to the following one
(n—1)! n—1 (—1)=1t
—H, ;= . T~ 19
w1 = 2 i) o (19)

1<i<j<n

which can be verified, without difficulty, by induction on n. Then (17) and (18)
lead us to the following surprising formula.
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Theorem 2.3.

1

o )k
mX::om—i—l {m+n_ " 1} n;};)( )k—i—n 2T (n—1)%

This can be accomplished through the limiting process

0o N
E= Z M{Hmﬁ-n - Hn—l}
M
-1
— lim (n {Hm+n Hn,l}

Il
%
85
T
—
=
L
RS
> 3
|
—_ =
N——
=
+
>

M M k-1 k
Hyr H; H; Hj
mgomw_;j ;J +;j+M

and then applying the binomial identity

= n—1\ ofm—2 _
Z ( )-(—1) <n—€> where £=1,2,---.,n

=L

we can evaluate the infinite series as follows:

n

k—1

= = ;U)’“(Z: D Zl fjj _ KK;M (Z - 1) (—i})k

-2 (e 2 () e e

1<i<n 1<i<n

149

(20)

It should be pointed out that the infinite double series treated in this subsection
cannot be evaluated by series rearrangement because they are not absolutely con-

vergent!
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3 Diaz-Barrero’s monthly problem 11064

Diaz-Barrero [8] proposed the following monthly problem

" e 1 1
> o (=1)ktt (k> > i (21)
k=1 1<i<j<k

Subsequently, Diaz-Barrero et al [9] extended it with an extra variable z. In fact,
there exists another generalization, which may be reproduced as the following alge-
braic identity

Theorem 3.1 (Chu—Yan [6, Theorem 9]).

> (i) (1) S My

k 0<j1<jp<-<jp<ki=1

Compared with Theorems 2 and 3 in [9], this theorem not only is more general
with multiple /-fold sum, but also has more compact expression. In particular when
x — 1 and n — n — 1, we deduce easily from this theorem the following identity,
which may be considered as a natural extension of (21).

Corollary 3.2.

ser() £ MG

k=1 1<j1<jo<--<je<ki=1 Ji

The proof of Theorem 3.1 included in [6] employed binomial inversions. In fact,
we can prove it directly. For simplicity, denote by  the multiple sum displayed in
Theorem 3.1. According to the binomial relation

n\ (z+k\ " _(r+n\[x+n -1
k k S \n—k n
the Q-sum can be reformulated, by interchanging the summation order, as follows:

o)=Y IS en (i)

0<j1<ja<--<jp<ni=1 k=j¢

Similar to (20), recall the following well-known binomial identity

S () = (T (P e

Then we can evaluate the innermost sum with respect to k in closed form

S () = (T ) e ()

k=j¢
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which permits us to reduce the 2-sum accordingly to the following one

(), 2, s 2 e ()

0<j1<ja<---<jg_1<ni=1 Je=je—1

Evaluating the last innermost sum with respect to j; again by (22)
n .
> (T = e (T )R
N n—=Je n—72-1/) r+n
Je=Je—1
we see that the Q-sum becomes consequently

o) b, 2, e & e ()

0<j1<jo<-<jp_9<n =1 Je—1=Je—2

Iterating this process ¢-times leads us finally to the equality

0 rT+n\ 1 r+n—1) 1 z+n T
n (x4 n)t n S (x+n)f\ n Jaxdn
Canceling the common binomial coefficient from this equation, we get the closed
expression stated in Theorem 3.1. O]
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