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Abstract

In this paper first, we establish a general solution of the non-linear Kro-
necker product system (P⊗Q)(t)y′(t)+(R⊗S)(t)y(t) = f(t, y(t)) with the help
of variation of parameters formula. Finally, we prove existence and unique-
ness results for the non-linear Kronecker product system satisfying general
boundary condition Uy = α, by using Schauder-Tychonov’s and Brouwer’s
fixed point theorems.

1 Introduction

The importance and applications of the Kronecker products in various fields of
science and technology are well known. These Kronecker products are also used
in studying the behavior of various functions of stochastic matrices in the field of
statistics [7]. In finding solutions to non-linear as well as non-homogeneous matrix
systems, the construction of Green’s matrix is vital. However, the theory involving
rectangular matrices have many difficulties due to non-existence of usual inverse of a
matrix. Here by a suitable transformation, the rectangular matrices are transformed
into non-singular square matrices and the solutions are finally expressed in terms
of rectangular matrices [5].

In this paper, we focus our attention to the following Kronecker product boun-
dary value problem associated with the first order non-linear system

(P⊗Q)(t)y′(t) + (R⊗ S)(t)y(t) = f(t, y(t)) (1)

satisfying the general boundary conditions

Uy = α (2)
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where P(t), Q(t), R(t) and S(t) are rectangular matrices of order m× n and y(t)

is of order n2 × 1, f ∈ C[[0,b]× Rn2×1,Rm2×1], the components of P(t), Q(t), R(t)
and S(t) are continuous on [0, b]. We assume through out this paper that the rows
of P(t), Q(t) are linearly independent on [0, b] and the system (1) is consistent. We
assume for the sake of convenience that f(t, 0) ≡ 0, so that the system (1) admits

trivial solution. The operator U : C[0,b] → Rm2×1, where C[0, b] is the space of
all n2-vector valued continuous bounded functions on [0, b]. Let Rm×n denote the
space of m× n matrices, whose elements are real numbers.

In section 2, we develop general solution of the homogeneous Kronecker product
system and also establish the general solution of the non-linear Kronecker product
system (1) with the help of variation of parameters formula.

In section 3, we formulate the integral equation corresponding to the boundary
value problem (1) and (2) and obtain existence, existence and uniqueness theorems
by using Schauder-Tychonov’s theorem and Brouwer’s fixed point theorem respec-
tively.

2 Preliminaries

In this section we obtain the general solution to the Kronecker product system (1)
by using variation of parameters method.

Lemma 1. ([6]) If A is an m× n matrix whose rows are linearly independent and
system of equations

AX = b (3)

is consistent, then there exists a unique solution to (3) given by x = AT(AA
T

)
−1

b.

By using the transformation y(t) = (PT ⊗QT)(t)z(t), the equation

(P⊗Q)(t)y′(t) + (R⊗ S)(t)y(t) = 0 (4)

can be transformed into

z′(t) = −A−1(t)B(t)z(t) (5)

and the equation (1) is transformed into

z′(t) = −A−1(t)B(t)z(t) + A−1(t)f(t, (P
T ⊗QT)(t)z(t)) (6)

where A(t) = (P(t)P
T

(t)⊗Q(t)Q
T

(t)) and

B(t) = (P(t)⊗Q(t))(P
T

(t)⊗QT(t))′ + (R(t)P
T

(t)⊗ S(t)Q
T

(t)).

Definition 1. Any set of n linearly independent solutions of (5) is a fundamental
set of solutions. The matrix with these elements as columns is called a fundamental
matrix for the given equation.



Rectangular Kronecker product systems 47

Theorem 1. If the system (4) is consistent, then any solution of (4) is of the form

(P
T ⊗QT)(t)Φ(t)c, where Φ(t) is a fundamental matrix of (5) and c is a constant

vector of order m2 × 1.

Proof. The transformation y(t) = (P
T ⊗QT)(t)z(t) transforms the equation (4)

into (5). Since Φ(t) is a fundamental matrix of (5), it follows that any solution
of z(t) is of the form z(t) =Φ(t)c, where c is a constant vector of order m2 × 1.

Hence y(t) = (P
T ⊗QT)(t)Φ(t)c.

Theorem 2. Any solution y(t) of the non-homogeneous matrix differential equation
(1) is of the form

y(t) = (P
T ⊗QT)(t)Φ(t)c + ȳ(t),

where ȳ(t) is a particular solution of (1).

Proof. It can easily verified that for any constant m2 × 1 vector c,

(P
T ⊗QT)(t)Φ(t)c + ȳ(t)

is a solution of (1). Now to show that every solution is of this form. Let y(t)
be any solution of (1) and ȳ(t) be a particular solution of (1). Then it can be
easily verified that y(t) − ȳ(t) is a solution of (4). Hence by Theorem 1, we have

y(t)−ȳ(t)= (P
T ⊗QT)(t)Φ(t)c. Therefore y(t) = (P

T ⊗QT)(t)Φ(t)c + ȳ(t).

Theorem 3. ([5]) A particular solution ȳ(t) of (1) is of the form

ȳ(t) = (P
T ⊗QT)(t)Φ(t)

t∫
0

Φ−1(s)(PP
T ⊗QQT)

−1
(s)f(s, y(s))ds.

3 Main Results

In this section we first, obtain the existence theorem for the boundary value problem
(1) and (2) by using Schauder-Tychonov’s fixed point theorem. Further, we establish
existence and uniqueness theorem for the boundary value problem (1), (2) with
the help of Brouwer’s fixed point theorem. In this section, we use the notation
‖f‖∞ = sup

t∈[0,b]
‖f(t)‖.

The general solution y(t) = (P
T ⊗QT)(t)Φ(t)c of the homogeneous equation (4)

satisfies the general boundary condition (2) if and only if

U[(P
T ⊗QT)(.)Φ(.)c] = Wc

where W is the square matrix whose columns are values of U on the corresponding
columns of

(P
T ⊗QT)(.)Φ(.).
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Therefore the general solution of (1) can be written as

y(t) = (P
T ⊗QT)(t)Φ(t)c + ψ(t, y), (7)

where

ψ(t, y) = (P
T ⊗QT)(t)Φ(t)

t∫
0

Φ−1(s)(PP
T ⊗QQT)

−1
(s)f(s, y(s))ds.

This solution satisfies the boundary condition matrix (2) if and only if

Uy = α = Wc + Uψ(., y).

This equation in ‘c’ has a unique solution for some α ∈ Rm2×1 if and only if

c = W−1[α−Uψ(., y)]. (8)

From the above discussion, it follows that the boundary value problem (1) and
(2) possesses a solution on [0, b], if a function y(t) can be found that satisfies the
integral equation

y(t) = (P
T ⊗QT)(t)Φ(t)W

−1
[α−Uψ(., y)] + ψ(t, y) (9)

Now we prove the following existence theorem.

Theorem 4. Define V : [0,b]→ R
m2×1

by

V(t) = max
‖y(t)‖≤β

{Φ−1(t)(PP
T ⊗QQT)

−1
(t)f(t, y(t))}

and the operator K by
Kh = W−1[α−Uψ(., y)]

for every h ∈ Bβ , where Bβ is the closed ball of C[0, b] centered at origin with radius
β > 0. Then the boundary value problem (1) and (2) possesses at least one solution
defined on the interval [0, b]. If L1L2(M + N) ≤ β, where

L1 = max
t∈[0,b]

∥∥∥(P
T ⊗QT)(t)

∥∥∥ ,L2 = max
t∈[0,b]

‖Φ(t)‖ ,M = sup
h∈Bβ

‖Kh‖

and

N = max
t∈[0,b]

t∫
0

V(s)ds.

Proof. We first, show that the operator T : Bβ → C[0,b] defined by

Ty(t) = (PT ⊗QT)(t)Φ(t)[Kh +

t∫
0

Φ−1(s)(PP
T ⊗QQT)

−1
(s)f(s, y(s))ds]. (10)
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has a fixed point in Bβ . For t, t1 ∈ [0,b], consider
‖Ty(t)− Ty(t1)‖

=

∥∥∥∥∥∥(P
T ⊗QT)(t)Φ(t)[Kh +

t∫
0

Φ−1(s)(PP
T ⊗QQT)

−1
(s)f(s, y(s))ds]

−(P
T ⊗QT)(t1)Φ(t1)[Kh +

t1∫
0

Φ−1(s)(PP
T ⊗QQT)

−1
(s)f(s, y(s))ds]

∥∥∥∥∥∥
≤ L1(M + N) ‖Φ(t)− Φ(t1)‖ + L2(M + N)

∥∥∥(P
T ⊗QT)(t)− (P

T ⊗QT)(t1)
∥∥∥

+L

∥∥∥∥∥∥
t1∫
t

V(s)ds

∥∥∥∥∥∥
where L = L1L2.

Given ε > 0, there exists a δ(ε) > 0 satisfying

‖Φ(t)− Φ(t1)‖ < ε

3L1(M + N)
, (11)

∥∥∥(P
T ⊗QT)(t)− (P

T ⊗QT)(t1)
∥∥∥ < ε

3L2(M + N)
, (12)

and ∥∥∥∥∥∥
t1∫
t

V(s)ds

∥∥∥∥∥∥ < ε

3L
, (13)

for every t, t1 ∈ [0,b] with |t− t1| < δ(ε).

This is clear, because Φ(t) and (P
T ⊗QT)(t) are uniformly continuous on [0, b]

and the function H(t) =
t∫
0

V(s)ds is uniformly continuous on the interval [0, b].

Inequalities (11),(12) and (13) imply that the set TBβ is equi-continuous. Now,
taking the norm on both sides of (10), we have

‖Ty(t)‖ =

∥∥∥∥∥∥(P
T ⊗QT)(t)Φ(t)[Kh +

t∫
0

Φ−1(s)(PP
T ⊗QQT)

−1
(s)f(s, y(s))ds]

∥∥∥∥∥∥
≤
∥∥∥(P

T ⊗QT)(t)
∥∥∥ ‖Φ(t)‖

‖Kh‖+

∥∥∥∥∥∥
t∫

0

V(s)ds

∥∥∥∥∥∥


≤ L(M + N) ≤ β.

Thus TBβ ⊂ Bβ and hence TBβ is relatively compact.
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Next, we show that T is continuous on Bβ . Let {ym(t)}∞m=1 ⊂ Bβ and y ∈ Bβ
be such that ‖ym − y‖ → 0 as m→∞. It follows that

‖Tym − Ty‖ =
∥∥∥(P

T ⊗QT)(t)Φ(t){W−1[α−Uψ(., ym]

+

t∫
0

Φ−1(s)(PP
T ⊗QQT)

−1
(s)f(s, ym(s))ds}

−(P
T ⊗QT)(t)Φ(t){W−1[α−Uψ(., y)]

+

t∫
0

Φ−1(s)(PP
T ⊗QQT)

−1
(s)f(s, y(s))ds]

∥∥∥
≤ L{L

∥∥W−1
∥∥ ‖U‖+ 1}

t∫
0

∥∥Φ−1(s)
∥∥ ∥∥∥(PP

T ⊗QQT)
−1

(s)
∥∥∥

×‖f(s, ym(s))− f(s, y(s))‖ds.

The above integral tends to zero as m → ∞. By the application of Schauder-
Tychonov fixed point theorem, there exists a fixed point y ∈ Bβwhich is a solution
of the boundary value problem (1) and (2).

The following theorem establishes the existence and uniqueness criteria for the
boundary value problem (1) and (2).

Theorem 5. Let Bβ be the closed ball of C [0, b] centered at the origin with radius
β > 0. Assume that there exists a constant λ > 0 such that for every γ ∈ Bβ , the
solution y(t, 0, γ) of (1) with y(0) = γ exists on [0, b], is unique and satisfies

sup
t∈[0,b]

‖y(t, 0, γ)‖ ≤ λ.

Let V(t), N and L = L1L2 be as in Theorem 4 and assume that∥∥W−1
∥∥ [ ‖α‖+ ‖U‖LN] ≤ β.

Then the boundary value problem (1) and (2) has a unique solution on any interval
[0, b].

Proof. For every γ ∈ Bβ , consider the operator T defined by

Tγ = W−1[α−Uψ1(., y(., 0, γ))], (14)

where

ψ1(t, y(t, 0, γ)) = (PT ⊗QT)(t)Φ(t)

t∫
0

Φ−1(s)(PP
T ⊗QQT)

−1
(s)f(s, y(s, 0, γ))ds.
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By taking norm on both sides of the equation (14), we have

‖Tγ‖ =
∥∥W−1[α−Uψ1(., y(., 0, γ))]

∥∥
≤
∥∥W−1

∥∥ [ ‖α‖+ ‖U‖LN] ≤ β.
Thus TBβ ⊂ Bβ . Now, we prove the continuity of T, we first show the continuity
of y(t, 0, γ) with respect to γ.

Let ym and y be solutions of the system of equations

(P⊗Q)(t)y′(t) + (R⊗ S)(t)y(t) = f(t, y(t)), y(0) = γm

(P⊗Q)(t)y′(t) + (R⊗ S)(t)y(t) = f(t, y(t)), y(0) = γ

respectively.
Let zm and z denote the solutions of the system of equations:

z′(t) = −A−1(t)B(t)z(t) + A−1(t)f(t, (P
T ⊗QT)(t)z(t)), z(0) = km,

z′(t) = −A−1(t)B(t)z(t) + A−1(t)f(t, (P
T ⊗QT)(t)z(t)), z(0) = k,

respectively, obtained by using the transformation y(t) = (P
T ⊗QT)(t)z(t).

Let {km}∞m=1 ⊂ Bβ and k ∈ Bβ be such that‖km − k‖ → 0 as m→∞. Our as-
sumptions implies that there exists a constant λ > 0 such that

‖ym(t)‖∞ ≤ λ

⇒
∥∥∥(P

T ⊗QT)(t)zm(t)
∥∥∥
∞
≤
∥∥∥(P

T ⊗QT)(t)
∥∥∥
∞
‖zm(t)‖∞

≤ L1 ‖zm(t)‖∞ ≤ λ.
Therefore

‖zm(t)‖∞ ≤
λ

L1
(m = 1, 2, 3, . . . )and ‖z(t)‖∞ ≤

λ

L1
,

for all t ∈ [0,b]. Then

‖z′m(t)‖∞ ≤
λ

L1
sup

t∈[0,b]

∥∥A−1(t)B(t)
∥∥+

sup
‖(PT⊗QT)(t)zm(t)‖∞≤λ,t∈[0,b]

∥∥∥A−1(t)f(t, (P
T ⊗QT)(t)zm(t))

∥∥∥ .
The above inequality proves the sequence of functions {zm(t)} is equi-continuous
and uniformly bounded and hence by Ascoli’s Lemma, there exists a subsequence
{zmj

(t)}∞j=1 of {zm(t)}∞m=1 such that zmj
(t)→ z̄(t) as j→∞ uniformly on [0,b],

where z̄(t) ∈ C[0,b].
Taking the limit as j →∞ in

zmj
(t) = zmj

(0)−
t∫

0

A−1(s)B(s)zmj
(s)ds +

t∫
0

A−1(s)f(s, (P
T ⊗QT)(s)zmj

(s))ds,
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we obtain

z̄(t) = k−
t∫

0

A−1(s)B(s)z̄(s)ds +

t∫
0

A−1(s)f(s, (P
T ⊗QT)(s)z̄(s))ds.

Hence from uniqueness of solutions of initial value problems, it follows that

ȳ(t) = y(t)

and every sequence of {ym(t)} contains a subsequence which is convergent uniformly
to y(t) on [0, b]. Thus {ym(t)} converges to y(t) uniformly on [0, b]. Note that
if km ∈ Bβ(m = 1, 2, 3, . . .) and k ∈ Bβ such that ‖km − k‖ → 0 as m→∞. Then
‖y(t, 0, γm)− y(t, 0, γ)‖ → 0 as m→∞. Thus the function y(t, 0, γ) is continuous
with respect to γ and uniformly continuous with respect to ’t’ on [a, b] . Consider

‖Tγm − Tγ‖

≤
∥∥W−1

∥∥ ‖U‖L

b∫
0

∥∥Φ−1(s)
∥∥ ∥∥∥(PP

T ⊗QQT)
−1

(s)
∥∥∥

‖[f(s, y(s, 0, γm))− f(s, y(s, 0, γ))]‖ds→ 0 as m→∞.

This proves the continuity of T on Bβ . From Brouwer’s fixed point theorem, there
exists a fixed point γ0 ∈ Bβ such that Tγ0 = γ0 which results a solution to the
boundary value problem. Hence there exists a unique solution to the boundary
value problem (1) and (2).
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