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The upper connected edge geodetic number of a graph

A.P. Santhakumaran, J. John

Abstract

For a non-trivial connected graph G, a set S ⊆ V (G) is called an edge
geodetic set of G if every edge of G is contained in a geodesic joining some
pair of vertices in S. The edge geodetic number g1(G) of G is the minimum
order of its edge geodetic sets and any edge geodetic set of order g1(G) is an
edge geodetic basis. A connected edge geodetic set of G is an edge geodetic
set S such that the subgraph G[S] induced by S is connected. The minimum
cardinality of a connected edge geodetic set of G is the connected edge geodetic
number of G and is denoted by g1c(G). A connected edge geodetic set of
cardinality g1c(G) is called a g1c- set of G or connected edge geodetic basis
of G. A connected edge geodetic set S in a connected graph G is called a
minimal connected edge geodetic set if no proper subset of S is a connected
edge geodetic set of G. The upper connected edge geodetic number g+1c(G)
is the maximum cardinality of a minimal connected edge geodetic set of G.
Graphs G of order p for which g1c(G) = g+1c = p are characterized. For positive
integers r,d and n ≥ d + 1 with r ≤ d ≤ 2r, there exists a connected graph
of radius r, diameter d and upper connected edge geodetic number n. It is
shown for any positive integers 2 ≤ a < b ≤ c, there exists a connected graph
G such that g1(G) = a, g1c(G) = b and g+1c(G) = c.

1 Introduction

By a graph G = (V,E), we mean a finite undirected connected graph without loops
or multiple edges. The order and size of G are denoted by p and q, respectively.
For basic graph theoretic terminology we refer to Harary [4]. The distance d(u, v)
between two vertices u and v in a connected graph G is the length of a shortest
u − v path in G. An u − v path of length d(u, v) is called an u − v geodesic. It is
known that this distance is a metric on the vertex set V (G). A vertex x is said to
lie on a u− v geodesic P if x is a vertex of P including the vertices u and v. For a
vertex v of G, the eccentricity e(v) is the distance between v and a vertex farthest
from v. The minimum eccentricity among the vertices of G is the radius, rad G,
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and the maximum eccentricity is its diameter, diam G of G. A vertex v is an
extreme vertex of a graph G if the subgraph induced by its neighbors is complete.
A geodetic set of G is a set S ⊆ V (G) such that every vertex of G is contained in a
geodesic joining some pair of vertices in S. The geodetic number g(G) of G is the
minimum order of its geodetic sets and any geodetic set of order g(G) is called a
g-set or geodetic basis. The geodetic number of a graph was introduced in [1, 5] and
further studied in [2,3]. It was shown in [5] that determining the geodetic number
of a graph is NP-hard problem. The connected geodetic number was studied by
Santhakumaran et al. in [8]. A connected geodetic set of G is a geodetic set S such
that the subgraph G[S] induced by S is connected. The minimum cardinality of
a connected geodetic set of G is the connected geodetic number G and is denoted
by gc(G). A connected geodetic set of cardinality gc(G) is called a gc- set of G
or a connected geodetic basis of G. The upper connected geodetic number and
the forcing connected geodetic number of a graph was introduced and studied by
Santhakumaran et al. in [9]. A connected geodetic set S in a connected graph G
is called a minimal connected geodetic set if no proper subset of S is a connected
geodetic set of G. The upper connected geodetic number g+c (G) is the maximum
cardinality of a minimal connected geodetic set of G.

The edge geodetic number of a graph was studied by Santhakumaran and John in
[7]. A set S ⊆ V (G) is called an edge geodetic set of G if every edge of G is contained
in a geodesic joining some pair of vertices in S. The edge geodetic number g1(G) of
G is the minimum order of its edge geodetic sets and any edge geodetic set of order
g1(G) is an edge geodetic basis. The upper edge geodetic number and the forcing
edge geodetic number of a graph was introduced and studied by Santhakumaran
and John in [10]. A connected edge geodetic set of G is an edge geodetic set S
such that the subgraph G[S] induced by S is connected. The minimum cardinality
of a connected edge geodetic set of G is the connected edge geodetic number of G
and is denoted by g1c(G). A connected edge geodetic set of cardinality g1c(G) is
called a g1c- set of G or connected edge geodetic basis of G. The connected edge
geodetic number of a graph was intoduced and studied by Santhakumaran and John
in [11]. Although the edge geodetic number is greater than or equal to the geodetic
number for an arbitrary graph, the properties of the edge geodetic sets and results
regarding edge geodetic number are quite different from that of geodetic concepts.
These concepts have many applications in location theory and convexity theory.
There are interesting applications of these concepts to the problem of designing the
route for a shuttle and communication network design. In the case of designing
the route for a shuttle, although all the vertices are covered by the shuttle when
considering geodetic sets, some of the edges may be left out. This drawback is
rectified in the case of edge geodetic sets and hence considering edge geodetic sets is
more advantageous to the real life application of routing problem. In particular, the
edge geodetic sets are more useful than geodetic sets in the case of regulating and
routing the goods vehicles to tranport the commodities to important places. This
is the motivation behind the introduction and study of edge geodetic concepts. The
following are some of the main results proved in [11]. Connected graphs of order
p with connected edge geodetic number 2 are characterized. Various necessary
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conditions for the connected edge geodetic number of a graph to be p− 1 or p are
given. It is shown that every pair k, p of integers with 3 ≤ k ≤ p is realizable as the
connected edge geodetic number and order of some connected graph. For positive
integers r, d and n ≥ d+1 with r ≤ d ≤ 2r, there exists a connected graph of radius
r, diameter d and connected edge geodetic number n. If p, d and n are integers such
that 2 ≤ d ≤ p − 1 and d + 1 ≤ n ≤ p, then there exists a connected graph G of
order p, diameter d and g1c(G) = n. Also if p, a and b are positive integers such
that 2 ≤ a < b ≤ p, then there exists a connected graph G of order p, g1(G) = a
and g1c(G) = b.

In this paper, we introduced and study the uper connected edge geodetic nmber
and the forcing connected connected edge geodetic number of a graph. Throughout
this paper, G denotes a connected graph with at least two vertices. The following
theorems are used in the sequel.

Theorem 1.1. ([7]) Each extreme vertex of a connected graph G belongs to every
edge geodetic set of G.

Theorem 1.2. ([7]) For any non-trivial tree T with k end vertices, g1(T ) = k.

Theorem 1.3. ([11]) Each cut vertex of a connected graph G belongs to every
connected edge geodetic set of G.

Theorem 1.4. ([11]) For a connected graph G, g1c(G) ≥ 1+ diam G.

2 The upper connected edge geodetic number of a
graph

Definition 2.1. A connected edge geodetic set S in a connected graph G is
called a minimal connected edge geodetic set if no proper subset of S is a connected
edge geodetic set of G. The upper connected edge geodetic number g+1c(G) is the
maximum cardinality of a minimal connected edge geodetic set of G.

Example 2.2. For the graphG given in Figure 2.1, S = {v1, v3, v4} is a connected
edge geodetic basis of G so that g1c(G) = 3 and S′ = {v2, v3, v4, v5} is a connected
edge geodetic set of G and it is clear that no proper subset of S′ is a connected edge
geodetic set of G and so S′ is a minimal connected edge geodetic set of G. Since
|V (G)| = 5, it follows that g+1c(G) = 4.

Every minimum connected edge geodetic set of G is a minimal connected edge
geodetic set of G. The converse is not true. For the graph G given in Figure 2.1,
S′ = {v2, v3, v4, v5} is a minimal connected edge geodetic set and is not a minimum
connected edge geodetic set of G.

Proposition 2.3. For a connected graph G of order p, 2 ≤ g1c(G) ≤ g+1c(G) ≤ p.

Proof. Any connected edge geodetic set needs at least two vertices and so g1c(G) ≥
2. Since every minimum connected edge geodetic set is a minimal connected edge
geodetic set, g1c(G) ≤ g+1c(G). Also, since V (G) induces a connected edge geodetic
set of G, it is clear that g+1c(G) ≤ p. Thus 2 ≤ g1c(G) ≤ g+1c(G) ≤ p.
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Figure 2.1: G

For the complete graphK2, g1c(K2) = 2 and for any non-trivial tree T of order p,
g+1c(T ) = p. Thus the bounds in Proposition 2.3 are sharp. Also, all the inequalities
in Proposition 2.3 are strict. For the graph G given in Figure 2.1, g1c(G) = 3,
g+1c(G) = 4, p = 5 so that 2 < g1c(G) < g+1c(G) < p.

Now we introduce a semi-extreme vertex of a graph and proceed to characterize
graphs of order p for which g1c(G) = p.

Definition 2.4. A vertex v in a connected graph G is said to be semi-extreme
vertex of G if ∆(< N(v) >) = |N(v)| − 1, where ∆ denotes the maximum degree
of a graph.

Remark 2.5. Every extreme vertex of G is a semi-extreme vertex of G. The
converse is not true. For the graph G given in Figure 2.2, v1, v3, v4 and v5 are the
semi-extreme vertices of G, whereas v3 and v4 are not extreme vertices of G.

Figure 2.2: G

Theorem 2.6. Each semi-extreme vertex of a graph G belongs to every edge geode-
tic set of G.

Proof. Let S be an edge geodetic set of G. Suppose that there exists a semi-extreme
vertex u such that u /∈ S. Since ∆(< N(u) >) = |N(u)| − 1, there exists v ∈ N(u)
such that deg<N(u)>(v) = |N(u)|−1. Since S is an edge geodetic set of G, the edge
e = uv lies on a x − y geodesic P : x = x0, x1, . . . , xi = u, xi+1 = v, . . . , xn = y
with x, y ∈ S. Then u ̸= x, y. Since deg<N(u)>(v) = |N(u)| − 1, it follows that v
is adjacent to xi−1, which is a contradiction to the fact that P is a x− y geodesic.
Hence each edge geodetic set contains all the semi-extreme vertices.
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Now, we observe that Theorem 1.1 is a corollary to Theorem 2.6.

Corollary 2.7. For a connected graph G with k semi-extreme vertices and l cut
vertices, g+1c(G) ≥max{2, k + l}.

Proof. This follows from Theorems 1.3 and 2.6.

The following theorem characterizes graphs G of order p for which g+1c(G) = p.

Theorem 2.8. For a connected graph G of order p, the following are equivalent:

(i) g+1c(G) = p

(ii) g1c(G) = p

(iii) Every vertex of G is either a cut vertex or a semi-extreme vertex of G.

Proof. (i) implies (ii). Let g+1c(G) = p. Then S = V (G) is the unique minimal
connected edge geodetic set of G. Since no proper subset of S is a connected edge
geodetic set, it is clear that S is the unique minimum connected edge geodetic set
of G and so g1c(G) = p.
(ii) implies (iii). Let g1c(G) = p. Let v be a vertex of G such that v is neither a cut
vertex of G nor a semi-extreme vertex of G. Since v is not a semi-extreme vertex
of G, for every u ∈ N(v), there exists x ∈ N(v) − {u} such that ux /∈ E(G). Let
S = V (G)−{v}. The edge uv lies on the geodesic u, v, x and it follows that S is an
edge geodetic set of G. Also, since v is not a cut vertex of G, < S > is connected
and so S is a connected edge geodetic set of G. Hence g1c(G) ≤ p − 1, which is a
contradiction.
(iii) implies (i). This follows from Corollary 2.7.

Corollary 2.9.

(i) For the complete graph Kp(p ≥ 2), g1c(Kp) = g+1c(Kp) = p.

(ii) For any tree T of order p, g1c(T ) = g+1c(T ) = p.

Proposition 2.10. If G is a connected graph of order p with g1c(G) = p − 1,
then g+1c(G) = p− 1.

Proof. Since g1c(G) = p − 1, it follows from Proposition 2.3 that g+1c(G) = p or
p − 1. If g+1c(G) = p, then by Theorem 2.8, g1c(G) = p, which is a contradiction.
Hence g+1c(G) = p− 1.

Remark 2.11. The converse of the Proposition 2.10 is false. For the graph G given
in Figure 2.1, g+1c(G) = 4 = p− 1 and g1c(G) = 3 = p− 2.

It is proved in [11] that for the cycle Cp, g1c(Cp) =

{ p
2 + 1 if p is even⌊
p
2

⌋
+ 2 if p is odd.

For the cycle Cp, the same result is also true for g+1c(Cp).
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Theorem 2.12. For the cycle Cp, g
+
1c(Cp) =

{ p
2 + 1 if p is even⌊
p
2

⌋
+ 2 if p is odd.

Proof.
Case 1. p is even. Let p = 2n. Let C2n : v1, v2, v3, ..., v2n, v1 be the cycle of order
2n. Let S = {v1, v2, v3, ..., vn+1}. It is clear that S is a connected edge geodetic
set of Cp. We prove that S is a minimal connected edge geodetic set of Cp. Let S

′

be a proper subset of S. Then there is a vertex, say x ∈ S such that x /∈ S′. If
x = v1 or vn+1, then S′ is not an edge geodetic set of Cp. If x ̸= v1, vn+1, then the
subgraph of G induced by S′ is not connected. Hence it follows that S is a minimal
connected edge geodetic set of Cp and so g+1c(G) ≥ |S| = n+ 1.

Now, we claim that g+1c(G) = n + 1. Otherwise, there is a minimal connected
edge geodetic set W such that |W | = m > n + 1. Since W is a connected edge
geodetic set of Cp, the subgraph induced by W is a path say vi+1, vi+2, ..., vi+m. It
is clear that T = {vi+1, ..., vi+n+1} is a connected edge geodetic set of Cp and so W
is not a minimal connected edge geodetic set of G, which is a contradiction. Thus
g+1c(G) = n+ 1 = p

2 + 1.
Case 2. p is odd. Let p = 2n+1. Let C2n+1 : v1, v2, v3, . . . , v2n+1, v1 be the cycle
of order 2n+ 1. Let S = {v1, v2, v3, . . . , vn+2}. Then, as in Case 1 it is seen that S
is a minimal connected edge geodetic set of Cp and g+1c(Cp) = n+ 2 =

⌊
p
2

⌋
+ 2.

The next theorem follows from Theorem 1.4 and Proposition 2.3.

Theorem 2.13. For a connected graph G, g+1c(G) ≥ 1+diam G.

For every connected graph, rad G ≤ diam G ≤ 2 rad G. Ostrand [6] showed that
every two positive integers a and b with a ≤ b ≤ 2a are realizable as the radius and
diameter, respectively, of some connected graph. Now, Ostrand’s theorem can be
extended so that the upper connected edge geodetic number can also be prescribed.

In view of Theorem 2.13, we have the following realization result.

Theorem 2.14. For positive integers r, d and n ≥ d + 1 with r ≤ d ≤ 2r, there
exists a connected graph G with rad G = r, diam G = d and g+1c(G) = n.

Proof. If r = 1, then d = 1 or 2. If d = 1, let G = Kn. Then by Corollary 2.9
(i), g+1c(G) = n. If d = 2, let G = K1,n−1. Then by Corollary 2.9 (ii), g+1c(G) = n.
Now, let r ≥ 2. We construct a graph G with the desired properties as follows:
Case 1. r = d. For n = d + 1, let G = C2r. Then it is clear that r = d and by
Theorem 2.12, g+1c(G) = d+1 = n. Now, let n ≥ d+2. Let C2r : u1, u2, . . . , u2r, u1,
be the cycle of order 2r. Let G be the graph obtained from C2r by adding the new
vertices x1, x2, . . . , xn−r−1 and joining each xi (1 ≤ i ≤ n− r−1) with u1 and u2 of
C2r. The graph G is shown in Figure 2.3. It is easily verified that the eccentricity
of each vertex of G is r so that rad G = diam G = r. Let S = {x1, x2, ...., xn−r−1}.
Then S is the set of all extreme vertices of G with |S| = n− r−1. It is clear that S
is not a connected edge geodetic set of G. Let T = S ∪ {u1, u2, u3, ..., ur+1}. Then
T is a connected edge geodetic set of G. We claim that T is a minimal connected
edge geodetic set of G. Assume, to the contrary, that T is not a minimal connected
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Figure 2.3: G

edge geodetic set of G. Then there is a proper subset M of T such that M is a
connected edge geodetic set of G. Furthermore, it follows from Theorem 1.1 that
every vertex of T that is not in M can only be ui for some i.
Case 1a. (T − M) ∩ {u1, ur+1} ̸= ϕ. Assume without loss of generality that
u1 ∈ T −M . Then it is clear that the edge ur+1ur+2 does not lie on any geodesic
joining a pair of vertices of M and so M is not a connected edge geodetic set of G,
which is a contradiction.
Case 1b. (T −M) ∩ {u1, ur+1} = ϕ. Then there exists a vertex x ∈ (T −M) ∩
{u2, u3, . . . , ur} and thus the subgraph induced by M is not connected and so M
is not a connected edge geodetic set of G, which is a contradiction. Thus T is a
minimal connected edge geodetic set of G and so g+1c(G) ≥ |T | = n.

Now, we prove that g+1c(G) = n. Suppose that g+1c(G) > n. Let M ′ be a minimal
connected edge geodetic set with |M ′| = m > n. By Theorem 1.1, M ′ contains S
and since m > n, M ′ contains at least r+2 vertices of C2r. Since M

′ is a connected
edge geodetic set of G, u1 or u2 must belong to M ′ and the subgraph induced by
M ′−S is a path, say u2, u3, ..., um−n+r+2. It is clear that T = S∪{u2, u3, ..., ur+2}
is a connected edge geodetic set of G and so M ′ is not a minimal connected edge
geodetic set of G. Thus g+1c(G) = n.
Case 2. Suppose r < d ≤ 2r. Let C2r : v1, v2, . . . , v2r, v1 be a cycle of order 2r and
let Pd−r+1 : u0, u1, . . . , ud−r be a path of order d−r+1. Let H be a graph obtained
from C2r and Pd−r+1 by identifying v1 in C2r and u0 in Pd−r+1. Now, we add
n−d−1 new vertices w1, w2, . . . , wn−d−1 to the graphH and join each vertex wi(1 ≤
i ≤ n−d−1) to the vertex ud−r−1 and obtain the graph G of Figure 2.4. Then rad
G = r and diam G = d. Let S = {v1, u1, u2, . . . , ud−r−1, ud−r, w1, w2, . . . , wn−d−1}
be the set of all cut-vertices and extreme vertices of G. By Theorems 1.1 and
1.3, every connected edge geodetic set of G contains S. It is clear that S is not a
connected edge geodetic set of G. Let T = S∪{v2, v3, . . . , vr+1}. It is clear that T is
a connected edge geodetic set of G and so g1c(G) ≤ |T | = n. Then by an argument
similar to that given in the proof of Case 1 of this theorem, it can be proved that
g+1c(G) = n .
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Figure 2.4: G

In view of Proposition 2.3, we have the following realization result.

Theorem 2.15. For any positive integers 2 ≤ a < b ≤ c, there exists a connected
graph G such that g1(G) = a, g1c(G) = b and g+1c(G) = c.

Proof. If 2 ≤ a < b = c, let G be any tree of order b with a end-vertices.
Then it follows respectively from Theorem 1.3 and Corollary 2.9 (ii) that g1(G) =
a, g1c(G) = b and g+1c(G) = c. Let 2 ≤ a < b < c. Now, we consider four cases.
Case 1. a > 2 and b−a ≥ 2. Then b−a+2 ≥ 4. Let Pb−a+2 : v1, v2, ..., vb−a+2 be
a path of length b− a+1. Add c− b+ a− 1 new vertices w1, w2, ..., wc−b+1, u1, u2,
. . . , ua−2 to Pb−a+2 and join w1, w2, ..., wc−b+1 to both v1 and v3 and also join
u1, u2, ..., ua−2 to v2, there by producing the graph G of Figure 2.5. Let S =
{u1, u2, ..., ua−2, vb−a+2} be the set of all extreme vertices of G. It is clear that S is
not an edge geodetic set of G. Since S ∪{v1} is an edge geodetic set of G, it follows
from Theorem 1.1 that g1(G) = a. Let S1 = S ∪ {v2, v3, v4, ..., vb−a+1}. It is clear
that S1 is not a connected edge geodetic set of G. Since S1 ∪ {v1} is a connected
edge geodetic set of G it follows from Theorems 1.1 and 1.3 that g1c(G) = b.

Figure 2.5: G

Let S2 = S1∪{w1, w2, ..., wc−b+1}. It is clear that S2 is a connected edge geodetic
set of G. If S2 is not a minimal connected edge geodetic set, then there is a proper
subset T of S2 such that T is a connected edge geodetic set of G. Let v ∈ S2 and
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v /∈ T . By Theorems 1.1 and 1.3, it is clear v = wi, for some i = 1, 2, ..., c − b+ 1.
Clearly, this wi does not lie on a geodesic joining any pair of vertices of T and so
T is not a connected edge geodetic set of G, which is a contradiction. Thus S2 is
a minimal connected edge geodetic set of G and so g+1c(G) ≥ c. Since the order of
the graph is c+ 1, it follows that g+1c(G) = c.
Case 2. Let a > 2 and b−a = 1. Since c > b, we have c−b+1 ≥ 2. For the graph
G given in Figure 2.6, we can prove as in case 1, S = {u1, u2, ..., ua−2, v1, v3} is a
minimum edge geodetic set, S1 = S ∪ {v2} is a minimum connected edge geodetic
set and S2 = V (G) − {v1} is a minimal connected edge geodetic set of G so that
g1(G) = a, g1c(G) = b and g+1c(G) = c.

Figure 2.6: G

Case 3. Let a = 2 and b − a = 1. Then b = 3. For the graph G given in
Figure 2.7, we can prove as in case 1, S = {v1, v3} is a minimum edge geodetic set,
S1 = {v1, v2, v3} is a minimum connected edge geodetic set and S2 = V (G)− {v1}
is a minimal connected edge geodetic set so that g1(G) = a, g1c(G) = b and
g+1c(G) = c.

Figure 2.7: G
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Case 4. Let a = 2 and b − a ≥ 2. Then b ≥ 4. For the graph G given in
Figure 2.8, we can prove as in Case 1, S = {v1, vb} is a minimum edge geodetic set,
S1 = {v1, v2, ..., vb} is a minimum connected edge geodetic set, S2 = V (G)−{v1} is a
minimal connected edge geodetic set so that g1(G) = a, g1c(G) = b and g+1c(a) = c.

Figure 2.8: G
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