
Filomat 26:2 (2012), 341–351
DOI 10.2298/FIL1202341D

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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A comment on some recent results concerning the Drazin inverse
of an anti-triangular block matrix

Chun Yuan Denga

aSchool of Mathematical Sciences, South China Normal University, Guangzhou 510631, P.R. China.

Abstract. In this note we give formulae for the Drazin inverse MD of an anti-triangular special block matrix

M =
(

A B
C 0

)
under some conditions expressed in terms of the individual blocks, which generalize some

recent results given by Changjiang Bu [7, 8] and Chongguang Cao [10], etc.

1. Introduction

This research came up when we read some recent papers [7]-[10] which were concerned about calcu-
lating the Drazin inverses or group inverses of the anti-triangular special block matrices. The concept
of the Drazin inverse plays an important role in various fields like Markov chains, singular differential
and difference equations, iterative methods, etc. [1]-[6], [15]. Our purpose is to give representations for

the Drazin inverse of the anti-triangular block matrix M =
(

A B
C 0

)
under some conditions expressed in

terms of the individual blocks. Block matrices of this form arise in numerous applications, ranging from
constrained optimization problems to the solution of differential equations [1], [2], [3], [13], [16], [17].

Let P = P2 be an idempotent matrix. C. Cao in 2006 [10] gave the group inverse of every one of the seven

matrices:
(

PP∗ P
P 0

)
,
(

P P
PP∗ 0

)
,
(

PP∗ PP∗

P 0

)
,
(

P P
P∗ 0

)
,
(

P PP∗

PP∗ 0

)
,
(

P PP∗

P∗ 0

)
and

(
P∗ P
P 0

)
.

Recently, C. Bu, et al. in [7–9] has obtained the new representations for the group inverse of a 2 × 2 anti-

triangular matrix M =
(

A A
B 0

)
, where A2 = A in terms of the group inverse of AB. In the present paper

we will find explicit expressions for the Drazin inverse of a 2 × 2 anti-triangular operator matrix M under
other weaker constraints. Our results generalize some recent results given by Changjiang Bu [7, 8] and
Chong Guang Cao [10], etc.

In this note, let A be an n × n complex matrix. We denote by N(A),R(A) and rank(A) the null space,
the range and the rank of matrix A, respectively. The Drazin inverse [2] of A ∈ Cn×n is the unique complex
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matrix AD ∈ Cn×n satisfying the relations

AAD = ADA, ADAAD = AD, AkAAD = Ak for all k ≥ r, (1)

where r = ind(A), called the index of A, is the smallest nonnegative integer such that rank(Ar+1) = rank(Ar).
We will denote by Aπ = I −AAD the projection onN(Ar) along R(Ar). In the case ind(A) = 1, AD reduces to
the group inverse of A, denoted by A#. In particular, A is nonsingular if and only if ind(A) = 0.

2. Key lemmas

In this section, we state some lemmas which will be used to prove our main results.

Lemma 2.1. (see [7, Lemma 2.5]) Let A,B ∈ Cn×n such that rank(A) = r. If A2 = A and rank(B) = rank(BAB),
then A and B can be written as

A =
(

I 0
0 0

)
and B =

(
B1 B1X

YB1 YB1X

)
with respect to space decomposition Cn = R(A)⊕N(A),where AB, BA and B1 ∈ Cr×r are group invertible, X ∈ Cr×(n−r)

and Y ∈ C(n−r)×r.

The following lemma concerns the Drazin inverse of 2 × 2 block matrix.

Lemma 2.2. (see Lemma 2.2 and Corollary 2.3 in [14]) Let M =

(
A B
C D

)
such that D is nilpotent and

ind(D) = s. If BC = 0 and BD = 0, then

MD =

 AD (AD)2B
s−1∑
i=0

DiC(AD)i+2
s−1∑
i=0

DiC(AD)i+3B

 .
Lemma 2.3. (see [11, Theorem 2.3]) Let A,B ∈ Cn×n such that AB = BA. Then

(1) (AB)D = BDAD = ADBD.

(2) ABD = BDA and ADB = BAD.

(3) (AB)π = Bπ when A is invertible.

Lemma 2.4. Let M =

(
A A
B 0

)
such that A is nilpotent and ind(A) = s. If BA = 0, then M is nilpotent with

ind(M) ≤ s + 1.

Proof. Note that, if BA = 0, then Ms+1 =

(
As+1 + AsB As

0 0

)
= 0.

Let M =
(

A B
C 0

)
, where A ∈ Cd×d, B ∈ Cd×(n−d) and C ∈ C(n−d)×d. N. Castro-González and E. Dopazo

(see [3, Theorem 4.1]) had proved that, if CADA = C and ADBC = BCAD, then (see [3], pp.267)

MD =


(
AD)2[W1 + (AD)2BCW2

]
(BC)πA

[
(BC)D + (AD)2W1(BC)π

]
B

C
[
(BC)D + (AD)2W1(BC)π

]
C

[
−A((BC)D)2 + (AD)3W2(BC)π

]
B

 , (2)
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where

r = ind
[
(AD)2BC

]
, W1 =

r−1∑
j=0

(−1)jC(2j + 1, j)(AD)2j(BC)j, W2 =

r−1∑
j=0

(−1)jC(2j + 2, j)(AD)2j(BC)j.

As a directly application of [3, Theorem 4.1]) and Lemma 2.3, we get the following result.

Lemma 2.5. Let M =
(

A A
B 0

)
such that A is nonsingular and ind(B) = r. If BA = AB, then

MD =

(
W1Bπ +W2BBπ BD +W1Bπ[

BBD +W1BBπ
]

A−1 −BD +W2BBπ

)
,

where

W1 =

r−1∑
j=0

(−1) jC(2 j + 1, j)A− j−1B j and W2 =

r−1∑
j=0

(−1) jC(2 j + 2, j)A− j−2B j.

In Lemma 2.5, if A = I, then(
I I
B 0

)D

=

(
Y1Bπ BD + Y2Bπ

BBD + Y2BBπ −BD + (Y1 − Y2)Bπ

)
,

where Y2 = W1 =
r−1∑
j=0

(−1) jC(2 j + 1, j)B j and Y1Bπ = Y2Bπ +W2BBπ =
r−1∑
j=0

(−1) jC(2 j, j)B jBπ. This result had

been given by N. Castro-González and E. Dopazoin in their celebrated paper [3, Theorem 3.3].

3. Main results

Our first purpose is to obtain a representation for MD of the matrix M =
(

A A
B 0

)
under some conditions,

where A,B are n × n matrices. Throughout our development, we will be concerned with the anti-upper-

triangular matrix M =

(
A B
C 0

)
. However, the results we obtain will have an analogue for anti-lower-

triangular matrix M =
(

0 A
C B

)
. The following result generalizes the recent result given by Changjiang

Bu, et al (see [7, Theorem 3.1]).

Theorem 3.1. Let M =
(

A A
B 0

)
and B̃ = (I − Aπ)B(I − Aπ) with ind(A) = s and ind(B̃) = r. If

BAAπ = 0 and (I − Aπ)(BA − AB)(I − Aπ) = 0,

then

MD =

R + s∑
i=0

(
AAπ AAπ

AπBAπ 0

)i (
0 0

AπB(I − Aπ) 0

)
Ri+2

 × [
I + R

(
0 0

(I − Aπ)BAπ 0

)]
, (3)

where

R =

 Γ1B̃π + Γ2B̃B̃π B̃D + Γ1B̃π[
B̃B̃D + Γ1B̃B̃π

]
AD −B̃D + Γ2B̃B̃π

 ,
Γ1 =

r−1∑
j=0

(−1) jC(2 j + 1, j)(AD) j+1B̃ j, Γ2 =
r−1∑
j=0

(−1) jC(2 j + 2, j)(AD) j+2B̃ j.

(4)
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Proof. Let X1 = N(Aπ) and X2 = R(Aπ). Then X = X1 ⊕ X2. Since A is ind(A) = s, A has the form

A = A1 ⊕ A2 with A1 nonsingular, As
2 = 0 and AD = A−1

1 ⊕ 0. (5)

Using the decomposition X ⊕ X = X1 ⊕ X2 ⊕ X1 ⊕ X2, we have

M =


A1 0 A1 0
0 A2 0 A2

B1 B3 0 0
B4 B2 0 0




X1
X2
X1
X2

 −→


X1
X2
X1
X2

 . (6)

Define I0 = I ⊕
(

0 I
I 0

)
⊕ I. It is clear that I0, as a matrix from X1 ⊕ X2 ⊕ X1 ⊕ X2 onto X1 ⊕ X1 ⊕ X2 ⊕ X2, is

nonsingular with I0 = I∗0 = I−1
0 . Hence

MD =




I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I




A1 A1 0 0
B1 0 B3 0
0 0 A2 A2

B4 0 B2 0




I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I




D

= I0

(
A0 B0
C0 D0

)D

I0, (7)

where

A0 =

(
A1 A1
B1 0

)
, B0 =

(
0 0

B3 0

)
, C0 =

(
0 0

B4 0

)
, D0 =

(
A2 A2
B2 0

)
. (8)

If (I − Aπ)(BA − AB)(I − Aπ) = 0, using the representations in (5) and (6), we get A1 is nonsingular and
A1B1 = B1A1. Since ind[(I −Aπ)B(I −Aπ)] = ind[B1] = r, by Lemma 2.5, we get

R =: I0

(
A0 0
0 0

)D

I0

= I0


W1Bπ1 +W2B1Bπ1 BD

1 +W1Bπ1 0 0[
B1BD

1 +W1B1Bπ1
]

A−1
1 −BD

1 +W2B1Bπ1 0 0
0 0 0 0
0 0 0 0

 I0

=


W1Bπ1 +W2B1Bπ1 0 BD

1 +W1Bπ1 0
0 0 0 0[

B1BD
1 +W1B1Bπ1

]
A−1

1 0 −BD
1 +W2B1Bπ1 0

0 0 0 0


=

 Γ1B̃π + Γ2B̃B̃π B̃D + Γ1B̃π[
B̃B̃D + Γ1B̃B̃π

]
AD −B̃D + Γ2B̃B̃π

 ,
where

W1 =
r−1∑
j=0

(−1) jC(2 j + 1, j)A− j−1
1 B j

1, W2 =
r−1∑
j=0

(−1) jC(2 j + 2, j)A− j−2
1 B j

1,

Γ1 =
r−1∑
j=0

(−1) jC(2 j + 1, j)(AD) j+1B̃ j, Γ2 =
r−1∑
j=0

(−1) jC(2 j + 2, j)(AD) j+2B̃ j.
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Since BAAπ = 0, we get B3A2 = 0 and B2A2 = 0. By Lemma 2.4, we get D0 is nilpotent with ind(D0) ≤ s + 1.
Note that B3A2 = 0 implies that B0C0 = 0 and B0D0 = 0. By Lemma 2.2, we obtain

MD = I0

(
A0 B0
C0 D0

)D

I0 = I0

 AD
0 (AD

0 )2B0
s∑

i=0
Di

0C0(AD
0 )i+2

s∑
i=0

Di
0C0(AD

0 )i+3B0

 I0

= I0

[(
AD

0 0
0 0

)
+

s∑
i=0

(
0 0
0 Di

0

) (
0 0

C0 0

) (
(AD

0 )i+2 0
0 0

)]
×

[
I +

(
AD

0 0
0 0

) (
0 B0
0 0

)]
I0

=

R + s∑
i=0

(
AAπ AAπ

AπBAπ 0

)i (
0 0

AπB(I − Aπ) 0

)
Ri+2

 × [
I + R

(
0 0

(I − Aπ)BAπ 0

)]
.

(9)

We remark that, from the above theorem we get the following corollaries.

Corollary 3.2. Let M =
(

A A
B 0

)
.

(i) If AB = BA, ind(A) = 1 and ind(B) = r, then

MD =

(
Γ1Bπ + Γ2BBπ (I − Aπ)BD + Γ1Bπ[

BBD + Γ1BBπ
]

AD −(I − Aπ)BD + Γ2BBπ

)
,

where

Γ1 =
r−1∑
j=0

(−1) jC(2 j + 1, j)(A#) j+1B j, Γ2 =
r−1∑
j=0

(−1) jC(2 j + 2, j)(A#) j+2B j.

(ii) If A,B are group invertible and AB = BA, then

MD =

(
A#Bπ (I − Aπ)B# + A#Bπ

[I − Bπ] A# −(I − Aπ)B#

)
.

In addition, if AπB = 0, then AπB# = 0, MD becomes the group inverse and

M# =

(
A#Bπ B# + A#Bπ

[I − Bπ] A# −B#

)
.

(iii) If A,B are invertible, then

M−1 =

(
0 B−1

A−1 −B−1

)
.

Corollary 3.3. Let M =
(

A A
B 0

)
, where A,B ∈ Cn×n, A = A2 and ind(ABA) = r. Then

(i) (see [9, Theorem 3.2])

MD =

[
R +

(
0 0

(I − A)BA 0

)
R2

] [
I + R

(
0 0

AB(I − A) 0

)]
, (10)

where

R =
(

X + Y (AB)DA + X[
(AB)D + X

]
ABA −(AB)DA + Y

)
,

X =
r−1∑
j=0

(−1) jC(2 j + 1, j)(AB)π(AB) jA, Y =
r−1∑
j=0

(−1) jC(2 j + 2, j)(AB)π(AB) j+1A.
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(ii) (see [7, Theorem 3.1]) M# exists if and only if rank(B) = rank(BAB) and

M# =

(
A − (AB)# + (AB)#A − (AB)#ABA A + (AB)#A + (AB)#ABA
(BA)#B − (BA)#(AB)#AB − (BA)# −(BA)#

)
. (11)

Proof. (i) If A = A2, we have ind(A) = 1, A = AD, Aπ = I − A,

B̃D = [(I − Aπ)B(I − Aπ)]D = (ABA)D = AB[(AAB)D]2A = (AB)DA

and

B̃ j = (ABA) j = (AB) jA = A(BA) j.

So

B̃π = (ABA)π = I − (ABA)D(ABA) = I − (AB)DABA = I − A + (AB)πA = I − A + A(BA)π.

Hence, Γ1 and Γ2 in (4) reduce as

Γ1 =
r−1∑
j=0

(−1) jC(2 j + 1, j)(AD) j+1B̃ j =
r−1∑
j=0

(−1) jC(2 j + 1, j)(AB) jA,

Γ2 =
r−1∑
j=0

(−1) jC(2 j + 2, j)(AD) j+2B̃ j =
r−1∑
j=0

(−1) jC(2 j + 2, j)(AB) jA.

Let

X = Γ1B̃π =
r−1∑
j=0

(−1) jC(2 j + 1, j)(AB)π(AB) jA, Y = Γ2B̃B̃π =
r−1∑
j=0

(−1) jC(2 j + 2, j)(AB)π(AB) j+1A.

Then R in (4) reduces as

R =

 Γ1B̃π + Γ2B̃B̃π B̃D + Γ1B̃π[
B̃B̃D + Γ1B̃B̃π

]
AD −B̃D + Γ2B̃B̃π

 = (
X + Y (AB)DA + X[

(AB)D + X
]

ABA −(AB)DA + Y

)
.

By Theorem 3.1, we get

MD =

R + 1∑
i=0

(
0 0

(I − A)B(I − A) 0

)i (
0 0

(I − A)BA 0

)
Ri+2

 × [
I + R

(
0 0

AB(I − A) 0

)]

=

[
R +

(
0 0

(I − A)BA 0

)
R2

] [
I + R

(
0 0

AB(I − A) 0

)]
.

(ii) See Theorem 3.1 in [7] for the proof that M# exists if and only if rank(B) = rank(BAB). By Lemma 2.1,
we have ind(ABA) ≤ 1, AB and BA are group invertible. So, by item (i), we get X = (AB)πA, Y = 0,

R =
(

(AB)πA (AB)#A + (AB)πA
(AB)#ABA (AB)#A − (AB)#A

)
andR2 =

(
(AB)πA + (AB)#A (AB)πA − [(AB)#]2A
−(AB)#A (AB)#A + [(AB)#]2A

)
.

Thus, collecting the above computations in the expression (10) for MD, we get the statement of (11).
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Note that
r−1∑
j=0

(−1) jC(2 j, j)B jBπ =
r−1∑
j=0

(−1) jC(2 j + 1, j)B jBπ +
r−1∑
j=0

(−1) jC(2 j + 2, j)B j+1Bπ.

In Corollary 3.3, if we set A = I and Z =
r−1∑
j=0

(−1) jC(2 j, j)B jBπ, then we get Y = Z − X and Corollary 3.3 (resp.

Theorem 3.1) reduces as the following result which had been given in [3].

Corollary 3.4. ([3, Theorem 3.3]) Let M =
(

I I
B 0

)
, where B ∈ Cn×n and ind(B) = r. Then

MD =

(
Z BD + X

BDB + XB −BD + Z − X

)
,

where X =
r−1∑
j=0

(−1) jC(2 j + 1, j)B jBπ, Z =
r−1∑
j=0

(−1) jC(2 j, j)B jBπ.

Our next purpose is to obtain a representation for the Drazin inverse of block antitriangular matrix

M =
(

A B
C 0

)
, where A,C ∈ Cn×n, which in some different ways generalizes recent results given in [10, 14].

We start introducing a different method to give matrix block representation. Let S = −CADB, ind(A) = m
and ind(S) = n. In (5) and (6), if we set

X1 = N(Aπ), X2 = R(Aπ), Y1 = N(Sπ) and Y2 = R(Sπ).

Then X ⊕ Y = X1 ⊕ X2 ⊕ Y1 ⊕ Y2. In this case, A and S have the forms

A = A1 ⊕ A2 with A1 nonsingular, Am
2 = 0 and AD = A−1

1 ⊕ 0,

S = S1 ⊕ S2 with S1 nonsingular, Sn
2 = 0 and SD = S−1

1 ⊕ 0.
(12)

Using the decomposition X ⊕ Y = X1 ⊕ X2 ⊕ Y1 ⊕ Y2, we have

M =


A1 0 B1 B3
0 A2 B4 B2

C1 C3 0 0
C4 C2 0 0




X1
X2
Y1
Y2

 −→


X1
X2
Y1
Y2

 . (13)

Note that the generalized Schur complement

S = S1 ⊕ S2 = −CADB = −
(

C1 C3
C4 C2

) (
A−1

1 0
0 0

) (
B1 B3
B4 B2

)
=

(
−C1A−1

1 B1 −C1A−1
1 B3

−C4A−1
1 B1 −C4A−1

1 B3

)
.

Comparing the two sides of the above equation, we have

S1 = −C1A−1
1 B1, S2 = −C4A−1

1 B3, C1A−1
1 B3 = 0 and C4A−1

1 B1 = 0.

In this case, I0 = I ⊕
(

0 I
I 0

)
⊕ I as a matrix from X1 ⊕ X2 ⊕ Y1 ⊕ Y2 onto X1 ⊕ Y1 ⊕ X2 ⊕ Y2 is nonsingular

with I0 = I∗0 = I−1
0 . Hence

MD = I0


A1 B1 0 B3
C1 0 C3 0
0 B4 A2 B2

C4 0 C2 0


D

I0 := I0

(
A0 B0
C0 D0

)D

I0, (14)
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where

A0 =

(
A1 B1
C1 0

)
, B0 =

(
0 B3

C3 0

)
, C0 =

(
0 B4

C4 0

)
, D0 =

(
A2 B2
C2 0

)
. (15)

Since the Schur complement of A1 in A0 is −C1A−1
1 B1 = S1 and S1 is nonsingular, it follows that A0 is

nonsingular with

A−1
0 =

(
A−1

1 + A−1
1 B1S−1

1 C1A−1
1 −A−1

1 B1S−1
1

−S−1
1 C1A−1

1 S−1
1

)
. (16)

Let R = I0

(
A−1

0 0
0 0

)
I0. Using the rearrangement effect of I0, we get

R =
(

AD + ADBSDCAD −ADBSD

−SDCAD SD

)
. (17)

The expression (17) is called the generalized-Banachiewicz-Schur form of the matrix M and can be found
in some recent papers [14].

Now, we are in position to prove the following theorem which provides expressions for MD.

Theorem 3.5. Let M =
(

A B
C 0

)
and S = −CADB with ind(A) = m. If

(I − Sπ)CAπB = 0, (I − Sπ)CAπA = 0, (I − Aπ)BSπC = 0, BSπCAπ = 0, (18)

then

MD =

R + m+1∑
i=0

(
AAπ AπBSπ

SπCAπ 0

)i (
0 AπB(I − Sπ)

SπC(I − Aπ) 0

)
Ri+2

 × [
I + R

(
0 (I − Aπ)BSπ

(I − Sπ)CAπ 0

)]
.

where R is defined as in (17).

Proof. Let A0,B0,C0 and D0 be defined by (15). Similar to the proof of Theorem 3.1, it is trivial to check that
the conditions in (18) imply that B0C0 = 0 and B0D0 = 0. Note that

(
A2 B2
0 0

)k

=

(
Ak

2 Ak−1
2 B2

0 0

)
= 0 for k ≥ m + 1.

The condition BSπCAπ = 0 implies that B2C2 = 0 and
(

A2 B2
0 0

) (
0 0

C2 0

)
= 0. So

Dm+2
0 =

(
A2 B2
C2 0

)m+2

=

[(
A2 B2
0 0

)
+

(
0 0

C2 0

)]m+2

=

(
A2 B2
0 0

)m+2

+

(
0 0

C2 0

) (
A2 B2
0 0

)m+1

= 0.

(19)
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D0 is nilpotent and ind(D0) ≤ m + 2. By Lemma 2.2 and the proof in (9), we obtain

MD = I0

(
A0 B0
C0 D0

)D

I0 = I0


AD

0 (AD
0 )2B0

m+1∑
i=0

Di
0C0(AD

0 )i+2
m+1∑
i=0

Di
0C0(AD

0 )i+3B0

 I0

= I0

[(
AD

0 0
0 0

)
+

m+1∑
i=0

(
0 0
0 Di

0

) (
0 0

C0 0

) (
(AD

0 )i+2 0
0 0

)]
×

[
I +

(
AD

0 0
0 0

) (
0 B0
0 0

)]
I0

=

R + m+1∑
i=0

(
AAπ AπBSπ

SπCAπ 0

)i (
0 AπB(I − Sπ)

SπC(I − Aπ) 0

)
Ri+2


×

[
I + R

(
0 (I − Aπ)BSπ

(I − Sπ)CAπ 0

)]
.

We remark that our result has generalized some results in the literature. In [10], Chong Guang Cao has

given the group inverse of M =
(

PP∗ P
P 0

)
, where P is an idempotent. Note that

(PP∗)D = (PP∗)# = (PP∗)+ and PP∗(PP∗)DP = PP∗(PP∗)+P = P.

If A = PP∗, B = C = P in Theorem 3.5, then

S = −CADB = −P(PP∗)DP = −(PP∗)DP, SD = −PP∗P, Sπ = I − P.

It follows that

AπB = 0, AπA = 0, BSπ = 0, SπC = 0

and R in (17) reduces as

R =
(

AD + ADBSDCAD −ADBSD

−SDCAD SD

)
=

(
0 P

PP∗(PP∗)D −PP∗P

)
.

By a direct computation we get the following result.

Corollary 3.6. [10, Theorem 2.1] Let P be an idempotent matrix and M =
(

PP∗ P
P 0

)
. Then

M# = R
[
I + R

(
0 0

P[I − PP∗(PP∗)D] 0

)]
=

(
PP∗(I − P) P

(PP∗)2(P − I) + P −PP∗P

)
.

In Corollay 3.6, the reason that MD is replaced by M# is M satisfies the relation MMDM = M. Similar to
Corollary 3.6, if M is the matrix from the set{(

P P
PP∗ 0

)
,

(
PP∗ PP∗

P 0

)
,

(
P P
P∗ 0

)
,

(
P PP∗

PP∗ 0

)
,

(
P PP∗

P∗ 0

)}
,

then M satisfies Theorem 3.5. Hence, Theorem 2.1–Theorem 2.6 in [10] are all the special cases of our
Theorem 3.5.
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If A in Theorem 3.5 is nonsingular and A−1BC is group invertible, then Aπ = 0 and ind(A) = 0 and

0 = BC(A−1BC)π = BC − BC(A−1BC)DA−1BC = BC − BCA−1BC[(A−1BC)D]2A−1BC

= B
[
I − CA−1BC[(A−1BC)D]2A−1B

]
C = B

[
I − CA−1B(CA−1B)D

]
C = BSπC.

From the above computations, we get the conditions in (18) hold and Theorem 3.5 reduces as the following:

Corollary 3.7. Let M =
(

A B
C 0

)
, A be nonsingular, S = −CA−1B such that A−1BC is group invertible, then

MD =

[
R +

(
0 0

SπC 0

)
R2

]
×

[
I + R

(
0 BSπ

0 0

)]
.

Finally, we derive from Theorem 3.5 some particular representations of AD under certain additional
conditions.

Corollary 3.8. Let M =
(

A B
C 0

)
and S = −CADB with ind(A) = m. Let R be defined as in (17).

(i) If C(I − AAD) = 0 and the generalized Schur complement S = −CADB is nonsingular, then

MD = R +
m+1∑
i=0

(
AAπ 0

0 0

)i (
0 AπB
0 0

)
Ri+2.

(ii) (see [14, Theorem 1.1]) If C(I −AAD) = 0, (I −AAD)B = 0 and the generalized Schur complement S = −CADB
is nonsingular, then

MD =

(
AD + ADBS−1CAD −ADBS−1

−S−1CAD S−1

)
.

(iii) (see [14, Theorem 3.1 or Corollary 3.2 ]) If C(I − AAD)B = 0, C(I − AAD)A = 0 and the generalized Schur
complement S = −CADB is nonsingular, then

MD =

[
I +

m−1∑
i=0

(
0 AiAπB
0 0

)
Ri+1

]
R

[
I + R

(
0 0

CAπ 0

)]
.

In Corollary 3.8(iii), if CAπ = 0, AπB = 0 and the generalized Schur complement S = −CADB is
nonsingular,, then MD = R,which is famous Banachiewicz-Schur formula.

Acknowledgments
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