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Hölder’s means and triangles inscribed in a semicircle
in Banach spaces
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Abstract. By the Hölder’s means, we introduce two classes geometric constants for Banach spaces. We
study some geometric properties related to these constants and the stability under norm perturbations of
them.

1. Introduction

There are various ways for constructing the means between two positive numbers a and b (see for
example [4]). Among them Hölder’s means (also called power means) are defined by

Mp(a, b) =
(

ap + bp

2

) 1
p

for p , 0,

M0(a, b) = lim
p→0

Mp(a, b) =
√

ab.

In particular, the arithmetic mean A := M1 and the geometric mean G := M0 are well-known. We should
note that Hölder’s means are positively homogeneous, that is,

Mp(ta, tb) = tMp(a, b) (t ≥ 0).

For two real numbers p ≤ q,

min(a, b) ≤Mp(a, b) ≤Mq(a, b) ≤ max(a, b),

where “=” holds only for the case a = b.
Throughout the paper assume that X is a Banach space and denote by SX and BX the unit sphere and

the unit ball, respectively. Let x, y are two points on the unit sphere SX of X. Baronti, Casini and Papini [3]
defined

A1(X) = inf
x∈SX

sup
y∈SX

M1

(
∥x + y∥, ∥x − y∥

)
,

A2(X) = sup
x,y∈SX

M1

(
∥x + y∥, ∥x − y∥

)
,
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by considering the arithmetic mean of ∥x + y∥ and ∥x − y∥. Later, Alonso and Llorens-Fuster introduced

t(X) = inf
x∈SX

sup
y∈SX

M0

(
∥x + y∥, ∥x − y∥

)
,

T(X) = sup
x,y∈SX

M0

(
∥x + y∥, ∥x − y∥

)
,

by considering the geometric mean between ∥x + y∥ and ∥x − y∥.
Based on the idea of the above constants, we will consider Hölder’s means of ∥x + y∥ and ∥x − y∥, and

therefore define two classes new geometric constants, which is more general than the above constants.
These constants are also proved to be connected with the well-known modulus of convexity and other
geometric properties. The results presented in this paper are more general than the known results about
the constants mentioned above.

2. Preliminaries

We begin this section with some definitions and notations. Recall the modulus of convexity of X is a
function δX(ϵ) : [0, 2]→ [0, 1], defined as

δX(ϵ) = inf
{

1 − ∥x + y∥
2

: x, y ∈ SX, ∥x − y∥ = ϵ
}
.

The number defined by

ϵ0(X) = sup{ϵ ∈ [0, 2] : δX(ϵ) = 0}

is called the characteristic of convexity. A space X is called uniformly convex if δX(ϵ) > 0 for 0 < ϵ ≤ 2, or
equivalently ϵ0(X) = 0.

The following constants

J(X) = sup
x,y∈SX

min
(
∥x + y∥, ∥x − y∥

)
,

j(X) = inf
x∈SX

sup
y∈SX

min
(
∥x + y∥, ∥x − y∥

)
were defined by Gao in [7] (see also [5]). The constant

E(X) = sup
{
∥x + y∥2 + ∥x − y∥2 : x, y ∈ SX

}
,

was also introduced by Gao [6] and recently studied by several authors (see [2, 8, 11]). Both J(X) and
E(X) characterize the uniform nonsquareness, that is, X is uniformly non-square if and only if J(X) < 2 or
E(X) < 8 (see[8, 9, 11]). Recall that a Banach space X is called uniformly non-square if for any x, y ∈ SX there
exists δ > 0, such that either ∥x − y∥/2 ≤ 1 − δ, or ∥x + y∥/2 ≤ 1 − δ.

We now define two classes constants by considering Hölder’s means.

Definition 2.1. Let p be a real number and let

Hp(X) = sup
x,y∈SX

Mp

(
∥x + y∥, ∥x − y∥

)
,

hp(X) = inf
x∈SX

sup
y∈SX

Mp

(
∥x + y∥, ∥x − y∥

)
.

Remark 2.2. (1)
√

2 ≤ J(X) ≤ Hp(X) ≤ 2 for p ∈ R.
(2) Obviously Hp(X) ≤ Hq(X) and hp(X) ≤ hq(X) if p ≤ q.
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3. Some properties

First let us state an identity between the modulus of convexity and Hp(X).We know (see [1, 3]) that

A2(X) = sup
ϵ∈[0,2]

M1

(
ϵ, 2(1 − δX(ϵ))

)
,

T(X) = sup
ϵ∈[0,2]

M0

(
ϵ, 2(1 − δX(ϵ))

)
.

We will show this fact is also true for the general cases.

Theorem 3.1. For any Banach space X,

Hp(X) = sup
ϵ∈[0,2]

Mp

(
ϵ, 2(1 − δX(ϵ))

)
.

Proof. From the definition of δX(ϵ),

sup
x,y∈SX ,∥x−y∥=ϵ

∥x + y∥ = 2(1 − δX(ϵ))

for any ϵ ∈ [0, 2], which yields

sup
x,y∈SX ,∥x−y∥=ϵ

Mp

(
ϵ, ∥x + y∥

)
=Mp

(
ϵ, 2(1 − δX(ϵ))

)
.

Therefore we have

Hp(X) = sup{Mp(∥x − y∥, ∥x + y∥) : x, y ∈ SX}
= sup
ϵ∈[0,2]

{Mp

(
ϵ, ∥x + y∥

)
: x, y ∈ SX, ∥x − y∥ = ϵ}

= sup
ϵ∈[0,2]

Mp

(
ϵ, 2(1 − δX(ϵ))

)
.

This completes the proof.

From Theorem 3.1, one can readily get the following.

Corollary 3.2. For any Banach space X,

max
(
J(X),Mp(ϵ0, 2)

)
≤ Hp(X).

It was shown that a Banach space X is uniformly non-square if and only if A2(X) or T(X) < 2. So it is
readily seen that this fact is true for Hp(X) whenever p ≤ 1. Further we will show Hp(X) can also characterize
uniform nonsquareness for all p ∈ R.

Theorem 3.3. X is uniformly non-square if and only if Hp(X) < 2.

Proof. ⇒) Assume that X is uniformly nonsquare. Then for any x, y ∈ SX, there exists δ > 0, such that either
∥x − y∥ ≤ 2(1 − δ) or ∥x + y∥ ≤ 2(1 − δ). Hence

Mp(∥x + y∥, ∥x − y∥) ≤Mp(2, 2(1 − δ)).

Since x, y are arbitrary,

Hp(X) ≤Mp(2, 2(1 − δ)) < max(2, 2(1 − δ)) = 2,
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where the strict inequality follows from 2 , 2(1 − δ).
⇐) Conversely, assume Hp(X) < 2. Let δ = 1 − (Hp(X)/2). Then δ > 0. Thus we can deduce that either

∥x − y∥ ≤ 2(1 − δ) or ∥x + y∥ ≤ 2(1 − δ)

for any x, y ∈ SX. In fact if ∥x − y∥ ≤ 2(1 − δ), then we are done. If not, then form the definition of Hp(X),

∥x + y∥ ≤
(
2Hp

p(X) − ∥x − y∥p
)1/p

≤
(
2Hp

p(X) − (2(1 − δ))p
)1/p

= Hp(X) = 2(1 − δ).

Therefore X is uniformly non-square.

The following is a necessary condition for uniform nonsquareness in terms of the constant hp(X).

Proposition 3.4. Let p ∈ R. Then the following are equivalent.

1. j(X) = 2;
2. hp(X) = 2.

Moreover, each of above implies that X is a not-uniformly non-square infinite dimensional space. Thus hp(X) < 2
whenever X is finite dimensional.

Proof. From the inequality

j(X) ≤ hp(X) ≤ 2,

the above conditions are equivalent. Since j(X) = 2 implies that X is a not-uniformly non-square infinite
dimensional space (cf.[1, Proposition 9]), thus the rest assertion follows.

Finally we end this section by computing the value of Hp(X) and hp(X) for the ℓr space. It has been
shown that in such space

J(ℓr) =

√
E(ℓr)

2
= max

(
2r, 21−1/r

)
(see [7, 11]).

Theorem 3.5. (1) Let p ≤ 2. Then Hp(ℓr) = max(2r, 21−1/r) for any r ≥ 1.
(2) Let 2 ≤ p ≤ r. Then Hp(ℓr) = 21−1/r.

Proof. (1) From

J(ℓr) ≤ Hp(ℓr) ≤
√

E(ℓr)
2
,

we know (1) holds obviously.
(2) Recall the Clarkson’s inequality

(∥x + y∥r + ∥x − y∥r)1/r ≤ 21/r(∥x∥r + ∥y∥r)1−1/r,

which implies that

Mp(∥x + y∥, ∥x − y∥) ≤Mr(∥x + y∥, ∥x − y∥) ≤ 21−1/r,

for any x, y ∈ Sℓr . Thus Hp(ℓr) ≤ 21−1/r. Since

Hp(ℓr) ≥ J(ℓr) = 21−1/r,

and then (2) holds.
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Theorem 3.6. (1) For any Banach space, hp(X) ≥Mp(1, 3/2).
(2) Let p ≤ 1 ≤ r ≤ 2. Then hp(ℓr) = 21/r.

Proof. (1) By Proposition 10 in [1], we know that for any x ∈ SX,

sup
y∈SX

Mp(∥x + y∥, ∥x − y∥) ≥Mp(1, 3/2),

and so (1) holds obviously.
(2) This identity follows from

j(ℓr) ≤ hp(ℓr) ≤ A1(ℓr)

and j(ℓr) = A1(ℓr) = 21/r (see [3, 7]).

4. Stability under norm perturbations

We first show that “SX” can be replaced by “BX” in the definition of Hp(X).

Theorem 4.1. For any Banach space X,

Hp(X) = sup
x,y∈BX

Mp

(
∥x + y∥, ∥x − y∥

)
,

hp(X) = inf
x∈SX

sup
y∈BX

Mp

(
∥x + y∥, ∥x − y∥

)
.

Proof. Let u ∈ SX, v ∈ BX. It follows from [10, p.60] that there exist x, y ∈ SX, such that

∥u − v∥ = ∥x − y∥, ∥u + v∥ ≤ ∥x + y∥.

Thus we have

Mp(∥u − v∥, ∥u + v∥) ≤Mp(∥x + y∥, ∥x − y∥) ≤ sup
x,y∈SX

Mp

(
∥x + y∥, ∥x − y∥

)
= Hp(X),

which implies that

Hp(X) ≥ sup
x∈SX ,y∈BX

Mp

(
∥x + y∥, ∥x − y∥

)
.

On the other hand, let u, v ∈ BX and assume without loss of generality that ∥u∥ ≥ ∥v∥ > 0. Then

Mp(∥u − v∥, ∥u + v∥) = ∥u∥Mp

(∥∥∥∥∥ u
∥u∥ −

v
∥u∥

∥∥∥∥∥ , ∥∥∥∥∥ u
∥u∥ +

v
∥u∥

∥∥∥∥∥) ≤ sup
x∈SX ,y∈BX

Mp

(
∥x + y∥, ∥x − y∥

)
.

This implies that

sup
x∈SX ,y∈BX

Mp

(
∥x + y∥, ∥x − y∥

)
≥ sup

x,y∈BX

Mp

(
∥x + y∥, ∥x − y∥

)
and so the first identity follows. Similarly, we get the second identity.
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Recall the Banach-Mazur distance between isomorphic Banach spaces X and Y is defined as

d(X,Y) = inf{∥T∥ · ∥T−1∥},

where the infimum is taken over all bicontinuous linear operators T from X onto Y. In [9] the authors
studied the relation between J(X) and J(Y) for isomorphic Banach spaces X and Y. We now study the
relation between Hp(X) and Hp(Y) and the idea of the following proof is taken form [9, Theorem 5].

Theorem 4.2. Let X and Y be isomorphic Banach spaces. Then

Hp(X)
d(X,Y)

≤ Hp(Y) ≤ Hp(X)d(X,Y). (1)

In particular, Hp(X) = Hp(Y) if X and Y are isometric.

Proof. Let x1, x2 ∈ SX. It follows form the definition of Banach-Mazur distance that for any ϵ > 0, there exists
an operator T from X onto Y such that

∥T∥ · ∥T−1∥ ≤ d(X,Y)(1 + ϵ).

Set

y1 =
Tx1

∥T∥ , y2 =
Tx2

∥T∥ .

Thus y1, y2 ∈ BY and

Mp(∥x1 + x2∥, ∥x1 − x2∥) = ∥T∥Mp(∥T−1(y1 + y2)∥, ∥T−1(y1 − y2)∥)
≤ d(X,Y)(1 + ϵ)Mp(∥y1 + y2∥, ∥y1 − y2∥)
≤ d(X,Y)(1 + ϵ)Hp(Y),

which gives

Hp(X) ≤ d(X,Y)(1 + ϵ)Hp(Y).

Since ϵ is arbitrary, the left side of (1) follows. Similarly, we get the right side.

Applying the above, one can easily get the following.

Corollary 4.3. Let X1 = (X, ∥ · ∥1) and X2 = (X, ∥ · ∥2), where ∥ · ∥1 and ∥ · ∥2 are two equivalent norms in X such that

α∥ · ∥1 ≤ ∥ · ∥2 ≤ β∥ · ∥1 (0 < α ≤ β).

Then

α
β

Hp(X1) ≤ Hp(X2) ≤
β

α
Hp(X1).

In particular, Hp(X∗∗) = Hp(X).
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