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Abstract. For vertices x and y in a connected graph G = (V,E) of order at least two, the detour distance
D(x, y) is the length of the longest x − y path in G. An x − y path of length D(x, y) is called an x − y detour.
For any vertex x in G, a set S ⊆ V is an x-detour set of G if each vertex v ∈ V lies on an x− y detour for some
element y in S. The minimum cardinality of an x-detour set of G is defined as the x-detour number of G,
denoted by dx(G). An x-detour set of cardinality dx(G) is called a dx-set of G. A connected x-detour set of G
is an x-detour set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a
connected x-detour set of G is the connected x-detour number of G and is denoted by cdx(G). A connected
x-detour set of cardinality cdx(G) is called a cdx-set of G. A connected x-detour set Sx is called a minimal
connected x-detour set if no proper subset of Sx is a connected x-detour set. The upper connected x-detour
number, denoted by cd+x (G), is defined as the maximum cardinality of a minimal connected x-detour set of
G. We determine bounds for cd+x (G) and find the same for some special classes of graphs. For any three
integers a, b and c with 2 ≤ a < b ≤ c, there is a connected graph G with dx(G) = a, cdx(G) = b and cd+x (G) = c
for some vertex x in G. It is shown that for positive integers R,D and n ≥ 3 with R < D ≤ 2R, there exists a
connected graph G with detour radius R, detour diameter D and cd+x (G) = n for some vertex x in G.

1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without loops or multiple edges.
The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology we refer
to Harary [6]. For vertices x and y in a connected graph G, the distance d(x, y) is the length of the shortest
x − y path in G. An x − y path of length d(x, y) is called an x − y 1eodesic. The closed interval I[x, y] consists
of all vertices lying on some x − y geodesic of G, while for S ⊆ V, I[S] =

∪
x,y∈S

I[x, y]. A set S of vertices is a

1eodetic set if I[S] = V, and the minimum cardinality of a geodetic set is the 1eodetic number 1(G). A geodetic
set of cardinality 1(G) is called a 1-set. The geodetic number of a graph was introduced in [1, 7] and further
studied in [3].

The concept of vertex geodomination number was introduced in [8] and further studied in [9]. For any
vertex x in a connected graph G, a set S of vertices of G is an x-1eodominatin1 set of G if each vertex v of G
lies on an x − y geodesic in G for some element y in S. The minimum cardinality of an x-geodominating
set of G is defined as the x-1eodomination number of G and is denoted by 1x(G). An x-geodominating set
of cardinality 1x(G) is called a 1x-set. The connected vertex geodomination number was introduced and
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studied in [11]. A connected x-1eodominatin1 set of G is an x-geodominating set S such that the subgraph
G[S] induced by S is connected. The minimum cardinality of a connected x-geodominating set of G is
the connected x-1eodomination number of G and is denoted by c1x(G). A connected x-geodominating set of
cardinality c1x(G) is called a c1x-set of G.

Some authors study the analogous concepts based on longest paths (rather than shortest paths) between
pairs of vertices. For vertices x and y in a connected graph G, the detour distance D(x, y) is the length of the
longest x − y path in G. For any vertex u of G, the detour eccentricity of u is eD(u) = max {D(u, v) : v ∈ V}. A
vertex v of G such that D(u, v) = eD(u) is called a detour eccentric vertex of u. The detour radius R and detour
diameter D of G are defined by R = radDG = min {eD(v) : v ∈ V} and D = diamDG = max {eD(v) : v ∈ V}
respectively. An x − y path of length D(x, y) is called an x − y detour. The closed interval ID[x, y] consists of
all vertices lying on some x − y detour of G, while for ID[S] =

∪
x,y∈S

ID[x, y]. A set S of vertices is a detour

set if ID[S] = V, and the minimum cardinality of a detour set is the detour number dn(G). A detour set of
cardinality dn(G) is called a minimum detour set. The detour number of a graph was introduced in [4] and
further studied in [5].

The concept of vertex detour number was introduced in [10]. For any vertex x in a connected graph G, a
set S of vertices of G is an x-detour set if each vertex v of G lies on an x− y detour in G for some element y in
S. The minimum cardinality of an x-detour set of G is defined as the x-detour number of G and is denoted
by dx(G). An x-detour set of cardinality dx(G) is called a dx-set of G. An elaborate study of results regarding
the vertex detour number with several interesting applications is given in [10]. The concept of upper vertex
detour number was introduced in [13]. An x-detour set Sx is called a minimal x-detour set if no proper subset
of Sx is an x-detour set. The upper x-detour number, denoted by d+x (G), is defined as the maximum cardinality
of a minimal x-detour set of G.

The connected x-detour number was introduced and studied in [12,14]. A connected x-detour set of G
is an x-detour set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of
a connected x-detour set of G is the connected x-detour number of G and is denoted by cdx(G). A connected
x-detour set of cardinality cdx(G) is called a cdx-set of G. For the graph G given in Figure 1.1, the minimum
vertex detour sets, the vertex detour numbers, the minimum connected vertex detour sets and the connected
vertex detour numbers are given in Table 1.1.

Figure 1.1: A graph G with dt(G) = 1 and cdt(G) = 3

The following theorems will be used in the sequel.

Theorem 1.1. ([6]) Every nontrivial connected graph has at least two vertices which are not cut vertices.

Theorem 1.2. ([12]) If T is any tree of order p, then cdx(T) = p for any cut vertex x of T.

Throughout the paper, G denotes a connected graph with at least two vertices.

2. Minimal Connected Vertex Detour Sets

Definition 2.1. Let x be any vertex of a connected graph G. A connected x-detour set Sx is called a minimal
connected x-detour set if no proper subset of Sx is a connected x-detour set. The upper connected x-detour
number, denoted by cd+x (G), is defined as the maximum cardinality of a minimal connected x-detour set of
G.
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Table 1.1

Example 2.2. For the graph G given in Figure 2.1, the minimum vertex detour sets, the vertex detour
numbers, the minimum connected vertex detour sets, the connected vertex detour numbers, the minimal
connected vertex detour sets and the upper connected vertex detour numbers are given in Table 2.1.

Figure 2.1: The graph G in Example 2.2.

Note 2.3. For any vertex x in a connected graph G, every minimum connected x-detour set is a minimal
connected x-detour set.

In the next two theorems we prove certain properties satisfied by every x-detour set of G.

Theorem 2.4. Let x be any vertex of a connected graph G. If y , x is an end vertex of G, then y belongs to every
x-detour set of G.

Proof. Let x be any vertex of G and let y , x be an end-vertex of G. Then y is the terminal vertex of an x − y
detour and y is not an internal vertex of any detour so that y belongs to every x-detour set of G.

Theorem 2.5. Let G be a connected graph with at least one cut-vertex and let Sx be an x-detour set of G for some
vertex x. If v is a cut-vertex of G, then every component of G − v contains an element of Sx

∪{x}.
Proof. Suppose that there is a component B of G − v such that B contains no vertex of Sx

∪{x}. Then clearly,
x ∈ V −V(B). Let u ∈ V(B). Since Sx is an x-detour set, there exists an element y ∈ Sx such that u lies in some
x − y detour P : x = u0, u1, . . . , u, . . . ,un = y in G. Since v is a cut-vertex of G, the x − u subpath of P and the
u − y subpath of P both contain v, it follows that P is not a path, contrary to assumption.

A vertex v in a connected graph G is called a cut-vertex if G − v is disconnected. For a cut-vertex v in a
connected graph G and a component H of G − v, the subgraph H and the vertex v together with all edges
joining v and V(H) in G is called a branch of G at v.
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Table 2.1

Corollary 2.6. Let G be a connected graph with cut-vertices and let Sx be an x-detour set of G. Then every branch of
G contains an element of Sx

∪{x}.
Theorem 2.7. For any vertex x in a connected graph G, 1 ≤ cdx(G) ≤ cd+x (G) ≤ p.

Proof. It is clear from the definition of cdx-set that cdx(G) ≥ 1. Since every minimum connected x-detour set
is a minimal connected x-detour set, cdx(G) ≤ cd+x (G). Also, since V(G) induces a connected x-detour set of
G, it is clear that cd+x (G) ≤ p.

Remark 2.8. For the cycle Cp, cdx(Cp) = 1 for every vertex x in Cp. For any non-trivial tree T with p ≥ 3,
cd+x (T) = p for any cut-vertex x in T (See Theorem 2.12(i)). For an end vertex x in the star G = K1,n(n ≥ 3),
cdx(G) = n = cd+x (G). Also, the inequalities in the theorem can be strict. For the graph G given in Figure 2.1,
cds(G) = 2, cd+s (G) = 3 and p = 7 as in Example 2.2. Thus 1 < cds(G) < cd+s (G) < p.

Theorem 2.9. Let x be any vertex of a connected graph G. If cd+x (G) = p, then x is a cut-vertex of G.

Proof. Suppose x is not a cut-vertex of G. Then it follows from the fact that x lies on every x − y detour and
so V − {x} is a connected x-detour set of G. Thus cd+x (G) ≤ p − 1,which is a contradiction.

Remark 2.10. The converse of Theorem 2.9 is not true. For the graph G given in Figure 2.2, cd+x (G) = 3 < p
for the cut vertex x in G.

Figure 2.2: A graph G in Remark 2.10 with cd+x (G) = 3 < p.

Theorem 2.11. There is no graph G of order p with cd+x (G) = p for every vertex x in G.

Proof. This follows from Theorems 1.1 and 2.9.
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Theorem 2.12. (i) If T is a tree, then cd+x (T) = p for any cut-vertex x of T.
(ii) If T is a tree which is not a path, then for an end vertex x, cd+x (T) = p−D(x, y), where y is the vertex of T with

deg(y) ≥ 3 such that D(x, y) is minimum.
(iii) If T is a path, then cd+x (T) = 1 for any end vertex x of T.

Proof. (i) It is easy to see that in a tree T every vertex x has a unique minimal connected x-detour set. This
implies that cdx(T) = cd+x (T) for every vertex x in T. Thus the result follows from Theorem 1.2.

(ii) Let T be a tree which is not a path and x an end vertex of T. Let S = (V(T)− ID[x, y])
∪{y}. Clearly, S is

a connected x-detour set of T and so cdx(T) ≤| S |= p−D(x, y).We claim that cdx(T) = p−D(x, y).Otherwise,
there is a connected x-detour set M of T with | M |< p −D(x, y). By Theorem 2.4, every connected x-detour
set of T contains all end vertices except possibly x and hence there exists a cut vertex v of T such that v ∈ S
and v <M. Let B1,B2, . . . ,Bm(m ≥ 3) be the components of T − {y}. Assume that x belongs to B1.

Case 1. v = y. Let z ∈ B2 and w ∈ B3 be two end vertices of T. Then v lies on the unique z − w detour.
Since z and w belong to M and v <M, G[M] is not connected, which is a contradiction.

Case 2. v , y. Let v ∈ Bi (i , 1). Now, choose an end vertex u ∈ Bi such that v lies on the y − u detour.
Let a ∈ B j ( j , i, 1) be an end vertex of T. Then y lies on the u − a detour. Hence it follows that v lies on the
u − a detour. Since u and a belong to M and v < M, G[M] is not connected, which is a contradiction. Thus
cdx(T) = p −D(x, y). Since cd+x (T) = cdx(T) for every vertex x in T, cd+x (T) = p −D(x, y).

(iii) Let T be a path with end vertices x and y. Then for the vertex x, every vertex of T lies on an x − y
detour and so {y} is the unique minimal connected x-detour set of T so that cd+x (T) = 1.

Corollary 2.13. For any tree T, cd+x (T) = p if and only if x is a cut vertex of T.

The following theorem is an easy consequence of the definition of the upper connected vertex detour
number of a graph.

Theorem 2.14. (i) For any vertex x in the complete graph Kp, cd+x (Kp) = 1.
(ii) For any vertex x in the complete bipartite graph Km,n, cd+x (Km,n) = 1 if m,n ≥ 2.
(iii) For any vertex x in the wheel Wp, cd+x (Wp) = 1.

Theorem 2.15. For any two integers n and p with 1 ≤ n ≤ p and p ≥ 5, there exists a connected graph G with order
p and cd+x (G) = n for some vertex x of G.

Proof. We prove this theorem by considering four cases.
Case 1. Suppose n = 1. Let G be the path of order p. Then by Theorem 2.12(iii), cd+x (G) = 1 for an end

vertex x in G.
Case 2. Suppose n = 2. If p is odd, let G be the odd cycle of order p. For any vertex x in G, let y1 and y2 be

the eccentric vertices of x in G and let x1 and x2 be the detour eccentric vertices of x in G. Since p ≥ 5, x1, x2, y1
and y2 are distinct. It is clear that S1 = {y1, y2}, S2 = {x1} and S3 = {x2} are the only minimal connected
x-detour sets of G and so cd+x (G) = 2. If p is even, let G be the graph obtained from the odd cycle Cp−1 by
adding a new vertex x and joining x to exactly one vertex of Cp−1. Then by a similar argument, it is seen that
cd+x (G) = 2.

Case 3. Suppose 3 ≤ n ≤ p−1. Let G be the graph obtained from the path Pp−1 : u1,u2, . . . , up−1 by adding
a new vertex y and joining y to up−n+1. Then by Theorem 2.12(ii), cd+x (G) = n for the end vertex x = u1 in G.

Case 4. Suppose n = p. Let G be any tree of order p. Then by Theorem 2.12(i), cd+x (G) = p for any cut
vertex x in G.

Remark 2.16. For 2 ≤ p ≤ 4, it is straight forward to verify that there is no connected graph G of order p
with n = 2. Thus Theorem 2.15 is not true for 2 ≤ p ≤ 4.

Since any connected x-detour set is also an x-detour set it follows that dx(G) ≤ cdx(G) and so by Theorem
2.7, we have dx(G) ≤ cdx(G) ≤ cd+x (G). Now we have the following realization theorem.
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Theorem 2.17. For any three integers a, b and c with 2 ≤ a < b ≤ c, there is a connected graph G with dx(G) = a,
cdx(G) = b and cd+x (G) = c for some vertex x in G.

Proof. Let F = K2
∪

((c− b+ 1)K1)+K2,where let Z = V(K2) = {z1, z2}, Y = V((c− b+ 1)K1) = {y1, y2, . . . , yc−b+1

and U = V(K2) = {x, y}. Let K1,a−2 be the star at the vertex w and let W = {w1,w2, . . . ,wa−2} be the set of end
vertices of K1,a−2. Let Pb−a+1 : u1,u2, . . . , ub−a+1 be the path of length b − a. Let G be the graph obtained from
K1,a−2, F and Pb−a+1 by identifying w of K1,a−2, x of F and ub−a+1 of Pb−a+1. The graph G is shown in Figure 2.3.

Figure 2.3: A graph G in Theorem 2.17 with dx(G) = a, cdx(G) = b and cd+x (G) = c.

First, we show that dx(G) = a for the vertex x in G. Let Sx be any x-detour set of G. By Theorem 2.4,
W
∪{u1} ⊆ Sx. It is clear that no y j(1 ≤ j ≤ c− b+ 1) lies on any x− z detour with z ∈W

∪{u1}. Thus W
∪{u1}

is not an x-detour set of G. Now, since W
∪{u1, z1} is an x-detour set of G, it follows that dx(G) = a.

Now, we show that cdx(G) = b. Let S′x be any connected x-detour set of G. Since any connected x-detour
set of G is also an x-detour set of G, it follows that S′x contains W

∪{u1}. Let M = {u2, u3, . . . , ub−a, x}. Since the
induced subgraph G[S′x] is connected, M ⊆ S′x. Thus M

∪
W
∪{u1} ⊆ S′x. It is clear that no y j (1 ≤ j ≤ c−b+1)

lies on any x − z detour with z ∈ M
∪

W
∪{u1}. Thus M

∪
W
∪{u1} is not an x-detour set of G. Now, since

M
∪

W
∪{u1, z1} is a connected x-detour set of G, it follows that cdx(G) = b.

Next, we prove that cd+x (G) = c. Let N =M
∪

W
∪

Y
∪{u1}. Then, it is clear that N is a connected x-detour

set of G.We claim that N is a minimal connected x-detour set of G.Assume, suppose such is not, so that N is
not a minimal connected x-detour set of G. Then there exists a proper subset T of N such that T is a connected
x-detour set of G. Let s ∈ N and s < T. Since every connected x-detour set of G contains M

∪
W
∪{u1}, it

follows that s ∈ Y.Without loss of generality, we may assume that s = y1.Now, y1 does not lie on any x− y j
detour for j = 2, 3, . . . , c − b + 1. Also, y1 does not lie on any x − z detour with z ∈ M

∪
W
∪{u1}. Hence it

follows that T is not an x-detour set of G,which is a contradiction. Thus N is a minimal connected x-detour
set of G and so cd+x (G) ≥| N |= c. Next, we prove that cd+x (G) = c. Suppose that cd+x (G) > c. Let N′ be a
minimal connected x-detour set of G with | N′ |> c. Then there exists at least one vertex, say, v ∈ N′ such
that v < N. Thus v ∈ {y, z1, z2}.

Case 1. v ∈ {z1, z2}, say v = z1. Since M
∪

W
∪{u1, z1} is a connected x-detour set of G and also it is a

proper subset of N′, it follows that N′ is not a minimal connected x-detour set of G,which is a contradiction.
Case 2. v = y. Since | N′ |> c and v < {z1, z2},N is a proper subset of N′, it follows that N′ is not a minimal

connected x-detour set of G,which is a contradiction.
Thus there is no minimal connected x-detour set N′ of G with | N′ |> c. Hence cd+x (G) = c.

Remark 2.18. The graph G of Figure 2.3 contains exactly three minimal connected x-detour sets, namely
M
∪

W
∪{u1, z1},M

∪
W
∪{u1, z2} and M

∪
W
∪

Y
∪{u1}. This example shows that there is no ”Intermediate

Value Theorem” for minimal connected x-detour sets, that is, if n is an integer such that cdx(G) < n < cd+x (G),
then there does not necessarily exist a minimal connected x-detour set of cardinality n in G.
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Theorem 2.19. For any three positive integers b, c and n with b ≥ 3 and b ≤ n ≤ c, there exists a connected graph G
with cdx(G) = b, cd+x (G) = c and a minimal connected x-detour set of cardinality n for some vertex x in G.

Proof. Let l = n − b + 1 and m = c − n + 1. Let F1 = (K2
∪

lK1) + K2, where let Z1 = V(K2) = {z1, z2},
Y1 = V(lK1) = {y1, y2, . . . , yl} and U1 = V(K2) = {u1,u2}. Similarly let F2 = (K2

∪
mK1) + K2, where let

Z2 = V(K2) = {z3, z4}, Y2 = V(mK1) = {x1, x2, . . . , xm} and U2 = V(K2) = {u3, u4}. Let K1,b−3 be the star at
the vertex x and let W = {w1,w2, . . . ,wb−3} be the set of end vertices of K1,b−3. Let G be the graph obtained
from K1,b−3, F1 and F2 by identifying x of K1,b−3, u1 of U1 and u3 of U2. The graph G is shown in Figure
2.4. It follows from Theorem 2.4 that for the vertex x, the vertices of W belong to every minimal connected
x-detour set of G.

Figure 2.4: A graph G in Theorem 2.19 with cdx(G) = b, cd+x (G) = c.

First, we show that cdx(G) = b for the vertex x in G. Let Sx be any connected x-detour set of G. Since
the induced subgraph G[Sx] is connected, x must belongs to Sx. Since x is a cut vertex of G, it is clear that
W
∪{x, y} where y ∈ V(G) − (W

∪{x}) is not an x-detour set of G. Now, each vertex of F1 lies on an x − zi
detour (i = 1, 2) and each vertex of F2 lies on an x − z j detour ( j = 3, 4), it follows that S = W

∪{x, zi, z j}
(i = 1, 2 and j = 3, 4) is an x-detour set of G.Also, the induced subgraph G[S] is connected and so cdx(G) = b.

Next, we show that cd+x (G) = c. Let M = W
∪

Y1
∪

Y2
∪{x}. It is clear that M is a connected x-detour set

of G. We claim that M is a minimal connected x-detour set of G. Assume, to the contrary, that M is not a
minimal connected x-detour set. Then there is a proper subset T of M such that T is a connected x-detour
set of G. Let s ∈ M and s < T. Since every connected x-detour set of G contains W

∪{x}, s ∈ Y1
∪

Y2. For
convenience, let s = y1. Since y1 does not lie on any x− y j detour, where j = 2, 3, . . . , l and y1 does not lie on
any x− x j detour, where j = 1, 2, . . . ,m, it follows that T is not an x-detour set of G,which is a contradiction.
Thus M is a minimal connected x-detour set of G and so cd+x (G) ≥|M |= c.

Now we prove that cd+x (G) = c. Suppose that cd+x (G) > c. Let N be a minimal connected x-detour set of G
with | N |> c. Then there exists at least one vertex, say v ∈ N such that v <M. Thus v ∈ {u2, u4, z1, z2, z3, z4}.

Case 1. Suppose v ∈ {z1, z2}, say v = z1.Clearly, every vertex of F1 lies on an x−z1 detour and the induced
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subgraph G[(N −V(F1))
∪{v, x}] is connected and so (N −V(F1))

∪{v, x} is a connected x-detour set of G and
it is a proper subset of N,which is a contradiction to N a minimal connected x-detour set of G.

Case 2. Suppose v ∈ {z3, z4}. The proof is similar to Case 1.
Case 3. Suppose v = u2. It is clear that no vertex of Y1

∪
Y2 is an internal vertex of any x − z detour for

any z ∈ V(G) − {z1, z2, z3, z4}. Since v < {z1, z2, z3, z4}, N ⊆ V(G) − {z1, z2, z3, z4} and so Y1
∪

Y2 ⊂ N. It follows
that M =W

∪
Y1
∪

Y2
∪{x} ⊂ N, which is a contradiction to N a minimal connected x-detour set of G.

Case 4. Suppose v = u4. The proof is similar to Case 3.
Thus there is no minimal connected x-detour set N of G with | N |> c. Hence cd+x (G) = c.
Finally, we show that there is a minimal connected x-detour set of cardinality n. Let S =W

∪
Y1
∪{z3, x}.

It is clear that S is a connected x-detour set of G.We claim that S is a minimal connected x-detour set of G.
Assume, to the contrary, that S is not a minimal connected x-detour set. Then there is a proper subset T of
S such that T is a connected x-detour set of G. Let s ∈ S and s < T. Since x is a cut vertex of G and T is a
connected x-detour set of G, it is clear that s = yi for some i = 1, 2, . . . , l.Without loss of generality, we may
assume that s = y1. Since y1 does not lie on any x − z detour with z ∈ T, it follows that T is not an x-detour
set of G,which is a contradiction. Thus S is a minimal connected x-detour set of G with cardinality | S |= n.
Hence the theorem.

For every connected graph G, radDG ≤ diamDG ≤ 2radDG. Chartrand, Escuadro and Zhang[2] showed
that every two positive integers a and b with a ≤ b ≤ 2a are realizable as the detour radius and detour
diameter, respectively, of some connected graph. This theorem can also be extended so that the upper
connected vertex detour number can be prescribed when a < b ≤ 2a.

Theorem 2.20. For positive integers R,D and n ≥ 3 with R < D ≤ 2R, there exists a connected graph G with
radDG = R, diamDG = D and cd+x (G) = n for some vertex x in G.

Proof. If R = 1, then D = 2. Take G = K1,n. Then by Theorem 2.12(ii), cd+x (G) = n for an end vertex x in G.
Now, let R ≥ 2.We construct a graph G with the desired properties as follows.

Let CR+1 : v1, v2, . . . , vR+1, v1 be a cycle of order R + 1 and let PD−R+1 : u0,u1, . . . ,uD−R be a path of order
D − R + 1. Let H be a graph obtained from CR+1 and PD−R+1 by identifying v1 in CR+1 and u0 in PD−R+1.
Now, add n − 2 new vertices w1,w2, . . . ,wn−2 to H by joining each vertex wi(1 ≤ i ≤ n − 2) to the vertex
uD−R−1 and obtain the graph G of Figure 2.5. Now radDG = R, diamDG = D and G has n − 1 end vertices.
Let S = {w1,w2, . . . ,wn−2,uD−R} be the set of all end vertices of G. Let x = v2. Then by Theorem 2.4, every
minimal connected x-detour set of G contains S. Also, it follows that every minimal connected x-detour set
of G contains the cut vertex uD−R−1. But it is clear that S

∪{uD−R−1} is a connected x-detour set of G and so
S
∪{uD−R−1} is the unique minimal connected x-detour set of G so that cd+x (G) = n.

Figure 2.5: A graph G in Theorem 2.20 with radDG = R, diamDG = D and cd+x (G) = n.

The graph G of Figure 2.5 is the smallest graph with the properties described in Theorem 2.20. We leave
the following problem as an open question.
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Problem 2.21. For positive integers R,D and n ≥ 3 with R ≤ D, does there exist a connected graph G with
radDG = R, diamDG = D and cd+x (G) = n for some vertex x of G?

In the following, we construct a graph of prescribed order, detour diameter and upper connected vertex
detour number under suitable conditions.

Theorem 2.22. For each triple D,n and p of integers with 4 ≤ D ≤ p − 1 and 3 ≤ n ≤ p, there is a connected graph
G of order p, detour diameter D and cd+x (G) = n for some vertex x of G.

Proof. We prove this theorem by considering three cases.
Case 1. Suppose 3 ≤ n ≤ p−D+1. Let G be a graph obtained from the cycle CD : u1,u2, . . . ,uD,u1 of order

D by (i) adding n−1 new vertices v1, v2, . . . , vn−1 and joining each vertex vi(1 ≤ i ≤ n−1) to u1 and (ii) adding
p−D−n+1 new vertices w1,w2, . . . ,wp−D−n+1 and joining each vertex wi(1 ≤ i ≤ p−D−n+1) to both u1 and
u3. The graph G has order p and detour diameter D and is shown in Figure 2.6(i). Let S = {v1, v2, . . . , vn−1}
be the set of all end vertices of G. Let x = uD. Then by an argument similar to the proof of Theorem 2.20,
S
∪{u1} is the unique minimal connected x-detour set of G so that cd+x (G) = n.

Figure 2.6(i) : A graph G in Case 1 of Theorem 2.22.

Case 2. Suppose p −D + 2 ≤ n ≤ p − 1. Let PD+1 : u0,u1,u2, . . . , uD be a path of length D. Add p −D − 1
new vertices v1, v2, . . . , vp−D−1 to PD+1 and join each vi(1 ≤ i ≤ p − D − 1) to up−n, there by producing the
graph G of Figure 2.6(ii). The graph G has order p and detour diameter D. Since G is a tree, by Theorem
2.12(ii), cd+x (G) = p − (p − n) = n for the vertex x = u0.

Case 3. Suppose n = p. Let G be any tree of order p and detour diameter D. Then by Theorem 2.12(i),
cd+x (G) = p for any cut vertex x in G.

Figure 2.6(ii) : A graph G in Case 2 of Theorem 2.22.
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