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Selection properties in fuzzy metric spaces
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Abstract. We introduce and study some boundedness properties in fuzzy metric spaces. These properties
are related to the classical covering properties of Menger, Hurewicz and Rothberger.

1. Introduction

In the literature there are several different definitions of fuzzy metric spaces [11], [7], [3], [4]. In
particular, Kramosil and Michalek [11] introduced fuzzy metric spaces based on the notion of continuous
triangular norms that were the first time applied in [16] to modify the definition of probabilistic metric
spaces introduced by K. Menger [2]. By a slight modification of the Kramosil-Michalek definition, George
and Veeramani [3], [4] introduced and studied fuzzy metric spaces and topological spaces induced by fuzzy
metric (see also [5], [6]). The notion of intuitionistic fuzzy metric spaces was introduced by Park in [12] (see
also [14] where completeness and precompactness of these spaces have been studied). Both fuzzy metric
and intuitionistic fuzzy metric spaces have many applications in different areas of mathematics as well as
in engineering and in many branches of the quantum particle physics. In [6] (see also [15]) it was shown
that Park’s definition of intuitionistic fuzzy metric spaces contains extra conditions and can be derived, in
an equivalent manner, from the definition of fuzzy metric spaces.

We investigate fuzzy metric spaces in connection with several kinds of boundedness properties related
to selection principles and studied already in other mathematical structures, such as uniform spaces [8] and
topological groups [1].

The paper is organized in such a way that after this introduction in Section 2 we give basic definitions
concerning fuzzy metric spaces. In Section 3 we define FM-, FH- and FR-boundedness properties which are
the central objects of this article and give some examples. Section 4 is devoted to the main results describing
the considered properties, in particular under basic operations: subspaces and products. Finally, in Section
5 we mention some possible directions of investigation related to game theory and L-fuzzy metric spaces.

2. Preliminaries

We begin with basic definitions about fuzzy metric spaces following [3].
First of all recall that if X is a nonempty set, then a fuzzy set A in X is a function from X into [0, 1].
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Definition 2.1. ([16]) A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm if the following
conditions are satisfied:

(1) ∗ is commutative and associative;
(2) ∗ is continuous;
(3) a ∗ 1 = a for all a ∈ [0, 1];
(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, (a, b, c, d ∈ [0, 1]).

Definition 2.2. ([3]) A 3-tuple (X,M, ∗) is said to be a fuzzy metric space if X is an arbitrary nonempty set,
∗ is a continuous t-norm, and M is a fuzzy set on X2 × (0,∞) satisfying for all x, y ∈ X and all s, t > 0 the
following conditions:

(M.1) M(x, y, t) > 0;
(M.2) M(x, y, t) = 1 if and only if x = y;
(M.3) M(x, y, t) =M(y, x, t);
(M.4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t + s);
(M.5) M(x, y, ·) : (0,∞)→ (0, 1] is a continuous function.

The pair (M, ∗) (or only M) is called a fuzzy metric on X.

The function M(x, y, t) denotes the degree of nearness between x and y with respect to t. Note also that
M(x, y, ·) is a non-decreasing function (with respect to t) for all x, y ∈ X.

Let (X,M, ∗) be a fuzzy metric space. Given x ∈ X, ε ∈ (0, 1) and t > 0, the set

B(x, ε, t) := {y ∈ X : M(x, y, t) > 1 − ε}

is called the open ball with center x and radius εwith respect to t.
The collection

{B(x, ε, t) : x ∈ X, ε ∈ (0, 1), t > 0}

is a base of a topology on X; denote this topology by τM. Notice that the collection{
B
(
x,

1
n
,

1
n

)
: x ∈ X,n ∈N

}
is also a base for τM. The topology τM is Hausdorff and metrizable.

3. Definitions and examples

The following definitions are motivated by definitions of the classical Menger, Rothberger and Hurewicz
covering properties (for details see the survey papers [9] and [10]) and considerations in [1] and [8].

Recall that a topological space has the Menger (Rothberger) [Hurewicz] covering property if for each
sequence (Un : n ∈ N) of open covers of X there is a sequence (Vn : n ∈ N) ((Un : n ∈ N)) [(Wn : n ∈ N)]
such that for each n ∈N,Vn is a finite subset ofUn (Un ∈ Un) [Wn is finite subset ofUn] and X =

∪
n∈N
∪Vn

(X =
∪

n∈NUn) [each x ∈ X belongs to ∪Wn for all but finitely many n].

Definition 3.1. A fuzzy metric space (X,M, ∗) is said to be:

FM : F-Menger-bounded (or FM-bounded);
FR : F-Rothberger-bounded (or FR-bounded);
FH : F-Hurewicz-bounded (or FH-bounded)

if for each sequence (εn : n ∈N) of elements of (0, 1) and each t > 0 there is a sequence
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FM : (An : n ∈N) of finite subsets of X such that X =
∪

n∈N
∪

a∈An
B(a, εn, t);

FR : (xn : n ∈N) of elements of X such that X =
∪

n∈N B(xn, εn, t);
FH : (An : n ∈N) of finite subsets of X such that for each x ∈ X there is n0 ∈N such that x ∈ ∪a∈An

B(a, εn, t)
for all n ≥ n0.

Recall that a fuzzy metric space is said to be precompact (respectively, pre-Lindelöf ) if for every ε ∈ (0, 1)
and every t > 0 there is a finite (respectively, countable) set A ⊂ X such that X =

∪
a∈A B(a, ε, t).

Evidently,

F−precompact⇒ FH−bounded⇒ FM−bounded⇒ F−pre-Lindelöf

and

FR−bounded⇒ FM−bounded.

Example 3.2. Let (X, d) be a metric space with the Menger (Rothberger, Hurewicz) property. Consider the
standard fuzzy metric Md on X induced by d defined by

Md(x, y, t) =
t

t + d(x, y)
, (x, y ∈ X, t > 0)

and denote

a ∗ b = ab, (a, b ∈ [0, 1]).

Then the fuzzy metric space (X,Md, ∗) is FM-bounded (FR-bounded, FH-bounded).

Consider only the FM-bounded case because the other two are shown quite similarly.
Let (εn : n ∈N) be a sequence in (0, 1) and let t > 0. As (X, d) has the Menger covering property, there is

a sequence (An : n ∈N) of finite subsets of X such that

X =
∪
n∈N

∪
a∈An

K(a, εn),

where K(a, ε) = {y ∈ X : d(a, y) < ε}.
Let x ∈ X. There is n ∈N and a point an ∈ An satisfying d(x, an) < εn. Then

Md(x, an, t) =
t

t + d(x, an)
>

t
t + εn

= 1 − εn

t + εn
> 1 − εn.

Therefore we have x ∈ B(an, εn, t), i.e. X =
∪

n∈N
∪

a∈An
B(a, εn, t) which means that (X,Md, ∗) is FM-bounded.

Example 3.3. Let X = R and d = | · |, and let ∗ be as in Example 3.2. Then the fuzzy metric space (X,Md, ∗)
is FM-bounded by the previous example and the fact that (R, | · |) has the Menger property [9], [10]. On the
other hand, (X,Md, ∗) is not FR-bounded.

Indeed, if we take the sequence (2−n : n ∈N) ⊂ (0, 1) and t = 2−1, then X cannot be covered by the open
balls B(xn, 2−n, 2−1) for any choice of elements xn, n ∈ N, from X. Otherwise, we would have that for every
x ∈ R there is n ∈N such that

2−1

2−1 + |x − xn|
> 1 − 2−n,

i.e.

2−1 + |x − xn|
2−1 <

2n

2n − 1
.
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From here we obtain that for each x ∈ X there is n ∈Nwith

|x − xn| <
1

2(2n − 1)
<

1
2n ,

which means

R =
∪
n∈N

(xn − 2−n, xn + 2−n).

However, it is impossible.

Example 3.4. Let X = (0,∞) with the fuzzy metric (M, ∗) defined by

a ∗ b = ab, (a, b ∈ [0, 1]); M(x, y, t) =

 x
y , if x ≤ y;
y
x , if x ≥ y, for all x, y ∈ X, t > 0.

It is easy to see that for x ∈ X, ε ∈ (0, 1), t > 0.

B(x, ε, t) = ((1 − ε)x, x/(1 − ε)) ⊂ X,

i.e. the open balls in (X,M, ∗) are the usual open intervals in X equipped with the metric topology on R.
Thus (X,M, ∗) is not FR-bounded. Consider the sequence (2−n : n ∈ N) ⊂ (0, 1), and t = 2−1. For any

sequence (xn : n ∈N) of points of X the open balls B(xn, 2−n, 2−1), n ∈N, cannot cover X because the sum of
lengths of intervals ((1 − 2−n)xn, xn/(1 − 2−n)), n ∈N, is finite.

Notice that if X =N, and M and ∗ are as above, then (N,M, ∗) is FR-bounded.

4. Results

4.1. Subspaces

If (X,M, ∗) is a fuzzy metric space and Y ⊂ X, then (Y,MY, ∗), where MY =M � Y2 × (0,∞), is also a fuzzy
metric space and it is called the fuzzy metric subspace (or shortly f m-subspace) of (X,M, ∗).

Theorem 4.1. Every f m-subspace of an FM-bounded space (X,M, ∗) is also FM-bounded.

Proof. Let (Y,MY, ∗) be an f m-subspace of (X,M, ∗) and let (εn : n ∈ N) be a sequence of elements of (0, 1)
and t > 0. Because of continuity of ∗ for each n ∈ N there is δn ∈ (0, 1) such that (1 − δn) ∗ (1 − δn) > 1 − εn.
Apply now to the sequence (δn : n ∈N) and t

2 the assumption on (X,M, ∗). There is a sequence (Pn : n ∈N)
of finite subsets of X such that

X =
∪
n∈N

∪
p∈Pn

B(p, δn, t/2).

For each n ∈N let

Qn = {q ∈ Pn : ∃y ∈ Y with y ∈ B(q, δ, t/2)}.

Further, for each q ∈ Qn pick an element yq ∈ Y such that yq ∈ B(q, δ, t/2) and set

Sn = {yq : q ∈ Qn}.

Let us show that the sequence (Sn : n ∈N) of finite subsets of Y witnesses for (εn : n ∈N) and t that (Y,MY, ∗)
is FM-bounded.
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Let y be an arbitrary element of Y. There exist n ∈ N and p ∈ Pn such that y ∈ B(p, δn, t/2), and from
the definition of Qn it follows p ∈ Qn. Therefore, there exists yp ∈ Sn such that yp ∈ B(p, δn, t/2), hence
p ∈ B(yp, δn, t/2). So, we have

M(p, y, t/2) > 1 − δn and M(p, yp, t/2) > 1 − δn.

According to (M.4) we have

M(y, yp, t) ≥M(y, p, t/2) ∗M(p, yp, t/2) > (1 − δn) ∗ (1 − δn) > 1 − εn,

which means y ∈ B(yp, εn, t). As y ∈ Y was arbitrary we conclude

Y =
∪
n∈N

∪
yp∈Sn

B(yp, εn, t),

i.e. Y is FM-bounded.

The proof of the following theorem is similar to the proof of Theorem 4.1 and thus it is omitted.

Theorem 4.2. Every f m-subspace of an FH-bounded space (X,M, ∗) is also FH-bounded.

Theorem 4.3. Let a fuzzy metric space (Y,MY, ∗) be dense in a fuzzy metric space (X,M, ∗). If Y is F-Hurewicz-
bounded, then X is also F-Hurewicz-bounded.

Proof. Let a sequence (εn : n ∈N) of elements from (0, 1) and t > 0 be given. Choose a sequence (δn : n ∈N)
of elements of (0, 1) such that (1− δn) ∗ (1− δn) > 1− εn for each n ∈N. Applying to (δn : n ∈N) and t/2 the
fact that (Y,MY, ∗) is FH-bounded we find a sequence (An : n ∈N) of finite subsets of Y such that each y ∈ Y
belongs to

∪
a∈An

B(a, δn, t/2) for all but finitely many n. We claim that (An : n ∈N) witnesses for (εn : n ∈N)
and t that (X,M, ∗) is FH-bounded.

Let x ∈ X. Since Y is dense in X the intersection Y ∩ B(x, δn, t/2) is non-empty for each n ∈ N; let
yn ∈ Y ∩ B(x, δn, t/2). But (Y,MY, ∗) is FH-bounded, so that there is n0 ∈ N such that yn ∈

∪
a∈An

B(a, δn, t/2)
for each n ≥ n0, i.e. for each n ≥ n0 there is an ∈ An with yn ∈ B(an, δn, t/2). Therefore, for each n ≥ n0 we
have

M(x, an, t) ≥M(x, yn, t/2) ∗M(yn, an, t/2) > (1 − δn) ∗ (1 − δn) > 1 − εn,

i.e. for each n ≥ n0, x ∈ ∪a∈An
B(a, εn, t) which means that X is FH-bounded.

4.2. Products
Let (X,MX, ∗) and (Y,MY, ∗) be fuzzy metric spaces and let Z = X × Y. For z1 = (x1, y1), z2 = (x2, y2) ∈ Z

and t > 0 define

MZ(z1, z2, t) =MX(x1, y1, t) ∗MY(x2, y2, t).

Then (MZ, ∗) is a fuzzy metric on Z, and the triple (Z,MZ, ∗) is called the product metric space of X and Y.

Theorem 4.4. The product (Z,MZ, ∗) of two FH-bounded spaces (X,MX, ∗) and (Y,MY, ∗) is also FH-bounded.

Proof. Suppose the sequence (εn : n ∈ N) ⊂ (0, 1) and t > 0 are given. Choose for each n ∈ N an element δn
in (0, 1) such that (1 − δn) ∗ (1 − δn) > 1 − εn. By assumption on X and Y there are sequences (Sn : n ∈ N)
and (Tn : n ∈ N) of finite sets of X and Y, respectively and natural numbers n1 and n2 such that each x ∈ X
belongs to

∪
a∈Sn

B(a, δn, t/2) for all n ≥ n1, and each y ∈ Y belongs to
∪

c∈Tn
B(c, δn, t/2) for all n ≥ n2. We

claim that the sequence (Sn × Tn : n ∈N) of finite subsets of Z witnesses for (εn : n ∈N) and t that (Z,MZ, ∗)
is FH-bounded.
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Let z = (x, y) ∈ Z. Pick n1,n2 ∈N such that for each n ≥ n1 and each k ≥ n2

x ∈ B(an, δn, t/2) for some an ∈ Sn

and

y ∈ B(ck, δk, t/2) for some ck ∈ Tk.

Then for each n ≥ n0 = max{n1,n2} there is zn = (an, cn) ∈ Sn × Tn such that

MZ(z, zn, t) =MX(x, an, t) ∗MY(y, cn, t) > (1 − δn) ∗ (1 − δn) > 1 − εn.

This means that z ∈ B(zn, εn, t) as required to be shown.

In a similar way one can prove the following assertion.

Theorem 4.5. The product (Z,MZ, ∗) of an FM-bounded space (X,MX, ∗) and an FH-bounded space (Y,MY, ∗) is
FM-bounded.

Example 4.6. The product of an FR-bounded fuzzy metric space and a (pre)compact fuzzy metric space
need not be FR-bounded.

Let X =Nwith the fuzzy metric (MX, ∗) defined by

a ∗ b = a · b; MX(x, y, t) =

 x
y , if x ≤ y;
y
x , if x ≥ y,

and Y = [0, 1] with the fuzzy metric (MY, ∗)

MY(x, y, t) =
t

t + |x − y| ,

for all x, y ∈ Y and t > 0, We observed that X is FR-bounded; also, Y is (pre)compact. However, the product
space Z = X × Y is not FR-bounded.

Take for each n ∈ N, εn = 2−n and consider the sequence (2−n : n ∈ N) ⊂ (0, 1) and t = 1. An easy
calculation shows that for zn = (n, yn) ∈ {n}×[0, 1] we have B(zn, 2−n, 1) = {(n, y) : y ∈ [0, 1], |y−yn| < (2n−1)−1}.
Therefore, for any sequence (zn : n ∈N) of elements of Z the balls B(zn, 2−n, 1), n ∈N, do not cover Z.

4.3. Two theorems more

Let S be a subset of X, ε ∈ (0, 1), t > 1. Then we denote

B(S, ε, t) :=
∪
x∈S

B(x, ε, t).

Theorem 4.7. For a fuzzy metric space (X,M, ∗) the following are equivalent:

(a) For each sequence (εn : n ∈ N) ⊂ (0, 1) and each t > 0 there is a sequence (Sn : n ∈ N) of finite subsets of X
such that each finite subset E ⊂ X is contained in B(Sn, εn, t) for some Sn;

(b) For each sequence (εn : n ∈ N) ⊂ (0, 1) and each t > 0 there is a sequence (Sn : n ∈ N) of finite subsets of X
and an increasing sequence n1 < n2 < · · · of natural numbers such that each finite subset E ⊂ X is contained
in
∪

nk≤i<nk+1
B(Si, εi, t) for some k ∈N.
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Proof. Evidently (a) implies (b). We prove (b) ⇒ (a). Let (εn : n ∈ N) be a sequence of elements from (0, 1)
and t > 0. For each n ∈ N let δn = min{εi : i ≤ n} and apply (b) to (δn : n ∈ N) and t. There is an increasing
sequence n1 < n2 < · · · in N such that each finite set S ⊂ X is contained in

∪
nk≤i<nk+1

B(Si, δi, t) for some
k ∈N. Define now

Tn =
∪

i<n1
Si, for each n < n1,

Tn =
∪

nk≤i<nk+1
Si, for each n such that nk ≤ n < nk+1.

We claim that the sequence (Tn : n ∈ N) of finite subsets of X witnesses for (εn : n ∈ N) and t that (a) is
satisfied.

Let F be a finite subset of X. Choose k ∈ N such that F ⊂ ∪nk≤i<nk+1
B(Si, δi, t). For (each) n with

nk ≤ n < nk+1 put Tn =
∪

nk≤i<nk+1
Si. We have that for each x ∈ F there is j, nk ≤ j < nk+1 and y ∈ S j with

x ∈ B(y, δ j, t). Further, we have B(y, δ j, t) ⊂ B(y, ε j, t) and since y ∈ Tn we have x ∈ B(T j, ε j, t), and thus
F ⊂ B(T j, ε j, t).

With a small modification in the previous proof one can prove the following.

Theorem 4.8. For a fuzzy metric space (X,M, ∗) the following are equivalent:

(a) For each sequence (εn : n ∈ N) ⊂ (0, 1) and each t > 0 there is a sequence (Sn : n ∈ N) of finite subsets of X
such that each finite subset E ⊂ X is contained in B(Sn, εn, t) for all but finitely many n;

(b) For each sequence (εn : n ∈ N) ⊂ (0, 1) and each t > 0 there is a sequence (Sn : n ∈ N) of finite subsets of X
and an increasing sequence n1 < n2 < · · · of natural numbers such that each finite subset E ⊂ X is contained
in
∪

nk≤i<nk+1
B(Si, εi, t) for all but finitely many k ∈N.

5. Conclusion

In this paper we demonstrated an application of the idea of fuzzy metric spaces in the classical field of
covering properties defined in terms of selection principles of the Menger, Rothberger and Hurewicz types.
It is reasonable to expect that this investigation, like other studies on fuzzy metric and intuitionistic fuzzy
metric spaces, may have some applications in other mathematical disciplines.

At the end, let us emphasize the following two facts.

1. The results obtained in this paper can be obtained, by minor modifications, for generalized f m-spaces,
i.e. L-fuzzy metric spaces as considered in [13] and [15].

2. To each boundedness property considered here one can correspond an infinitely long two-person
game. Let us explain this scenario for the FM-boundedness; it is easy to apply the same idea to the other
two cases.

Consider the game GFM on a fuzzy metric space (X,M, ∗) defined as follows. Let t > 0 be fixed.
There are two players, ONE and TWO, who play a round for each positive integer n. In the n-th round
ONE chooses εn ∈ (0, 1), and TWO responds by choosing a finite subset An of X. TWO wins a play
ε1,A1; ε2,A2, · · · ; εn,An; · · · if and only if X =

∪
n∈N
∪

a∈An
B(a, εn, t).

Evidently, if the player TWO has a winning strategy (or even, ONE has no winning strategy) in the
game GFM, then (X,M, ∗) is FM-bounded.

Call a fuzzy metric space X strongly FM-bounded if TWO has a winning strategy in the game GFM. (In a
similar way one defines strong FR-boundedness and strong FH-boundedness.)

Conjecture 5.1. There are fuzzy metric spaces which are FM-bounded (respectively, FR-bounded, FH-bounded), but
not strongly FM-bounded (respectively, strongly FR-bounded, strongly FH-bounded).

Problem 5.2. Characterize strongly FM-bounded, strongly FR-bounded and strongly FH-bounded fuzzy metric
spaces.
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