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On classifications of transformation semigroups:
Indicator sequences and indicator topological spaces

Fatemah Ayatollah Zadeh Shirazi?, Nasser Golestani®
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Abstract. In this paper considering a transformation semigroup with finite height we define the notion
of indicator sequence in such a way that any two transformation semigroups with the same indicator
sequence have the same height. Also related to any transformation semigroup a topological space, called
indicator topological space, is defined in such a way that transformation semigroups with homeomorphic
indicator topological spaces have the same height. Moreover any two transformation semigroups with
homeomorphic indicator topological spaces and finite height have the same indicator sequences.

1. Introduction

Classification of special subclasses of topological transformation groups is an old idea (see [6] and [7]),
e.g. in [7] at the first sentence of the Introduction we read “The classification of minimal sets is one of the goals
of topological dynamics.”

In this paper we want to introduce some tools for classifying the class of all transformation semigroups
using some known tools. Height of a transformation semigroup (X, S), h(X, S), has been introduced firstly
in [8]. In this paper using the concept of height of a transformation semigroup where h(X, S) is finite we
correspond a finite sequence (ny, ..., nnxs)), indicator sequence of (X, S), to the transformation semigroup
(X,S), for instance (X, S) is a finite disjoint union of minimal sets if and only if its indicator sequence
is (0,...,0). So the concept of indicator sequence is a tool to make some partitions in the class of all
transformation semigroups with the same finite height. For the next step we create another fragmentation,
i.e. inthe class of all transformation semigroups with the same indicator sequence (ny, . . ., 1,,) we correspond
an m + 1—element Ty topological space, indicator topology of (X,S), to the transformation semigroup
(X,S5). We see if (X, S) and (Y, T) have homeomorphic finite indicator topologies, then they have the same
indicator sequence. Also there are transformation semigroups with the same indicator sequence and
non-homeomorphic indicator topological spaces.

2. Preliminaries

By a (right) transformation semigroup we mean a triple (X, S, 0) or simply (X, S) where X is a topological
space (called phase space), S is a topological semigroup (called phase semigroup) with identity e and
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0:XxS — X (0(x,s) = xs) is a continuous map such that for each x € X and each s, € S we have xe = x
and x(st) = (xs)t. In the following, all phase spaces are considered compact Hausdorff and all phase semigroups are
considered discrete, unless it is mentioned.

In the transformation semigroup (X, S) a nonempty subset Z of X is called invariant if ZS C Z. A closed

invariant subset Z of X is called minimal if it does not have any proper subset which is a closed invariant
subset of X. Let R be a closed invariant equivalence relation on X, then X/R is a compact Hausdorff
topological space and (X/R, S) is a transformation semigroup, where [x]gs := [xs]g ([x]x is the equivalence
class of x under R). For a closed invariant subset C of X, (C X C) U Ax is a closed invariant equivalence
relation on X, we will denote (X/((C x C) U Ax), S) by (X/C, S).
A continuous map ¢ : (X, S) — (Y, S) is called a homomorphism if p(xs) = @(x)s (x € X,s € S). If there exists
an onto homomorphism ¢ : (X,S5) — (Y,5), then (X, S) is called an extension of (Y, S) and (Y, S) is called a
factor of (X,S). A one-to-one and onto homomorphism ¢ : (X,S) — (Y, S) is called an isomorphism. (X, S),
(Y, S) are called isomorphic transformation semigroups if there exists an isomorphism ¢ : (X,S) — (V,5). If
@ : (X, S) = (Y, S) is an onto homomorphism, then R(p) := {(x, y) € X X X : ¢(x) = ¢(y)} is a closed invariant
equivalence relation on X, moreover (X/R(¢), S) and (Y, S) are isomorphic transformation semigroups. If D
is a subclass of all transformation semigroups with phase semigroup S, the transformation semigroup (Z, S)
is called a universal transformation semigroup for class D if all of the elements of D are factors of (Z, S).
Note that by this definition there is no need for (Z, S) € D. For more details on transformation semigroups,
we suggest [5] and [9].

Let Z be a closed invariant subset of the transformation semigroup (X, S), define height of Zby h(Z, S) :=
sup{n > 0 : there exists a chain like Zy € Z; € --- € Z, = Z of closed invariant subsets of X and
Z; # Zis1(i < n)} ([8], Definition 1]), it is known that h(Z,S) = sup{n > 0 : there exist zo,...,z, € Z with
z; ¢ U Z]_S for all i < n} ([8], Lemma 8). Moreover h(Z, S) = 0 if and only if Z is a minimal subset of X. In

]<l

addition h(Z, S) = 1 if and only if one of the following conditions hold ([8], Theorem 9):

e Z is disjoint union of two minimal subsets;

e Z contains a unique minimal proper subset W and for any x € Z — W we have x5 = Z.

Moreover if C is a closed invariant subset of X, then h(C, S) < h(X, S) (monotonicity of h), and if h(C,S) =
h(X, S) < o0, then C = X ([8], Note 4).

Convention 2.1. In the following text by “C” we mean strict inclusion.

3. More properties of h(X, S)

In this section we consider some properties of the height of a transformation semigroup which are
necessary for the other sections.

Lemma 3.1. In the transformation semigroup (X, S), if Zo C --- C Z, (n € IN U {0}) is a maximal chain of closed
invariant subsets of X, then for every x,y € Zjs1 — Z; (i < n) we have Z;.q — Z; € xS = yS.

Proof. Suppose x € Ziy1 —Z;thus Z; C Z; U xS C Z;41, since Zo C - -- C Z, is a maximal chain, Z; U xS = Z;
and Z;41 — Z; C xS, therefore for any y € Zi.1 — Z;wehave y € xS and y_S C xS. The similar method shows
xS CyS,soyS=xS5. [

The following theorem has a key role in the rest theorems and other sections, indeed this is the main theorem
of this section.

Theorem 3.2. In the transformation semigroup (X, S) for n € IN U {0} the following statements are equivalent:

(1) there exists a maximal chain Zy C --- C Z,, of closed invariant subsets of X;
(2) (xS : x € X} has exactly n + 1 elements;
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(3) for any maximal chain of closed invariant subsets of X like M, M has exactly n + 1 elements;
4) h(X,S) =n.

Proof. (1) = (2): Suppose Zy C --- C Z, is a maximal chain of closed invariant subsets of X, and zy € Zy,
21 € Zy— 2y, ..., 2y € Zy, — Zy-1, then by Lemma 3.1, and minimality of Z, (thus 208 = Zy) we have
{E :x € X} ={z;5: 0 <i < n}, On the other hand, if i < j, then 28 C Z; and zj ¢ Z;, thus zS # z;S, which
shows that {z;S : 0 < i < n} has exactly n + 1 elements.

(2) = (3): Suppose (xS:x € X} = {x08,...,x,S) has exactly n + 1 elements and M is a maximal chain of
closed invariant subsets of X. Since for any closed invariant subset of X, like Z we have Z = [ J{zS : z € Z},

any element of M is a union of a subset of {x0S, ..., x,5}, so M is finite. Using the proof of (1) = (2) leads
us to the desired result.

(B) = (4), (4) = (1): Itis clear by the definition of h(X, S) and the fact that by Zorn’s Lemma any chain of
closed invariant subsets of X is included in a maximal chain of closed invariant subsets of X. [

Let (X,S), (Y, T) be transformation semigroups, then (X X Y,S X Y) is a transformation semigroup where
(x, 1)(s,1) == (xs, yt) ((x, y) € X X Y, (s,t) € S X T), in the following theorem we deal with h(X X Y, S x T).

Theorem 3.3. In the transformation semigroups (X, S), (Y, T) we have
h(XXY,SxT)+1=h(XS)+ )N, T)+1).

Proof. Suppose n = h(X,S) < coand m = h(Y,T) < oo, thus {xS : x € X} has exactly 7 + 1 elements and
{y_T : y € Y} has exactly m +1 elements (use Theorem 3.2), therefore {(x, y)(S X T) : (x,y) € XX Y} = {ﬁxy_T :
x € X,y € Y} has exactly (n + 1)(m + 1) elements, which shows h(X XY, SxT)+1 = (n+1)(m+1) =
h(X, S+ Hth(y,T)+1). O

Note 3.4. If {(X,, Sy) : @ € '} is a nonempty collection of transformation semigroups, then (H D, H S,)is

ael aell
a transformation semigroup where:

((fa)aer(Sa)aer) = (Fasa)aer  ((adaer € | | Xas (sadeer € [ | S0l

ael ael

moreover we know (xa)aErH Sa = H X,Sq; thus (H X, H Sq) is minimal if and only if for all a €

ael ael ael ael
I', (Xa,Sa) is minimal. Using a similar method described in Theorem 3.3 the following statements are

equivalent:

1. h(H X,, H S,) < 00;

ael ael
2. there exist ay,...,a, € I such that max{h(X,,,Ss) : 1 <i<n} <ocoand forall@ € T —{ay,...,a.},
(X4, So) is minimal (i.e. h(X,, S,) = 0).

And if (2) holds then h(l_[ X,, H S.) = h(ﬁ X, H Sa.).
1 i=1

ael ael’ i=

Remark 3.5. In the transformation semigroup (X, S), let C be a closed invariant subset of X. There is
a monotone (under inclusion relation) one-to-one correspondence between the set all closed invariant
subsets of X containing C, and the set of all closed invariant subsets of X/C containing the singleton C/C.

Now we are ready to give attention to quotients, i.e. in the transformation semigroup (X, S) we want to
consider h(X/C, S) when C is a closed invariant subset of X.
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Theorem 3.6. In the transformation semigroup (X, S), let C be a closed invariant subset of X, then h(X/C,S) +
h(C,S) =h(X,S).

Proof. Suppose h(C,S) < oo (if h(C,S) = oo, then h(X,S) = oo too by definition, and we are done) and
Cop c Cy C--- ¢ C, = Cis amaximal chain of closed invariant subsets of C, this chain can be extended to a
maximal chain of closed invariant subsets of X, like M. {Z/C:Z € M,Z # Cy,...,C,_1} is a maximal chain
of closed invariant subsets of X/C, soif h(X, S) = oo, then h(X/C, S) = o0 too, and h(X/C, S)+h(C, S) = h(X, S).
Now suppose h(X, S) < oo, using Theorem 3.2 we have h(X,S) = IM| -1 = [{Co,..., Cha}l + {Z e M : Z #
Coy- -, Comall =1 ={Cy, ..., Chaall + {Z/C: Z e M, Z # Cy,...,Cy1}| -1 =h(C,S) + h(X/C,S). O

Using the above theorem we find some other equivalent statements to the finiteness of the height of a
transformation semigroup in terms of quotient spaces.

Theorem 3.7. In the transformation semigroup (X, S), let Co C --- € C,, = X be a chain of closed invariant subsets
of X, the following statements are equivalent:

1. Gy C --- C C, is a maximal chain of closed invariant subsets of X;

Co is minimal and for any x € Ciq — C; we have Ciyq — C; C xS (i< n);

if xo,...,x, € X are such that xo € Co and xj11 € Ciyq — C; (i < n), then {E xeX) = {xTS: 0<i<n}
h(X,S) = n;

h(Co, S) = 0 and h(Ci1+1/C;, S) =1 forall i < n.

Proof. (1) = (2): Use Lemma 3.1.

(2) = (3): If x € Cy then xS = xS and if x € X — Cy then there exists i < n such that x € Cj,; — C; and then
XS = XiS.

(3) = (4): Use Theorem 3.2.

(4) = (5): Since h(Co, S) < h(Cy,S) < -+ < h(Cy, S) = n, h(C;,S) = iforall 0 <i < n. Using Theorem 3.6 we
are done.

(5) = (1): By Theorem 3.6 and induction we have h(C;, S) = i for any 0 < i < #, in particular h(X, S) = n and
then Cy C --- € C, is a maximal chain of closed invariant subsets of X. []

Gk W

4. Indicator sequence of a transformation semigroup (X, S) with h(X, S) < o

In this section corresponding to a transformation semigroup (X, S) with h(X, S) < oo, we define a sequence
(no, ..., nnxs) of nonnegative integers. In this way transformation semigroups with the same indicator
sequence have the same height, but the converse is not true in general.

Definition 4.1. Let (X, S) be a transformation semigroup with h(X, S) = n < co. By Theorem 3.2, there exist
X0,...,xn € Xwith{xS:xe X} ={x;S:0<i<n) (thus x;Ss are distinct). Without loss of generality just by
a rearrangement we may suppose h(xS,S) < --- < h(x,S,S). We call (h(xS,9),...,h(x,S,S)) the indicator
sequence of (X, S) and denote it by seq(X, S).

In the following lemma we find a necessary condition for a finite sequence of integers to be the indicator
sequence of a transformation semigroup. In fact, we see that this condition is sufficient too.

Lemma 4.2. In the transformation semigroup (X, S) with m = h(X, S) < oo and seq(X, S) = (no, . .., ny), we have
n; <iforalli <m.

Proof. Let xo,...,xn € X be the ones in Definition 4.1. Hence h(xTS, S)=mnjand ng < n; < --- < ny. Thus
if i < j, then h(x;S, ) < h(x;S,S). We claim x; ¢ x;S, otherwise x;S C x;S which implies h(x;S, S) < h(x;S, S)
and h(xTS, S) = h(xTS, S). Thus x,_S = xTS, which is a contradiction. Therefore xO_S C U{x]_S :j=0,1c---C
U{x]_'S : 0 < j < mj}is achain of m + 1 closed invariant subsets of X. Since h(X, S) = m, by Theorem 3.7 this
chain is a maximal chain. So forany i € {0,...,m}, n; = h(xTS, S) < h(U{x]_-S :0<j<i},S)=i. O
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Lemma 4.3. Let (ng, ..., ny) be a sequence of nonnegative integers such that ng < ny < --- <ny, and 0 < n; < i for
all i < m. Then for X,, = {0, ..., m} with discrete topology there exists a semigroup T,, C X" (with discrete topology
and under composition operation) such that the following statements hold:

(1) iT,, €10,...,1}, h(iTy, Tyy) = njand |iTy| = n; + 1, for all i < m;

(2) {0} € (0,1} € --- C {0,...,m} is a maximal chain of closed invariant subsets of X,,, and seq(Xy, Tr) =
(ng, ..., Ny).

Proof. We prove by induction onm. Form = 0wehaveny = 0and then T = {id(g} satisfies conditions (1) and
(2). Suppose statements (1) and (2) are true for m and (ny, . . ., nm+1) is a sequence of nonnegative integers such
thatng <n; <--- <nyyp and 0 < n; <iforall i < m+ 1. Using induction hypothesis there exists T, C X, X
satisfying conditions (1) and (2). Let Ty4+1 :={C € Xi’fll 2 Cx, € T and (m+1)C < nyyq or (m+1)C = m+1)}.
Thus transformation semigroup (X+1, Tm+1) satisfies conditions (1) and (2) for m + 1 instead of m. [J

The following theorem is the main theorem of this section in which all possible indicator sequences are
introduced.

Theorem 4.4. Let (n, ..., n,) be a sequence of nonnegative integers. There exists a transformation semigroup (X, S)
with seq(X,S) = (no, ..., ny) ifand only if ng <ny < -+ <myand 0 < n; <iforalli <m.

Proof. Use Lemma 4.2 and Lemma 4.3. [J

The following theorem shows some interactions between the concept of indicator sequence and subspaces
or finite products of transformation semigroups.

Theorem 4.5. In the transformation semigroups (X, S) and (Y, T) suppose h(X,S) < oo, h(Y,T) < o0, seq(X,S) =
(Go,---,qn), seq(Y, T) = (ro,...,"m), and Z is a closed invariant subset of X. Then:

1. seq(Z,S) is a subsequence of (qo, - - -, qn);
2. seq(X x Y, S X T) is a rearrangement of ((q; + 1)(r; + 1) = Do<i<n,0<j<m-

Proof. Using Theorem 3.2 and that {zS : z € Z} C {xS : x € X}, (1) holds. On the other hand {(x, y)(Sx T) :
(x,y) e XXY} = {Exy_T :x € X,y € Y} and by Theorem 3.3 for any (x, y) € XX Y, h((x, y))(S X T),SxT)+1 =
(h(xS, S) + 1)(h(yT, T) + 1). Thus (2) holds. [

Remark 4.6. Define the sequence of Catalan numbers, {C,,},>0, by (see e.g. [1], Section 2.6):

o =(n+1)1( 2 ) (n > 0);

or define equivalently in a recursive way by:
n—-1
Co=Cr=1,Ci=) GCrii(n22).
k=0

In the following theorem we find the exact number of all indicator sequences (1, .. ., 1), for m € IN U {0}.

2m+2

Theorem 4.7. Let m € N U {0}, then |{(n, ..., 1n,) : (X, S)h(X,S) = m}| = (m +2)7! ( a1

) (le Cm+1).
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Proof. For m € N U {0} set B, = {(ng, ..., 1) : AX, S)h(X, S) = m}, by Theorem 4.4, B,, = {(ng,...,ny) : 0 <
ng<ny <---<nyandn; <iforallie{0,...,m}}. Set B, := |Byl. Itis easy to see fp = 1 and f; = 2, moreover
set f_1 := 1. We claim:

ﬁm = Zﬁkflﬁm—k—l (*)
=0

Obviously (+) is true for m = 0,1, so suppose m > 2. Fork € {0, ..., m} let B’,; :={(ng,...,My) € By, : nx =kand
for all i > k, n; < i}. B, is disjoint union of BY, ..., B". Moreover |BY| = |B”| = B,,-1 and |Bf,| = |B]’§||B21
Bi-1Bm—i—1 fork =1,...,m — 1. Thus

B = 1Bl = Y 11 = ) Br1Bicr.
k=0

k=0

=

Now use induction on m. Clearly fy = C; and 1 = C;, suppose ; = Cizq for alli € {0,...,m}, thus:

m+1 m+1

ﬁm+1 = Z,Bk—lﬁm—k = Z CkCrivik = Cus2,
k=0 k=0
and we are done. [

5. Indicator topological space of a transformation semigroup

In this section for every transformation semigroup (X, S) we introduce a topological space X, indeed

X is just (xS : x € X} equipped with a Ty Alexandroff topology which we name indicator topology on X
corresponding to (X, S). The end of this section is devoted to transformation semigroups with finite height.

Definition 5.1. In the transformation semigroup (X, S) define X = {x: x € X} where ¥ = x8. Equip X with

topology generated by topological basis {{;/ : y € xS} : x € X}, we call this topological space the indicator
topological space of (X, S).

Remark 5.2. A topological space is called Alexandroff if any nonempty intersection of open sets is open. In
Alexandroff topological space A, for any a € A, denote the smallest open neighborhood of a by V 4(a). Thus

in the transformation semigroup (X, S) for eachx € X, Vy(x) = {y: y € xS}.
The following theorem translates some ideas from transformation semigroups theory into general topology.
Theorem 5.3. In the transformation semigroup (X, S) we have:

1. Xisa Ty Alexandroff space;
2. suppose x € X, then:

|V55()?)| -1 Vg()-(‘) is finite
) otherwise

h(xS, S) = {

3. suppose x € X, X is an isolated point of X if and only if xS is a minimal subset of (X, S);
4. the following statements are equivalent:

(a) X is the union of its minimal sets (i.e. for each x € X, xS is minimal),
() XisTy,

(c) X is discrete;
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5. X is point transitive if and only if there exists x € X with X € A for any nonempty subset A of X;
6. if Z is a closed invariant subset of X, then Z is a subspace of X.

Proof.
1. Since for any x € X, {7/ : y € xS} is the smallest open set containing ¥ and if 7 € X — {%} then x ¢ yS or
y & xS.
2. Use (2) in Theorem 3.2.
3. Use (2).
4. Use (3) and the fact that an Alexandroff space is T; if and only if it is discrete.
5. By definition X is point transitive if and only if there exists x € X such that xS = X. So X is point

transitive if and only if there exists x € X such that V§® = X. Thus (5) holds.
Since for any z € Z we have V5(z) = V3 (2).

)

As we will see in the following statements the concept of indicator topology has a good relationship with
some other facts in transformation semigroups. For instance, the indicator topology of the product space is
the product of indicator topologies under box topology and the indicator topology of the quotient space is
the quotient of indicator topologies.

Proposition 5.4. Let {(Xy, Sa)laer be a nonempty collection of transformation semigroups. In the transformation

semigroup (H X, H Sa), H Xy = H X,, whenever H X, is equipped with the box topology.

ael’ ael’ ael ael ael

Proof. Since VH/\ (xa ael) = H V¢ (xa ) for any (xp)aer € H X,. O

ael ael
ael

Corollary 5.5. Let {(Xy, Sa)laer be a nonempty collection of transformation semigroups. In the transformation
semigroup (H Xa, H Sa), H Xo = H X,, whenever H X, equipped with product topology if and only if {x € T :

ael ael ael ael’ ael
(X4, Sq) is not minimall is finite.
Proof. Using item (1) in Theorem 5.3, for each a € T, X, is a Ty space, thus product and box topologies
on H X, coincide if and only if {o € I : X,, is not a singleton} is finite. On the other hand by item (3) in

ael
Theorem 5.3, X, is a singleton if and only if (X,, S,) is minimal, now use Proposition 5.4. [

Lemma 5.6. In the transformation semigroups (X, S), (Y, T) let ¢ : X — Y be an onto map such that (p(ﬁ) = ()T
(x € X). Then ¢ : X = Y with p(x) = ¢(x) (x € X) is an open quotient mapping.

Proof. Since ¢ is onto it is enough to show that ¢ is open and continuous. For each x € X we have
P(¥) = p(x) = () so p(V5(x)) = Vi(@(x)) and then ¢ is open and continuous. [

Theorem 5.7. In the transformation semigroups (X, S), (Y,S) let ¢ : X — Y be an onto homomorphism, then Y is
homeomophic to a quotient of X.

Proof. Use Lemma 5.6. [J

Note 5.8. Using the above theorem in the transformation semigroup (X, S) let R be a closed invariant

equivalence relation on X, then X/Ris homeomophic to a quotient of X(consider natural quotient mapping
from (X, S) to (X/R S), which is an onto homomorphlsm too) Therefore if C is a closed invariant subset

of X, then X/ Cis homeomophlc to a quotient of X, indeed X/C and X/C are homeomorphic (note that
R(7i¢) = (C X C) U Ax where 7i¢ : XX / C is the canonical function).
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According to (1) in Theorem 5.3, any indicator topological space, that is X for some transformation semi-
group (X, S), is a Ty Alexandroff space. The following theorem asserts that this is all we can say about the

topological properties of X, without any other hypotheses.

Theorem 5.9. A topological space A is Ty and Alexandroff if and only if it is homeomorphic to the indicator topological
space of some transformation semigroup with not necessarily compact Hausdorff phase space, however if A is finite
we may find transformation semigroups with compact Hausdorff phase space.

Proof. “=" Let X := A with discrete topology and S := {f € XX : Vx € Xxf € Va(x)} (with discrete topology).
Thus S is a topological semigroup (with composition) and (X, S) is a transformation semigroup such that

X = xS = V4(x). Define ¢ : A - X with ¢(x) = x. Since A is Ty then ¢ is a bijection. Moreover for any x € X
we have p(V4(x)) = V¢(p(x)) which completes the proof.
<" Use (1) in Theorem 5.3. [

Remark 5.10. Let (X, S) be a transformation semigroup and K be the set of all closed invariant subsets of X.
If h(X,S) < oo then by Theorem 3.2, K is finite and closed under arbitrary union. If X be Alexandroff then
again K is closed under arbitrary union. As we will see, this property has remarkable consequences.

Theorem 5.11. Let (X, S) be a transformation semigroup in which the arbitrary union of closed invariant subsets of
X is closed. Then there exists a one-to-one correspondence between closed invariant subsets of X and nonempty open

subsets of X which preserves inclusion.

Proof. Let T be the indicator topology of X on X and K be the set of all closed invariant subsets of X. Define
@:T—1{0) = Kwithp(V) = UV (VeT—{0). IfVeT-{0)then JV = xS : xS € V}. Since the arbitrary
union of closed invariant sunsets of X is closed, |JV € K, and ¢ : T — {0} — K is well-defined. On the other
hand if x € Xand V € T — {0} then x € |J V if and only if x € V, thus ¢ is one-to-one. Finally suppose C € K

and set V = {x: x € C}. We conclude from |J V3(x) = xS(xeX)that Ve T—{0)and p(V)=C. O
Using the connection obtained in the previous theorem we have the following corollary which is valid for

transformation semigroups with arbitrary phase space, i.e. we don’t make here the restriction of being
compact and Hausdorff for phase space.

Corollary 5.12. Let (X, S) be a transformation semigroup in which arbitrary union of closed invariant sunsets of X
is closed. Then we have:
1. X is connected if and only if X is the only nonempty clopen invariant subset of X;
Xis paracompact if and only if for any x € X the set {yS : xS N yS # 0} is finite;
X is locally finite if and only if for any x € X, h(xS) < oo;
If Xis locally finite then X is compact if and only if h(X, S) < oo;
X is second countable if and only if the set (xS : x € X} is countable;

SANCLIE N

X is pseudo-metrizable if and only if X is a union of its minimal sets.

Proof.

1. Use Theorem 5.11.

2. By [2], Theorem 2.8, X is paracompact if and only if for any x € X, V(x) meets only a finite number of
V(x), which is equivalent to the fact that for any x € X the set {y_S (xS N y_S # 0} is finite.

3. Recall that an Alexandroff space A is locally finite if and only if for any x € A, V(x) is finite. Now use
(2) in Theorem 5.3.

4. By [2], Theorem 2.8, X is compact if and only if X is finite, and this equivalent to the finiteness of
h(X, S).

5. By definition X = (xS : x € X}. Now use Theorem 2.8 of [2].
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6. By [2], Theorem 2.9, a T Alexandroff is pseudo-metrizable if and only if it is discrete. Now use (4) in
Theorem 5.11.
|

Now we are ready to explore indicator topological space X of transformation semigroup (X, S), when
h(X, S) < 0.

Note 5.13. By (2) in Theorem 5.3, if X = (X0, ..., %} and Tis are distinct, moreover [V (xo)| < -+ < [Vg(m),
then seq(X, S) = (|V§(5C'6)| -1,..., |V§(JE;1)| — 1), thus if two transformation semigroups have homeomorphic
indicator topological spaces, then they have the same indicator sequence, however there are transformation
semigroups with the same indicator sequence but non-homeomorphic indicator topological spaces, so the
concept of indicator topology divides the class of all transformation semigroups with the same indicator
sequence into smaller subclasses.

Note 5.14. Let us consider two simple and well-known examples of transformation semigroups:

e Let X be the unit circle in R? and S be its rational rotations group, then (X, S) is minimal and like other
minimal transformation semigroups h(X, S) = 0, seq(X, S) = (0) and X is a singleton.

e Let X = [0, 1] with induced topology of R and S be the group of all homeomorphisms of X, then in
the transformation semigroup (X, S) we have (xS :x e X} ={{0,1}, X}, so h(X,S) =1,seq(X,S) =(0,1),

X = {6, %} under topology { {/0\},5(\,(2)}.

Remark 5.15. In the transformation semigroup (X, S), in the definition of h(X, S), seq(X, S) (Definition 4.1),
and X (Definition 5.1), there is no need to restrict X to be compact or Hausdorff.

Using the above remark we bring the following examples omitting the hypothesis of being compact and
Hausdorff about phase spaces.

Example 5.16. Let G be a topological group and H be one of its subgroups, then (G, H) is a transformation
group. We have h(G,H) < o if and only if G/H = {gITI : g € G} is finite, moreover in this case h(G, H) =
IG/H| -1, seq(G,H) = (0, ...,0), and the indicator topology of (G, H) is discrete.

Example 5.17. Consider left transformation group (GL(#, R), R") with natural action of GL(n, R) (the col-
lection of all invertible n X n matrices with real entries) on R". Since in this text we deal with right
transformation semigroups, suppose (X, S1) = (R", GL(n, R)) with xA := A7'x (x €e R, A € GL(n,R). We
have xS; = R" for x # 0 and 0S; = {0}, thus seq(R", GL(n,R)) = (0,1), and X = {{0}, R"} with topology
{0, {{o}}, X}.

Example 5.18. Consider the transformation group (R?, H) with

H= {[ g Z ]eGL(Z,]R):be]R,ae(O,+oo)}

with action inherited from Example 5.17. We have:

0,0) x=y=0
[0,+00) x {0} x>0Ay=0
(x,y) H=14 (=00,0] x{0} x<0Ay=0 ,
R X [0, +00) y>0
R X (—00,0] y<0

thus seq(R?,H) = (0,1,1,3,3) and X = {{(0,0)}, [0, +00) x {0}, (—00,0] x {0}, R X [0, +c0), R X (—c0,0]} with
topological basis {{{(0, 0)}}, {[0, +c0) X {0}, {(0, 0)}}, {(—c0,0] X {0}, {(0, 0)}}, {IR X (=00, 0], [0, +00) X {0}, (—c0, 0] X
{0}, {(0, 0)}}, {R X [0, +00), [0, +00) X {0}, (—e0, 0] X {0}, {(0, 0)}}}.
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Table 5.19. All transformation semigroups like (X, S) with h(X, S) < 3 and the same indicator sequence,
have homeomorphic indicator topological spaces. But this is not true in general. See the following table
for h(X,S) < 4 (a,b, c,d are distinct):

h(X,S) | seq(X,S) | the minimal base of the indicator topology on X
0 ©) {al}
1 (0,0) {{a), {b}}
0,1 {{a}, {a, b}}
2 (0,0,0) t{a}, {b}, {cl}
0,0,1) {{a}, b}, {a, c}}
(0,0,2) {{a}, {b}, {a, b, c}}
OL1) {{a}, {a, b}, {a, cl}
0,12) {{a}, {a, b}, {a, b, c}}
3 (0,0,00) | Hal, b}, {c}, {d}}
0,0,0,1) | ta}, b}, {c}, {a, d}}
(0,0,0,2) | {{a}, {b}, {c}, la, b, d}}
0,0,0,3) | Hal, {b}, {c}, {a, b, c, d}}
(0,0,1,1) | t{a}, {b},{a, c}, {b,d}} or {{a}, {b}, {a, ¢}, {a, d}}
(00,1,2) | H{a}, {b}, {a,c}, {a,b,d}} or {{a}, b}, {a, c}, {a, c, d}}
(0,0,1,3) | t{a}, {b}, {a,c}, {a,b,c,d}}
0,0,22) | {{a), (b}, {a,b,c},{a,b,d}}
0,0,2,3) | t{a}, {b}, {a,b,c}, {a, b, c, d}}
(0,1,1,1) | ta} {a, b} a,c}, {a,d}}
(0,1,1,2) | t{a} {a, b} {a,c} {a,b,d}}
O1,13) | {la}, la, b}, {a,c} {a, b, c,d}}
(0,1,2,2) | H{a}, {a, b}, {a,b,c} {a, b, d}}
0,1,2,3) | {la}, {a,b},{a,b,c}, {a,b,c,d}}

Thus for each of indicator sequences (0,0,1,1) and (0,0,1,2) there are two non-homeomorphic possible
indicator topologies on X (see the following diagrams).

Two possible minimal topological bases on X
with non-homeomorphic topologies, for seq(X, S) = (0,0,1,1)

Two possible minimal topological bases on X
with non-homeomorphic topologies, for seq(X, S) = (0,0, 1, 2)
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6. First steps in generalization of finite height case: Indicator sequence of a transformation semigroup
with pointwise finite height property

Not only “pointwise almost periodicity” of a transformation semigroup has been discussed individually
in several contexts but also has interaction with some other concepts in a transformation semigroup like
distality and has been studied from this point of view too [5]. It is well-known that transformation
semigroup (X, S) is pointwise almost periodic if and only if it a disjoint union of its minimal sets, i.e.
h(xS, S) = 0 for all x € X (Chapter I in [4]).

In this section we want to consider transformation semigroups with pointwise finite height, a transformation
semigroup (X, S) has pointwise finite height property if h(xS, S) < oo for all x € X.
First let us make a short comparison between pointwise almost periodicity and pointwise finite height

property.

Comparison 1. It is well-known that any factor of a pointwise almost periodic transformation semigroup is also
a pointwise almost periodic transformation semigroup, i.e. any factor of a pointwise zero height transformation
semigroup is a pointwise zero height transformation semigroup. Now we can say in a more general sense that any factor
of a transformation semigroup with pointwise finite height property has also pointwise finite height property, this
is because for onto homomorphism @ : (X, S) — (Y, S) and closed invariant subset Z of X, ¢(Z) is a closed invariant
subset of Y and h(¢p(Z), S) < h(Z, S) (use Note 7 in [8]); and so for every x € X we have h(¢(x)S, S) < h(xS, S) which
leads to the desired result.

Comparison 2. In a transformation semigroup (X, S), (X, S) is a disjoint union of minimal closed invariant subsets
if and only if it has pointwise zero height property (if and only if it is pointwise almost periodic). Now we can say in
a more general sense that if (X, S) is a disjoint union of finite height closed invariant subsets, then it has pointwise
finite height property.

Although being disjoint union of closed invariant subsets with finite height implies pointwise finite height
property, the following counterexample shows that the reverse implication is not valid.

Counterexample 6.1. Let X = {1 : n € N} U {0} with induced topology of R. Define f;, f, : X — X with:

2x 1. —
xf1= 2)](C+1 x€{2n TlZl} , Xf2= 1x x_l.
el otherwise 1= otherwise

For i = 1,2 consider transformation semigroup (X, S;) where S; = {f" : n > 0}. We have:

e (X, S1) has pointwise finite height property, and it is disjoint union of its closed invariant subsets with
finite height.

e (X, S,) has pointwise finite height property, but it is not disjoint union of its closed invariant subsets
with finite height.

Definition 6.2. Let (X, S)be a transformation semigroup with pointwise finite height property. We introduce
the indicator sequence of (X, S), seq(X, S), in a natural way. Suppose a(n) := card({xS : x € X, h(xS, S) = n})
(n € N U {0}). Indicator sequence of (X, S) is a sequence of (ordinal) length 1 = a(0) + a(1) + a(2) +--- (=
sup{a(0) + -+ + a(n) : n € w}) in the form (k(A) : A < n) for k(1) = m whenever a(0) + --- +a(m—-1) < A <
a)+---+a(m—1) +a(m) (m e NU{0}, a(-1) := -1).

Remark 6.3. One can easily see that Definition 6.2 is a generalization of Definition 4.1.

Proposition 6.4. In the transformation semigroup (X, S) with pointwise finite height property, if Z, W are nonempty
closed invariant subsets of (X, S), then:

o IfZ C W, then seq(Z,S) is a subsequence of seq(W, S).
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o Ifseq(X,S)=(k(A): A <n)and p <A <1, then k(B) < k(1) < A.

o Ifseq(X,S) = (k(A) : A < n) and seq(Y, T) = (d(0) : 0 < p), then seq(X X Y, S x T) is a rearrangement of
(KA +1DEO)+1)-1:A<n,0<p)

Proof. It is clear by Definition 6.2, Theorem 4.4 and Theorem 4.5. [

Proposition 6.5. In the transformation semigroup (X, S) with pointwise finite height property, infinite countable
indicator topological space and seq(X, S) = (k(A) : A < 1)), we have:

1. n2ow.
2. The following statements are equivalent:

- nis an infinite cardinal number.

-n=w.

- Vkew(k=2min({n € w : a(n) = w} U {w}) = a(k) =0).
3. if n = wp + q whenever q < w, then:

p—1<card({n > 0 : a(n) is infinite}) < p.

4. n = ww if and only if there exists an infinite subset {n; : | € w} in w such that a(n;) is infinite for all | € w.

Proof.

1. For each n € w, a(n) < w (since indicator topological space of (X, S), i.e. (xS : x € X}, is countable),
n+1 times

— .
thus using induction on n we have a(0) +--- + a(n) < w + - + w = w(n + 1) £ ww, so 1 £ ww, which
leads to the desired result.

2. Since the indicator topological space of (X, S) is infinite, 7 > w. By (1) we have n) < ww. w is the unique
cardinal number 7 satisfying w < 1 < ww.
O

Note 6.6. Let X = {1 : n € N} U {0} with induced topology of R. Then for every 1 < ww there exist a
continuous map f : X — X and a sequence (k(A) : A < 1) such that in transformation semigroup (X, S) for
S={f":n=>0}wehaveseq(X,S) = (k(A) : A <1).

Proof. We distinguish the following cases (suppose p;, is the n’th prime number):

e 1 = ww. Define f : X — X with:

1 _ 1
_xf _ P_ﬁ X = W A k > 1
X otherwise

which can be easily found in the following diagram:

S S S S
QO O 8§ 27 15 v
Lol L
L 1 1 5 3 2
S o 1 1 1 f
ri 1 1 1
235,7_”
O ¢ O b
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So:
{l, 1<i<k+1} x=-1-Ak>1
x§=1{ P Pa ,
{x} otherwise
— k x=—-Ak>1
h — p”k+1 =
(x5.5) { 0 otherwise

which shows a(n) = w for all n € w and 1 = ww.

e 1=wq+rwithg,r € w. Define f : X — X with:

x x= Az Al<k<qg-1
xf = pf,lﬂ x=#/\q+1sk$q+1’/\ngq+1
X otherwise
So:
(ril<i<k+1) x= o Alsksq-1
xS = {pl,;:ns <q+1} x:}#/\q+1sk3q+r/\ngq+1,
{x} otherwise

and h(xS,S) = [xS| — 1 which shows a(n) = @ for n € {0, wq—=1}, alg) =r, a(n) = 0 for n > g, and
n=wq+r.
O

Example 6.7. Consider the transformation group (X, S») := ({x € R" : ||x]| < 1}, O(n)), where O(n) is the set
of all orthogonal elements of GL(#, R), with action inherited from Example 5.17. For D, = {x € R" : ||x]| = 7}

(r €[0,1]), we have xS, = D, for any x € D,, thus seq(X, O(1, R)) = (k(A) : A < ¢) where k(1) = 0 forall A < ¢
and ¢ = card(R). Moreover X = {D, : r € [0, 1]} with discrete topology.

In the following example we omit the hypothesis of compactness for phase space.

Example 6.8. Let V be a discrete topological vector space over field F. One may consider transformation
group (V,F), where vr := rv (v € V,r € F). Then seq(V,F) = (k(A) : A < card(V/F)), where k(0) = 0 and
k(A) =1 for A > 0. Moreover V = {Fv : v € V} has topological basis {{{0}, Fv} : v € V}.

As it has been mentioned in Lemma 12 of Chapter I in [4], in transformation group (X, T) forx € X, t € T and
S anormal subgroup of T we have “x is an almost periodic point of (X, S) if and only if xt is an almost periodic

point in (X, S)”, i.e. h(xS,S) = 0 © h(xtS,S) = 0. In the following lemma we will see h(xS, S) = h(xtS, S).
Lemma 6.9. In the transformation group (X, G) suppose t € G, x € X and S is a normal subgroup of G. Then we
have h(xS, S) = h(xtS, S).
Proof. Suppose h(xtS, S) < co. We have:
h(xtS,5)+1 = |{yS:yextS)| (use Theorem 3.2)
= I{y Ty € xSt (since S is normal in G)
= lyS:yr e s
= Nyt
= |{zSt:z € xS} = |{zS : z € xS}
= h(xS,5)+1 (use Theorem 3.2).

yt1St ytl e xS}l (since S is normal in G)
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Note 6.10. In the transformation group (X, G) suppose t € G, A is a nonempty subset of X and S is a normal
subgroup of G. Then we have h(AS, S) = h(AtS, S).

Proof. Use a similar method described in Lemma 6.9. O

Note 6.11. In the transformation group (X, G) suppose S is a normal subgroup of G and x € X. Then
max(h(xG, G), h(xS, S)) < h(xG, S)

Proof. Any G invariant subset of xG is an S invariant subset of xG, thus h(xG, G) < h(xG, S). Moreover
xS € xG, which leads to h(xS, S) < h(xG,S). O

Lemma 6.12. In the transformation group (X, G) suppose S is a normal subgroup of G, with [G : S] = n € N and
x € X. We have h(xG, S) < (n — 1) + nh(xS, S).

Proof. Since [G : S] = n, there exist t;,...,t, € G such that G is disjoint union of #§,...,t,S, therefore
xG = U xt:S. So by Lemma 8 in [8] and Lemma 6.9 we have:

1<i<n

h(xG,S) < (n—1) + Z h(xt;S,S) = (n — 1) + nh(xS, S).

1<i<n

O

Lemma 6.13. In the transformation group (X, G) suppose S is a normal subgroup of G, with [G : S] =n € Nand A
is a nonempty closed G—invariant subset of X, then h(A,S) < (n — 1) + nh(4, G).

Proof. Choose ti,...,t, € G as in proof of Lemma 6.12. There exists I' € A with [I'] = h(4,G) + 1 such
that {xG : x € A} = {xG : x € T}. Itis clear that {xt;S : x € Ii € {1,..,n}} € {xS : x € A}. Suppose
y € A. There exists x € I" such that y_G = xG = xH;S U --- U xt,,S, thus there exists k € {1,...,n} such that
y € xtS, thus ﬁ C x4S. If y_S # xS, then for any i € {1,..,n}, ﬁti is a proper subset of ﬁti, thus
y_G =yt SU---Uyt,S = ﬁtl U---u y_Stn is a proper subset of xtS5t; U --- U %tn = m = xG, which is

a contradiction, therefore yS = x#S. Hence yS € {x;S : x € I',i € {1,...,n}} for any y € A, which shows
{yS:ye A} = (xt;S: x €T,i € {1,...,n}} which leads to h(4,S) + 1 < n(h(4,G) +1). O

As it has been mentioned in Theorem 13 of Chapter I in [4], in transformation group (X, T) forx € X, t € T
and S a normal syndetic subgroup of T we have “(X, S) is pointwise almost periodic if and only if (X, T) is
pointwise almost periodic”, i.e. “(X, S) has pointwise zero height property if and only if (X, T) has pointwise
zero height property”. Moreover we know that if [T : S] < oo, then S is a syndetic subgroup of T, also
whenever T is discrete [T : S] < oo if and only if S is a syndetic subgroup of T. We have the following
similar Theorem for pointwise finite height property:

Theorem 6.14. In the transformation group (X, G) suppose S is a normal subgroup of G with [G : S§] = n € IN.
(X, S) has pointwise finite height property if and only if (X, G) has pointwise finite height property.

Proof. Using Lemma 6.12 and Note 6.11 for any x € X we have h(xG,G) < h(xG,S) < (n — 1) + nh(xS, S),
therefore if (X, S) has pointwise finite height property, then (X, G) has pointwise finite height property.

On the other hand using Lemma 6.13 and Note 6.11 for any x € X we have h(xS,S) < h(xG,S) < (n - 1) +
nh(xG, G), therefore if (X, G) has pointwise finite height property, then (X, S) has pointwise finite height
property. [



F. Ayatollah Zadeh Shirazi, N. Golestani / Filomat 26:2 (2012), 313-329 327

7. A glance to: Indicator sequence and indicator topological space’s approach and universality

In this section we deal with universal objects of some subclasses of the class of all transformation
semigroups with discrete infinite phase semigroup S, specially we are interested in subclasses consist of
transformation semigroups with a “given finite height”, a “given finite indicator sequence”, or a “given
finite indicator topological space ”.

We recall that all phase spaces are compact Hausdorff and all phase semigroups are discrete.
For most of the constructions of this section the following remark is essential.

Remark 7.1. It is well-known that for any discrete topological semigroup S, (8S,S) is universal point
transitive transformation semigroup in the class of all point transitive transformation semigroups with
phase semigroup S (see, e.g. [5]), in addition, for any minimal right ideal I of S, (I, S) is a universal minimal
transformation semigroup in the class of all minimal transformation semigroups with phase semigroup S,
so (I,S) is universal in the class of all transformation semigroups with height 0, compact Hausdorff phase
space and discrete phase semigroup S.

Construction 7.2. Let C,,(S) denote the class of all transformation semigroups with compact Hausdorff phase space,
discrete phase semigroup S and finite height m € IN U {0}. Then the transformation semigroup ({1, ...,m + 1} X BS, S),
with (i,p)s == (i,ps) (i € {1,...,m + 1},p € BS,s € S) is universal for C,(S).

Proof. Suppose (X,S) € Cyu(S). By Theorem 3.2, there exist x, ..., X+1 € X such that {E x € X} = {xTS :
iefl,..m+1}} (therefore X = U{xl_S ci€f{l,..,m+1}}). Themap ¢ : ({1,..,m + 1} X 5,5) = (X,S) with
e@,p)=xip(ie{l,..,m+1},p € BS)is an onto homomorphism. 0O

Corollary 7.3. Let Y be a finite Ty topological space. Let Ty(S) denote the class of all transformation semigroups
with compact Hausdorff phase space, discrete phase semigroup S and indicator topological space (homeomorphic to)
Y, whenever |Y| = m + 1 € IN, since Tv(S) is a subclass of C,,(S) (Construction 7.2), ({1, ...,m + 1} X BS, S), with
(i,p)s:=(@,ps)(ie{l,..,m+1},pepS,seS)is universal for Ty(S).

Corollary 7.4. Let CUl"(S) be the class of all transformation semigroups with compact Hausdorff phase space,

tion 7.2), ({1, ..., m + 1} X BS, S), with (i, p)s = (i, ps) (i € {1,...,m + 1},p € BS,s € S) is universal for C12~"")(S).

Construction 7.5. Let Ciin(S) be the class of all transformation semigroups with compact Hausdorff phase space,
discrete phase semigroup S and finite height. Suppose for each m € IN U {0}, (W, S) is a universal transformation

semigroup for Cp,(S) (Construction 7.2). The transformation semigroup ( H Wiy, S) is a universal transformation
meNU{0}
semigroup for Cein(S).

The following construction is similar to Auslander’s method for describing universal minimal sets in [3].

Construction 7.6. Suppose C(,,ku):M")(S) is the class of all pointwise finite height transformation semigroups with
compact Hausdorff phase space, discrete phase semigroup S and indicator sequence (k(A) : A < n). Since for any

(X,5) € C%k(A):M”)(S) we have card(X) < card(fS)card(n), there exists a set A = {(X4,S) : a € I'} such that any
element of Cf]k WA<(5) s isomorphic to one of the elements of A. The transformation semigroup (H X,,S) is a

aell
universal transformation semigroup for Cflk W< (g),

Note 7.7. We have:

minimal right ideal of S and ({1, ...,m + 1} X I, S) considered as a sub-transformation semigroup of
({1,..,m+1} X BS,S).
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(0,0,1,1,n4,.
m

e Regarding Corollary 7.4, for some subclasses like C;,, " (S) none of its universal objects belongs

to Ci A (S) (use Table 5.19).

e Regarding Construction 7.5, none of the universal objects for Cyin(S) belongs to Cin(S). Since for any
m € IN, there exists a transformation semigroup (X, S) € Cgn(S) with h(X, S) = m. If (Z, S) is universal
for Ciin(S), then there exists an onto homomorphism ¢ : (Z,5) — (X, S), so h(Z,S) > h(X, S) = m. Thus
h(Z,S) > m for all m € IN and h(Z, S) = oo, which shows (Z, S) ¢ Cgn(S).

8. A short overview

Let C denote the class of all transformation semigroups, then C is a disjoint union of the classes C«, Co, C1,
..., where Cy, is consisted of the elements of C like (X, S) with h(X, S) = m (see the following diagram).

c

C |C1 | C Co

If m < oo, for every (X, S) € C,, we assign a unique sequence seq(X, S) = (1o, . . ., ;) of nonnegative integers
withO<ng<m <---<npandn; <i(0<i<m). LetB,, ={(ng,...,nwu):0<ng<n; <---<ny,m <i(0<
i < m)} (note that B,, is a totally ordered set under lexicographic ordering). Now we have a partition of C,,
to |B,y| (= m+1th Catalan number (Theorem 4.7)) of its disjoint subclasses (see the following diagram, where
for (ng,...,ny) € By, CZ’D""’"’”) is the subclass of C,, consisting of all transformation semigroup (X, S) € Cy,
with h(X, S) = (no, ..., ny))

Cm

0,...,0 0,..,0,1 0,1,..,
co-0 | 000 cO1L--m)

For m < oo, (X,S) € Cy and seq(X,S) = (ny,...,n,) we assign to (X, S) its indicator topological space:
X, a Ty topological space. In this way we have a partition of Clom 1o some of its disjoint subclasses
(the subclasses of transformation semigroups with homeomorphic indicator topology) (see the following
diagram in the case of (ng, ..., n,) = (0,0,1,1,1,1), where ag, a1, a2, a3, a4, as are distinct).

C(O,O,l,l,l,l)
5

class of all transformation semigroups in
with indicator topological space generated by a basis in the form of
{{ao}, {ar}, a0, a2}, {ao, as}, {ao, as}, {ao, as})
class of all transformation semigroups in Céo’o’l’l'l'l)
with indicator topological space generated by a basis in the form of
{ao}, {1}, {ar, a2}, {ao, as}, {ao, as}, {ao, as}}
class of all transformation semigroups in Céo’o’l’l’l’l)
with indicator topological space generated by a basis in the form of
Hao}, {1}, {ar, a2}, {av, as}, {ao, as}, {ao, as}}

C(O,O,lrl,l,l)
5

Thus we can see the following classifications of C:

1. subclasses of all elements of C with the same height;

2. subclasses of all elements of C with the same finite height and the same indicator sequence;

3. subclasses of all elements of C with the same indicator topology (so with the same height, and if this
height is finite then they will have the same indicator sequence too).
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