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Some new classes of (1, n)-hyperrings

Sanja Jancié-Rasovié?, Vuéi¢ Dasié?

*Department of Mathematics, Faculty of Natural Sciences and Mathematics University of Montenegro, Podgorica, Montenegro

Abstract. The notion of (m, n)-ary hyperring was introduced by Davvaz at the 10t AHA congress [9], as
the strong distributive structure. In this article we generalize it, by introducing the notion of (m, n)-ary
hyperring with inclusive distributivity. We present construction of (i, n)-ary hyperrings associated with
binary relations on semigroup. We also state the condition under which there exists (1, n)-ary hyperring of
multiendomorphisms for a starting m-ary hypergroup (H, f). Finaly, we analyze connections between the
obtained classes of (m, n)-ary hyperrings.

1. Introduction

The hyperstructure theory was introduced by F. Marty at the 8" Congress of Scandinavian Mathemati-
cians held in 1934. A semihypergroup (H, o) is a nonemty set H equipped with a hyperoperation o, that
isa map o : Hx H — P*(H), where P*(H) denotes the family of all nonempty subsets of H, and for all
(x,y,2z) € H® : x o (y o z) = (x o y) o z. A semihypergroup is called a hypergroup in the sense of Marty [16] if
foreverya€ H:aoH = H oa = H. In the above definitions, if A, B € P*(H), then A o B is given by:

AoB= U aob
acA,beB

x o Aisused for {x} o A and A o x for A o {x}.

A comprehensive review of the theory of hyperstrucutres appears in Corsini [4], Corsini and Leoreanu
[7] and Vougiouklis [20]. Since 1934, the hyperstructure theory has had applications to several areas of
both pure and applied mathematics. Abouth 70 years later, a suitable generalization of a hypergroup,
called an n-ary hypergroup was introduced and studied by Davvaz and Vougiouklis in [12]. Davvaz et
al. [11] considered a class of algebraic hypersystems which represent a generalization of semigroups,
hypersemiroups and n-ary semigroups. The properties of this class were investigated in [10] and [11].
The notion of (m, n)-ary hyperring was introduced by Davvaz [9] as a triple (R, f, g) such that (R, f) is an
m-ary hypergroup, (R, g) is an n-ary hypersemigroup and g is distributive over f in the sense of equality.
In this article, by an (m, n)-ary hyperring we mean more general structure in the following sense: we let
g to be distributive over f in the sense of inclusion. A subclass of the (m, n)-hyperrings, called Krasner
(m,n)-hyperrings was studied by Mirvakili and Davvaz in [17]. Anvariyeh, Mirvakili and Davvaz [1],
considered (m, n)-ary hypermodules on (1, n)-ary hyperring.
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If (H, ®) is a commutative binary hypergroup and F(H) the set of multiendomorphisms of H i.e. F(H) =
{h:H - P*(H)I(Vx,y € H) h(x ® y) C h(x) ® h(y)} then for all pairs f, g € F(H) we set:

f®ryg
fOrg

{he F(H) | (vx € H)h(x) C f(x) @ g(x)}
{ln e F(H)I(x € H)h(x) < f(g(x)}.

It is known that the structure (F(H),EBF, QF) is a binary hyperring (see Corsini [4], Example 422). In
Section 3 of this aritcle, we determine condition under which we can construct the (m, n)-ary hyperring
of multiendomorphisms of m-ary hypergroup (H, f). We show that we can associate a hyperring of
multiendomorphisms with hypergroup (H, f) which is not necessary commutative.

The association between hyperstructures and binary relations had been studied by many authors, for
example see Chvalina [2,3], Rosenberg [18], Corsini [5,6], Corsini and Leoreanu [8], and Spartalis [19].
Connections of n-ary hypergroups with binary relations was studied by Leoreanu and Davvaz in [15].
In Section 4 of this article, we obtain a class of strong distributive (m, n)-ary hyperrings associated with
binary relations on semigroup. We investigate their morphisms and we also, establish connection between
the constructed (m, n)-ary hyperring (H, f, g) and the hyperring of multiendomorphisms of m-hypergroup

(H, ).

2. Preliminaries

The notion of (m, n)-ary hyperring was introduced by Davvaz [9]. In this section we generalize it, by
introducing the notion of (m, n)-ary hyperring with inclusive distributivity and we give several examples
of these structures.

We recall the following elementary background from [9].

A mapping f : Hx---xH — P*(H), where H appears n times and P*(H) denotes the set of all non-empty
subsets of H, is called an n-ary hyperoperation and # is called the arity of this hyperoperation. If f is an
n-ary hyperoperation defined on H, then (H, f) is called an n-ary hypergroupoid. We shall use the following

abbreviated notation: the sequence x;, x;41, ..., x; will be denoted by xf. For j <1, xlj. is the empty symbol.
In this convention f(xi,...,X;, Yi+1,.--,Yj,Zj+1,--.,2Z4) May be written as f(x"l,yl],Jrl,z;?Jrl). Similarly, for
non-empty subsets Ay, ..., A, of H we define:

fAY) = f(Ar, ..., Ay) = Uf(x]DIxi € Ay i =1, .., ).

An n-ary hyperoperation f is called associative if:
i i - -1 +j-1 -
FET fh, G5 = O, f6GTT)

for every i,j € {1,...,n} and all x1,xy,...,%2,-1 € H. An n-ary hypergroupoid with the associative hy-
peroperation is called an n-ary hipersemigroup. An n-ary hypersemigroup (H, f) in which the equation
b€ f(a™,x;,al ) has a solution x; € H for every ai!,a? b € Hand 1 < i < n,is called an n-ary hypergroup.
This condition can be formulated by:

f(alfl,H, a;,,) = H.

An n-ary hypergroupoid (H, f) is commutative if for all 6 € S, and for every a} € H we have f(ay, ...,a,) =

f@sqy, - - asm)-
We introduce the following definition of (1, n)-ary hyperring.

Definition 2.1. An (m, n)-ary hyperring is an algebraic hyperstructure (R, f, g) which satisfies the following
axioms:

1. (R, f) is an m-ary hypergroup.
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2. (R, g) is an n-ary hypersemigroup.
3. The n-ary hyperoperation g is distributive with respect to the m-ary hyperoperation f i.e. for every

aital ,xeR1<i<n,

!7(”1 1/f(x;n) a,+1) - f(!](ﬂl 7 X1, ,+1) /!](111 7 Xm, z+1))'
(R, f, g9) is called an n-ary hyperring if n = m

The above definition contains the class of (1, n1)-ary hyperrings in the sense of Davvaz. According to [9]
an (m, n)-ary hyperring is an algebraic hyperstructure (R, f, g) which satisfies the conditions (1), (2) and
3” foreveryal,al X" € R,1<i<ng@™, f(x),al )= f(g@a™, xy,al ), ... 9@, xp,al ).

The (m, n)-ary hyperring in the sense of Davvaz will be called strong distributive (1, n)-ary hyperring.

Example 2.2. a) Let (R, +, ) be aring and 0 # P C R such that RP = R and Pz = zP for all z € R. If we define
an m-ary hyperoperation f and an n-ary hyperoperation g as follows:

()
g(x})

x1P + xP + ... + x,,,P

x1Px,Px3...x,,_1Pxy,

for any x|" € Rand x| € R, then it can be verified that (H, f, ) is an (m, n)-ary hyperring. b) It is easy to see
thatif (R, +, -) is a ring with unity 1 and P = {1} then (}, f, g) is a strong distributive (m, n)-ary hyperring. In
this case, f(x]') = x1 + ... + X,y and g(x]) = x1 - ... - Xy

Example 2.3. Let (R, +, ) be a ring and I, | be ideals of a ring R. If we set:
flxr,x0) =x1+x0+1
g1, x) =x1-x2+ ]
for all x1,x, € R, then (R, f,9) is (2,2)-hyperring. If I = ], then obviously (R, f, g) is a strong distributive
hyperring.
The following definition is a generalization of a suitable definition related to binary hyperrings.

Definition 2.4. Let (Ry, f1,91) and (Ry, f2, g2) be (m, n)-ary hyperrings. A map ¢ : Ry — R; is called an
inclusion homomorphism if the following conditions are satisfied:

1) p(fi@) € folp(@r), ..., p(an)) for all a}* € Ry
2) p(g1(a})) € g2(p(a1), ..., p(ay)) for all af € Ry

A map ¢ is is called a good (or strong) homomorphism if in the conditions 1) and 2) the equality is valid.

We recall the following notion and result from [14], [15].

Let p be a binary relation on a non-empty set H. We define a partial n-ary hypergroupoid (H, f,) as
follows:

(Ya € H), f,(a, ...,a) = {yl(a, y) € p}
\,-/

and

(Yay,ay, ...,a, € H),fp(al,az,...,an) = fp(al,...,al) U fp(az,...,az) U..u fp(an, ey ).
~———— ———— —_———

n times n times n times
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By a partial n-ary hypergroupoid we mean a non-empty set H, endowed with a function from

Hx..xH
N————

n times

to the set of subsets of H. Notice that (H, f,) is an n-ary hypergroupoid if the domain of p is H.
An element z € H is called an outer element of p if there exists y € H such that (y,z) ¢ p*.
It is interesting to see when the above n-ary hypergroupoid (H, f,) is an n-ary hypergroup.

Theorem 2.5. Let p be a binary relation with full domain. The n-ary hypergroupoid (H, f,) is an n-hypergroup if
and only if the following conditions hold:

1. p has a full range;

2. pCp%

3. (x,2) € p*> = (x,2) € p for any outer element z of p.
3. (m, n)-ary hyperring of multiendomorphisms

In this section we determine condition under which we can construct the (m, n)-ary hyperring of multi-
endomorphisms of m-ary hypergroup (H, f). We show that we can associate a hyperring of multiendomor-
phisms with hypergroup (H, f) which is not necessary commutative.

Let (H, f) be an m-ary hypergroup.

Before proving the next theorem we introduce the following notation:

km _ mk _
akl - (akll ak2/ sy akm)/ alk - (alkl aZk/ sy amk)/

forall1 <k <m.
If hi, hiv1, ..., hysio1, is the sequence of multiendomorphsms of hypergroup (H, f), and x € H, then we put:

f(h?ﬁi—l(x)) = f(hi(x), eoo Mingic1 (X))

foralll <i<m.
If by, ..., hy, are multiendomorphisms of hypergroup (H, f) and x € H, then:

(h1..hy)(x) = (hy o0 ... 0 hy)(x) = hy(ha(...(hu-1 (B (x)))
where we take

m(K) = |_Jmit)

keK

foranyKCHand 1 <i<n.
Theorem 3.1. Let (H, f) be an m-ary hypergroup such that for all a}', a3, ...,a™" € H it holds:
FCE@Y, @ F) = FF@E), @D, ). M
Let F(H) be the set of multiendomorphisms of hypergroup (H, f) i.e.
F(H) = {h:H — P*(H)|(Yay' € H) h(f(a}")) € f(h(a1), ..., h(an))}.
Define an m-ary hyperoperation & and an n-ary (n > 2) hyperoperation © on F(H) as follows: For any hi' € F(H) set
®(h)") = {h € F(H)|(Yx € H)h(x) € f(hi(x), ..., hu(x))}.
For any hl € F(H) set
O(h}) = {h € F(H)|(Vx € H)h(x) C (h1hy...h,)(x)}.
The structure (F(H), ®, ©) is an (m, n)-ary hyperring.
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Proof. For any h' € F(H) it holds ®(h]") # 0, i.e. ® is an m-ary hyperoperation. Indeed, let h : H — P*(H) be
a map defined by:

h(x) = f(h1(x), ..., hyu(x)), for all x € H.

Then for every 4" € H it holds:

h(f(@y) = f((f@1)), ., hm(f @) S f(f(a(@r), .., B (@), oves f(Ha(@1), e Fin(@m)))-

In what follows we shall denote the set h;(a;) by A;; and the sequence Ay, ..., Ain by A;’l’l foralli,j e
{1,...,m}. So,

h(f(@})) S FFAL, - FAARD) = FUFATD), -, fFAT)
= f(f(hl(al)/ e hm(al))/ cees f(hl (am)/ cees hm(am))) = f(h(al)/ cees h(am))'

Thus, h € &(h7").
Now, we prove that m-ary hyperoperation & is associative. Let, i, j € {1,..,,m} and h7"~' € F(H). Set

L= @(hg—l, @(h?ﬁi—l)/ hiz:l) — U{@(hzl—llh’/hiﬁ;l) | e @(h:nﬂ'—l)}
= [P 1 w2 | W e FH) A (vx € HYH () € f1 ),
Thus, if h” € L then for all x € H it holds:

W' () © F G, FO @), ).
Conversely, if " is an element of F(H) such that

W) € FO G0, F ), B ()
for all x € H, and if we choose /" such that I'(x) = f(h"*"'(x)), for all x € H, then i' € &(h"* ') and
W e @il i, Iy ie. i € L. So,

L= (1" € FH)I(Yx € H)h"(x) C f(H (), FOR™100), i ().

m+i

On the other hand set:

D= o™, K2,

j m+j
Then,

D = (" € F(H)|(Yx € H)H"(x) € f(y (x), FO7 (), 2 ()

m+j

By the associativity of hiperoperation f, we obtain L = D.
Leti€{1,..,m}and h, k™1, 1" € F(H). We prove that equation

(A AR SN |

he (i, 1!

i+1

has a solution h; € F(H). If we set h;(x) = H for all x € H, then h; € F(H) and for all x € H it holds:
ST ), i), B (%) = H 2 h(x).

i+1

So, h e GB(hg‘l,h,v, k). Thus, (F(H), ®) is an m-ary hypergroup.

i+1

Now we prove that (F(H), ©) is an n-ary hypersemigroup. Let h} € F(H). For all x € H, h,(x) # 0. Hence,
(hhy..hy)(x) # 0.
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Let h : H — P*(H) be a map defined by h(x) = (h...h,)(x). We want to prove that h € ©(h]) i.e. that © is
an n-ary hyperoperation. For any a}" € H it holds:

h(f(@y)) = (hhy...in)(f(a7) = (b 1) (ha(f (@) S (b2 )(f (Ru(@1), ooy (@)
€ (mha.hu=2)(f (o1 (i (@1)), ooy By (i (am))) € -+ C
€ fl(mhz..hp)(@), ..., (hiha.hn)@am)] = f(h(ay), .., h(@am))-

So, I € (1Y),
Let us prove that © is associative. Let i, j € {1, ..., n} and h%”‘l € F(H). Set

SOl
and
= O O, ).
Then
L= U {CO (1 1Y [ € F(H) A (Y € HYH () € (v Bniia ()

So,if i" € Lthenh”(x) C (hy...h2,-1)(x), for all x € H. On the other hand if i € F(H) and 1" (x) C (hy...h2,-1)(%)
for all x € H, then we choose ' € F(H) such that W (x) = (hi..y+i-1)(x) and consequently we obtain
W' e o™, h,h*") where i’ € o). Thus, h” € L. So,

={n" € F(H) | (Vx € H)I" (x) € (... 1) ().
Similarly,
={1" e F(H) | (¥x € H)I" (x) € (...hzn 1) ().

Thus, L = D.
Now we prove that the n-ary hyperoperation ©is distributive with respect to the m-ary hyperoperation .
Let hi™, b, gt € F(H),1 <i < n. Set

i+179
o @(” LD k) = UL O i i < i)
= {1 w1 e FH) A (vx € B (x) € F(@1(x), - gD}
So, if k € L then for all x € H, it holds:

k(x) € (h1..hic))(f((g1hiz1 .. ) (%), oo (Gmbtizr .. ) (x)))
C (h1..himo)(f((him1g1hisr J) (), ..., (hica Gz -1y )(X)))
c---C f((hl...h,‘,lglh”l...hn)(x) (hl i— 1gm i+1.-h )(JC))

On the other hand,

D =B (O, g, 1), s (OO, g ) = | { DK, ki) [y € 0T, g1, 1), € (1,2, m)),

Letk € L. Choose ki, ..., ky, € F(H) such that for all j € {1, 2...,m}
k]-(x) = (hl--~hi—1gjhi+1--~hn)(x)/ for all x € H.

Then k; € (D(h1 .91 ) and k € ®(ky, ..., k). Thus, k € D. So,LC D. [

1+1



S. Jan¢ié-Rasovié, V. Dasi¢ / Filomat 26:3 (2012), 585-596 591

Remark 3.2. If (H, f) is an m-ary hypergroup that satisfies condition (1) then for any n > 2, there exsits
(m, n)-ary hyperring (F(H),®, ©). The structure (F(H), ®,®) will be called (m, n)-ary hyperring of multien-
domorphisms of m-ary hypergroup (H, f).

Remark 3.3. If (H, f) is a commutative binary hypergroup, then (H, f) satisfies condition (1) of previous
theorem. Thus, the binary hyperring of multiendomorphisms of commutative binary hypergroup (H, f) is
a special case of (m, n)-ary hyperring constructed in Theorem 3.1. But, the following example shows that
there also exist noncommutative hypergroups, that satisfy condition (1), implying that we can associate a
hyperring of multiendomorphisms with noncommutative hypergroup.

Example 3.4. If H = {x, y,z} and f is defined by the following table:

f X y z

X H H H

Y H H {x, y}
z H {z,x} H

then (H, f) is a noncommutative binary hypergroup which satisfies condition (1).

4. (m,n)-ary hyperrings associated with binary relations

In this section we constructa class of (i, nn)-ary hyperrings associated with binary relations on semigroup.
Then, we investigate their morphisms and we also, establish connection between the constructed (m, n)-ary
hyperring (H, f, g) and the hyperring of multiendomorphisms of m-hypergroup (H, f).

Theorem 4.1. Let (H, ) be a semigroup equipped with binary relations p1 and p, such that p1 C py. Let p; (i = 1,2)
be a reflexive and transitive relation such that for all a,b,x € H,

(a,b) € p; implies (a-x,b-x) € piand (x -a,x - b) € p;. 2)
We define an m-ary hyperoperation f and an n-ary hyperoperation g on H, as follows:

f@y) ={z|@,2) €prV(@,2) €p1 V..V (an2) € p1)
for any al' € H, and g(a}) = {z ‘ a1y .. Ay P22 }for any ay € H. The structure (H, f, g) is a strong distributive
(m, n)-ary hyperring.

Proof. Since p; is reflexive and transitive relation, then by Theorem 2.5, (H, f) is an m-ary hypergroup.
Now we prove that (H, g) is an n-ary hypersemigroup. Since p is reflexive, then for any a} € H it holds
g(a}) # 0ie. gis an n-ary hyperoperation. Leti,j € {1,..,n} and a2"~! € H.
Set

L=glai" gtar,a) = ot z a2 € gta )
and
D =glol” 0" ai!) = Uloter™ 0.0 < gt} ™))

2n—1

o). Thus, (a; - ... - apsi1,2) € p2 and

Suppose w € L. Then there exists z € g(a!*!) such that w € g(ai™,z,a
(@1 .- @im1 -2+ Apai - ... - A2p—1, W) € p2. By the condition (2) we have

(@1 oo i1 - A o~ Apicd O+ oo A2=1, A1+ oo * A1 " 2 A * oo " A2y—1) € P2,
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while (a1 - ... - 4j_1 - 2 Gy4i - ... - A2p—1, W) € pa. Since py is transitive, then (a; - ... - az,-1, W) € py.
. i-1 i-1 T
Therefore if we set 6 = a; - ... - a,4j-1 then 6 € g(a;.l“ Yand w € g(a{ ,6,afl’frj1), ie. weD. So,L CD.

Similarly, we obtain D C L.
Now we prove that n-ary hyperoperation g is strong distributive with respect to the m-ary hyperopera-

tion f. Leti € {1,..,n}and ai?,a,x" € H. Set

L=g(a, fa)a) = (o6, wa]w e £
and
D= f(g(ai‘l,xl,af’ﬂ),...,g(ag_l,xm,a?ﬂ)) = U {f(él,..., Om) ( 01 € g(ui‘l,xl,aﬁl),..., Om € g(ai‘l,xm,a?ﬂ)}.

If y € L, then there exists w € f (") such that y € g(a"l‘l,w, a!.,)- Thus, there exists k € {1, ...,m} such that

(xx, w) € p1 S ppand (a1 - ... - @iy - W - Ajy1 - ... - Ay, Y) € p2. By condition (2) we obtain
(611 St i1 X, Aig1 v e Ay, A1 0 et A1 W iy et Ll«,,) S P2,
while (a1 - ... - @j—1 - W+ Aj41 - ... - Ay, Y) € p2. Since p; is transitive we obtain y € g(aé‘l,xk, a:’H).

So, if we choose 01, ..., 0, such that §; € g(ag‘l,xl,al?’ﬂ)forl €{1,2,..,mi\{k}and oy = y, theny € f(01, ..., 0m),
ie,yeD.

Suppose now y € D. Then there exist 61 € g(ai ™, x1,a7,,), ..., om € g(a ™, xy,al, ;) suchthat y € f(1, ..., 6m).
Hence, there exists k € {1, ..., m} such that (6, y) € p1 € p> while (a1 e @i X B e ay, Ok) € p2. Since p
is transitive we obtain (a1 - ... - @j—1 - X * js1 - ... -y, Y) € p2ie. Y € g(cﬂl‘l,xk, alﬁl). Asx; € f(x’lﬂ), wehavey € L.

Therefore, D = L. [

Throughout the following text the quadruple (H, -, p1, p2) will denote a semigroup (H, -) equipped with
binary relations p and p, such that p; and p, satisfy the conditions of Theorem 4.1. By an (i, n)-ary hyperring
associated with (H, -, p1, p2) we mean an (1, n)- ary hyperring (H, f, g) constructed in Theorem 4.1.

Theorem 4.2. Let (H, f, 9) be an (m, n)-ary hyperring associated with (H, -, p1, p2) and (F(H), ®, ©) be an (m, n)-ary

hyperring of multiendomorphisms of the m-ary hypergroup (H, f).
If we define a mapping ¢ : (H, f,g9) — (F(H), ®,©) by @(a) = h,, for all a € H, where h, : H — P*(H) is defined
by:
ha(x) = f(a,..,a,x), forallx € H,

——
m—1 times

then the following holds:

L o(f@") € Ple@), ..., p(an)), forall a € H.
2. If

(a-byw)ep, = (a,w)epV(bw)eEp 3)

for any triple of elements a, b, w € H, then

pg@) < (D(@@), ., 9(@)

for any a} € H.
3. If p1 is an order, then @ is injective.
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Proof. First notice that for any al™, a2"

mm 1 .
1 ,a, . ant € H, it holds:

f(f(ahm ey f@ ) = {z |3k, 1€l ..., m}, (an,z) € Pl} = f(f(ﬂ'ﬁl),-.-,f(ﬂﬁ'f )

Thus, by Theorem 3.1, there exists an (m, n)-ary hyperring (F(H), ®, ©).
Now we verify that i, € F(H), for any a € H. Let 4]’ € H. Set

L=h(f(@,....an)) = U {ha(@) | x € flar, ..,am)} = f( -, f@, .,am)).

m—1

and

D = flh.(a1), ..., ho(ay) ) = (X1, o0y xm) | x5 € f(a,...,a,a)),j=1,.., mj.
f( 1 ) U {f 1 } j€f i) }
m—1
Let z € L. We have the following possibilities:

(i) If (a,z) € p1, weputx; =x = ... =x,, =a and then z € f(xy, ..., x,) and

xj € f(@a,...,a,aj),
——
m—1

forall j € {1,...,m}. So,z € D.

(ii) If there exists u € f(ay, ..., a,) such that (u,z) € py, then, there exists i € {1, ...,m} such that (a;, u) € p;
and (u,z) € p1. By transitivity of pi, we have (1;,z) € pr.lf weputx;=zandx; = ... = xi.1 = xj11 = ... =
Xm = 4a,thenz € f(xq,..., Xi-1, Xi, Xis1, ..., Xpr) and

xj € f(@a,...,a,aj) forall j € {1, ..., m}.
——
m—1
So,z € D.
Thus, h, € F(H).
(1) Letal" € H. Set:

L= (P(f(ﬂ’f')) = {hw | (a1, w) € p1 V... V (@, w) € Pl}
and

D = D (¢(@), -, plan)) = {lr € FEH) | (Vx € B h(x) € Flha () . i, ()}
Let hy € Land x € H. Then

hy(x) = f(w, ..., w,x) = {z|(w,z) €ep1Vx,z)eEp }
N——
m—1
Suppose z € hy,(x). We have two possibilities:

(i) If (w,z) € p1, since hy, € L, then there exists j € {1, ..., m} such that (a;, w) € p1, and by the transitivity of
p1 we have (a;,z) € p1, i.e., z € f(aj, ..., aj,X) = hy;(x).

Since /1 (x) € f(a, (%), .-, 1o, (x)), then z € f(hg, (x), ..., 10, ().
(i) If (x,2) € p1, then z € f(x,...,x). Since x € hy, (x), ..., X € I, (x), then z € f(hg, (%), ..., ha,,(2)).
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So, hy(x) C f(ha1 (), ..., hg, (x)), forallx € Hie. hy € D. Thus L C D.

(2) Let a] € H. First, notice that for any x € H and i € {1,..,n} it holds h,(x) C (h,...h,)(x) and

ha,(x) C (gl ) ().
Indeed, since y € h,(y) for all y € H and 1 < j < n, then h,(x) C ha[;l(hai(x)) and ha,,l(ha,-(x)) -

hﬂi-z (hﬂ‘—l (hﬂz' (x)))
Thus, hy,(x) € (Mg, 4, ha,)(x). So, after finite number of steps we obtain:

I () € (o, ) ). 4)

For the second inclusion we proceed in a similar way.
As x € Iy, (v) then fi,_,(x) € h,., (e, (x)). Thus, x € (1, ,ha,)(x) implying that hy, ,(x) € (he, lta, ,he,)().
After finite number of steps we obtain

I (%) € (g, ). 5)

From (4) and (5) it follows hg,(x) € hg,(-..(16,(x))) € (14, ..1e, ) ().
Now, set

L= p(9@) = {h] @ - .- an,b) € po)
and

D= () (p@), . plan)) = { h € F(H)| (Vx € H) h(x) € (e, .o, ) ()},

Let hy € L and x € H. Then

hy(x) = (b, ..., b,x) = {z|(b,2) € p1 V (x,2) € p1 .
~——
m—1
If z € hy(x) we have the following possibilities:

(i) If(b,z) € p1,sincehy € L, then (a;-....a,, b) € po. As p1 C pa, by transitivity of p, wehave (a;-...-a,, z) € pa.
By the condition (3), there exists i € {1, ..., n} such that (a;,z) € p1 i.e. z € hy(x) C (hg,...15,)(%).
(ii) If (x,z) € p1, then z € h,, (x) C (hy...hy, )(x).
Thus, hy(x) C (h,...h,, )(x), forall x € Hi.e. hy € D.

(3) Let p1 be an order on H. Suppose a,b € H and ¢(a) = p(b) i.e. h, = h.
Then, h,(a) = hy(a) and h,(b) = hy(b). Thus,

f@,..,a)=f@®,..,ba) and f(a,..,a,b) = f(b,..b).
—_—— —_—— —_—— —_——

m m—1 m—1 m
Since,
f@,..,a,b) = f(b,...,b,a),
—— ——
m—1 m—1

then f(a,...,a) = f(b, ..., b).
Froma € f(a, ..., a) it follows a € f(b,...,b), i.e., (b,a) € p;. Similarly, it is proved (a,b) € p1. As p1 is an
order, we obtaina =b. [
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Example 4.3. Notice that (N, -, <, <) satisfies the conditions of Theorem 4.1. Thus, there exists an (m, n)-ary
hyperring (N, f, g) associated with (N, -, <, <).
For all k" € N and k] € N we have

£ = {k e N| minfky, ..., ky} <k} and g(k}) = {ke N|k; -... ky < k}.

It is easy to see that (I, -, <, <) satisfies the conditions of Theorem 4.2. So, there exists an inclusion mono-
morphism of (N, £, g) into the (F(N), ®, ©).

Definition 4.4. Let the triples (Hj, p1, p2) and (H», 61, 62) denote the nonempty set H; equipped with binary
relations p1, p, and nonempty set H, with binary relations 01, 0,.

(a) The map a : Hi — H is said to be isotone if

xpiy = alx)d;a(y),

forallx,y € Hy and i € {1,2}.
(b) The map a : H; — H; is said to be strongly isotone if

ax) oy © (A eH)xpix' A aX) =y,
forall (x,y) € H1 x Hy and i € {1, 2}.

Theorem 4.5. Let (H1, f1, g1) be an (m, n)-ary hyperring associated with (Hi, -, p1, p2) and (Hy, f2, g2) be an (m, n)-
ary hyperring associated with (Ha, -, 61, 62).

(1) If a : (H1,) = (Ha,) is an isotone homomorphism of semigroups (H1,-) and (Hy,-) then a : (Hy, f1,91) —
(Ha, f2, 92) is an inclusion homomorphism.

(2) Ifa: (Hi,) = (Ha, ") is a strongly isotone homomorphism, then o : (H1, f1,91) = (Ha, f2, g2) is a strong homo-
morphism.

Proof. (1) Let a : (Hy,-) — (Hz,-) be an isotone homomorphism and ' € H. If w € a(fi(x]")), then there
exists z € Hy such that w = a(z) and (x;, z) € p; for somei € {1, ..., m}.

Since, a is isotone then (a(x;),a(z) = w) € 6; and so w € fa(a(x1),...,a(xn)). Thus a(fi(x]")) C
fz(“(xl)r e a(xm))-

Now, let y| € H. To prove that a(gl(yg’)) C gz<0z(y1), .y a(yn)) we can proceed similarly as in the proof of
Theorem 3.2. (ii) in [19].

Therefore, o : (H1, f1,91) = (Hz, f2, 92) ia an inclusion homomorphism.

(2) Let a : (Hy,-) — (Ha, -) be a stronly isotone homomorphism. Since « is isotone, then by (1) we obtain
that « : (H1, fi,91) = (Hz, f2, g2) is an inclusion homomorphism.

Thus, for any x' € Hy, it holds a(f1(x’1”)) - fz(a(xl), ...,a(xm)).

Supposew € fo(a(x1), ..., a(xy)). Then (a(x;), w) € 61 for somei € {1, ..., m}. Since « is strongly isotone, then
there exists z € Hy such that (x;,z) € p1 and a(z) = w. Thus, w = a(z) € a(f1(x]")). Therefore,

Ala), .., atxn) € a( AG)).

Thus/ a(fl (x;n)) = fz(a(xl)/ cees a(xm))-
Now, let ¥} € H;. In similar way as in the proof of Theorem 3.3. (i) in [19], we prove that

a(g1(y7)) = g2(a(y1), ..., a(yn))-

This completes the proof. [J
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