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The optimal convergence factor of the gradient based iterative
algorithm for linear matrix equations
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Abstract. A hierarchical gradient based iterative algorithm of [L. Xie et al., Computers and Mathematics
with Applications 58 (2009) 1441-1448] has been presented for finding the numerical solution for general
linear matrix equations, and the convergent factor has been discussed by numerical experiments. However,
they pointed out that how to choose a best convergence factor is still a project to be studied. In this paper,
we discussed the optimal convergent factor for the gradient based iterative algorithm and obtained the
optimal convergent factor. Moreover, the theoretical results of this paper can be extended to other methods
of gradient-type based. Results of numerical experiments are consistent with the theoretical findings.

1. Introduction

Numerical methods for solving matrix equations become interesting as soon as they play an important
role in various fields, such as neural network [18], model reduction [14] and image processing [1] etc.
Recently, iterative approaches for solving matrix equations and recursive identification for parameter
estimation have received much attention, e.g., ([6]-[10], [11], [15]-[16], [20]-[22]). In [17], Xie et al. presented
an efficient gradient based iterative algorithms for solving a class of matrix equations by applying the
hierarchical identification principle ([2]-[4]) and the convergence properties of the method are investigated.
Because the convergent rate relies on the convergent factor µ and the larger the convergent factor µ, the
faster the convergent rate of algorithm. However, when the convergent factor µ is too large, the algorithm
will diverge. Therefore, there exists a best convergent factor µ. In [17], the authors pointed out that how
to choose a best convergent factor µ is still a project to be studied. In this paper, we derived the optimal
convergent factor. Results of numerical experiments verify the theoretical findings.

The paper is organized as follows: In Section 2, we introduce the gradient based iterative algorithm for
a class of general linear matrix equations proposed by Xie et al. in [17]. The main results are presented in
Section 3. Finally, we present three numerical experiments to verify the theoretical finding.
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2. The gradient based iterative algorithm for a class of general linear matrix equations

Considering the following general linear matrix equations of form

p∑
i=1

AiXBi +

q∑
i=1

CiXTDi = F, (1)

where Ai ∈ Rr×m,Bi ∈ Rn×s,Ci ∈ Rr×n and Di ∈ Rm×s and F = [ f1, f2, · · · , fs] ∈ Rr×s are given constant matrix,
X ∈ Rm×n is the unknown matrix to be solved.

Let us introduce some notations which are used in [17]. The symbol I or In stands for an identity matrix
of appropriate sizes or size n× n. For two matrices M and N,M⊗N is their Kronecker product; for an m× n
matrix X = [x1, x2, · · · , xn] ∈ Rm×n, xk ∈ Rm, col[X] is an mn−dimensional vector formed by the columns of

X, i.e. col[X] =
[
xT

1 , x
T
2 , . . . , x

T
n

]T
∈ Rmn.

Referring to Al Zhour and Kilicman’s work [19], the mn ×mn square matrix is defined by

Pmn =

m∑
i=1

n∑
j=1

Ei j ⊗ ET
ij, (2)

where Ei j = eieT
j called an elementary matrix of order m × n, and ei(e j) is a column vector with a unity in

the ith( jth) positions and zeros elsewhere of order m× 1(n× 1). According to the definition above, we have
Pmncol[XT] = col[X], PmnPnm = Imn, PT

mn = P−1
mn = Pnm.

In [17], the authors presented the following lemma.

Lemma 2.1. Let S =
∑p

i=1 BT
i ⊗ Ai +

∑q
i=1(DT

i ⊗ Ci)Pnm, then (1) has a unique solution if and only if rand [S,
col[F]]=rank[S]=min(i.e., S has a full column rank). In this case, the unique solution is given by col[X] =
(STS)−1STcol[F], and the corresponding homogeneous matrix equation in (1) with F = 0 has a unique solution
X = 0.

By Lemma 2.1, we can obtain the solution of (1) but it requires excessive computer memory. Therefore,
the iterative methods are preferred.

In [17], the authors presented the following gradient based iterative algorithm for solving (1) by apply-
ing the hierarchical identification principle.

Algorithm 1: The gradient based iterative algorithm for Eq. (1)

1. X(k) = 1
p+q [

∑p
j=1 X j(k) +

∑q
l=1 Xp+l(k)],

2. X j(k) = X(k − 1) + µAT
j [F −∑p

i=1 AiX(k − 1)Bi −
∑q

i=1 CiXT(k − 1)Di]BT
j ,

3. Xp+l(k) = X(k − 1) + µDl[F −
∑p

i=1 AiX(k − 1)Bi −
∑q

i=1 CiXT(k − 1)Di]TCl.

The algorithm above has been proved to be convergent under certain conditions.

Lemma 2.2. ([17]) If the equation in (1) has a unique solution X and the convergent factor µ satisfies the following
condition

0 < µ < 2(
p∑

j=1

λmax[A jAT
j ]λmax[BT

j B j] +
q∑

l=1

λmax[ClCT
l ]λmax[DT

l Dl])−1,

then the iterative solution X(k) given by Algorithm 1 converges to X, i.e., limk→∞X(k) = X; or, the error X(k) − X
converges to zero for any initial value X(0).
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Denoted by X̃(k) = X(k) − X,we can get the error equation of Eq. (1) (see [17]) as

col[X̃(k)] = (Imn −
µ

p + q
Φ)col[X̃(k − 1)], (3)

where

Φ ≡
p∑

j=1

p∑
i=1

B jBT
i ⊗ AT

j Ai +

q∑
l=1

q∑
i=1

CT
l Ci ⊗DlDT

i +

p∑
j=1

q∑
i=1

(B jDT
i ⊗ AT

j Ci)Pnm +

q∑
l=1

p∑
i=1

(CT
l Ai ⊗DlBT

i )Pnm.

According to Eq. (3), we can easily get the following lemma.

Lemma 2.3. If the equation in (1) has a unique solution X, then Algorithm 1 converges for any initial value X(0) if
and only if the spectrum radius of the matrix Imn − µ

p+qΦ is less than one, that is, ρ(Imn − µ
p+qΦ) < 1; If the matrix Φ

is positive definite, then Algorithm 1 converges if and only if the convergent factor satisfies the following condition

0 < µ <
2(p + q)
λmax(Φ)

.

In other words, the closer the spectrum radius of Imn − µ
p+qΦ is to 0, the faster the error X̃(k) converges

to zero. However, in [17] the authors didn’t discuss that how to choose a best convergent factor µ, and
pointed out that which is a project to be studied in the future.

In the next section, we will discuss this problem and derive the optimal convergent factor formula.

3. The selection of optimal convergent factor

Firstly, we present the following lemma, which is Theorem 3.4 in [19].

Lemma 3.1. Let Pmn be the nm×nm matrix defined by (2), A ∈ Rn×m,B ∈ Rm×n, then we have Pmn(A⊗B)Pmn = B⊗A.

According to Lemma 3.1, it is trivial to prove that the matrix Φ is a symmetric matrix. The following
lemma plays an important role in determining the optimal convergent factor µ, and the proof is similar
with Lemma 5 of [12].

Lemma 3.2. Let b, a ∈ R, b > a and µ > 0, then we have

(a) If b > a > 0, then min
0<µ<2/b

{max{|1−µa|, |1−µb|}} = b−a
b+a , and the minimizer can be reached at the point µ = 2

a+b ;

(b) If b > 0 > a, then min
0<µ
{max{|1− µa|, |1− µb|}} > 1, that is, for any µ > 0 we have max{|1− µa|, |1− µb|} > 1;

(c) If a < b < 0, then min
0<µ
{max{|1 − µa|, |1 − µb|}} > 1, and for any µ > 0 we have max{|1 − µa|, |1 − µb|} > 1.

Proof. (a) If b > a > 0, then we have

max{|1 − µa|, |1 − µb|} =
{

1 − µa, µ ≤ 2
a+b ,

µb − 1, µ ≥ 2
a+b ,

which implies 1 − µa ≥ 1 − 2
a+b a = b−a

b+a and µb − 1 ≥ 2
a+b b = b−a

b+a , i.e., min
0<µ<2/b

{max{|1 − µa|, |1 − µb|}} = b−a
b+a , and

the minimizer can be reached at the point µ = 2
a+b . The proof of (b) and (c) is trivial.

The following lemma is an immediately subsequence of Lemma 3.2.

Lemma 3.3. If Algorithm 1 converges to the solution of Eq. (1) for any initial value X(0), then the matrix Φ must
be positive definite and so is symmetric positive definite.
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Now we can present the main result of this paper.

Theorem 3.4. If the matrix Φ is negative definite and indefinite, then Algorithm 1 will diverge for some initial
values, otherwise if 0 < µ < 2(p+q)

λmax(Φ) it will converge and in this case the optimal convergent factor should be

µoptimal =
2(p + q)

λmin(Φ) + λmax(Φ)
. (4)

Proof. The first part is trivial by Lemma 3.1. According to (3), we can see that the optimal convergent factor
µ should been chosen to minimize the spectrum radius of the matrixΦ. AsΦ is symmetric positive definite,
the spectrum radius can be obtained by the following formula

max{|1 −
µ

p + q
λmin(Φ)|, |1 −

µ

p + q
λmax(Φ)|},

which is less than one when 0 < µ < 2(p+q)
λmax(Φ) , and so Algorithm 1 will converge. Then by Lemma 3.1, the

optimal convergent factor can be achieved by (4).

Remark 1. F. Ding et al. presented the gradient based algorithm for Sylvester matrix equations in [5] and
Q. Niu et al. presented the relaxed gradient based algorithm for the same matrix equations in [13]. The
authors only discussed the convergent factor µ by numerical experiments, and pointed out that how to
choose the best convergent factor in [6] and the best relaxed factor in [13] is very difficult and is a subject
to be studied in the future. In fact, by similar idea, we can get the optimal convergent factor of [6] and the
optimal relaxed factor of [13] easily. As well, we can show Ding’s algorithm in [6] and Niu’s Algorithm in
[13] are completely equivalent (both numerical and mathematical) if take µd = ω(1−ω)µn, where µd and µn
are the convergent factors of Ding’s algorithm and Niu’s algorithm respectively.

Remark 2. According to Theorem 3.4, to achieve good convergence, eigenvalues estimates are required
in order to obtain the optimal or a near-optimal µ, and this may cause difficulties. In addition, when
λmax(Φ) is very large, the curve ρ(Imn − µ

p+qΦ) can be extremely sensitive near the optimal value of µ. These
observations are common to many iterative approaches that depend on an acceleration parameter.

4. Numerical examples

This section gives two examples which are the same as those in [17] to verify the theoretical findings.
Example 1. ([17]) Suppose that AX + XTB = F, where

A =
(

1 1
2 −1

)
, B =

(
1 −1
1 1

)
, F =

(
8 8
5 2

)
.

The exact solution of the matrix equations above can be obtained as follows X =
(

1 2
3 4

)
. The matrix

P22 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,Φ =


9 1 1 1
1 6 0 0
1 0 3 2
1 0 2 2

 .
By the Theorem 3.4, the optimal convergent factor is 0.3961 and 2(1+1)

λmax(Φ) ≈ 0.414. Take X(0) = 10−612×2

and µ = 0.3961, 0.0961, 0.1961, 0.2961, 0.412. Applying Algorithm 1 to compute X(k), the iterative errors
δ := ∥X(k) − X∥F/∥X∥F versus k are shown in Fig. 1 by Matlab command semilogy.

According to Fig. 1 and Fig. 2, it is clear that the larger the convergence factorµ, the faster the convergent
rate and when the convergent factor µ is taken to be 0.3961, the convergent rate is the fastest. However,
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Fig. 1. The comparision of convergent rate for different  µ .
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Fig. 2. The convergent curve for µ=0.414

µ =0.414

when the convergent factor µ is greater than 0.3961, the convergent rate will slow and when µ is greater
than 0.414, Algorithm 1 will diverge (see Fig. 2), which verifies the theoretical findings.

Also, if we take the termination condition of Algorithm 1 to be the relative error δ ≤ 10−5, we can plot
the figure of the iterative steps k versus the convergent factor µ (see Fig. 3).
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Fig. 3. The iterative steps k versus the convergent factor µ
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Fig. 4. The comparision of convergent rate for different  µ .

µ =0.0207
µ=0.0100
µ=0.0050
µ=0.0030
µ=0.0210

Example 2. ([17]) Suppose that A1XB1 + A2XB2 + C1XTD1 + C2XTD2 = F,where

A1 =

(
1 0
2 −1

)
, A2 =

(
0 1
3 −1

)
, B1 =

(
2 −1
1 1

)
, B2 =

(
3 −1
2 1

)
,

C1 =

(
1 2
−1 2

)
, C2 =

(
−1 3
−1 2

)
, D1 =

(
2 −1
1 2

)
, D2 =

(
1 1
−1 0

)
, F =

(
35 9
20 7

)
.

The exact solution of the above linear matrix equations is

X =
(

1 2
3 1

)
.

The matrix

P22 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,Φ =


143 −38 133 −52
−38 51 −28 25
133 −28 289 −14
−52 25 −14 39

 .
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Fig. 5. The convergent curve for  µ= 0.022 .

µ=0.0220

By the Theorem 3.4, the optimal convergent factor is equal to 0.0207 and 2(2+2)
λmax(Φ) ≈ 0.0211. Take X(0) = 10−612×2

and µ = 0.0207, 0.01, 0.00500, 0.0030, 0.0210. Applying Algorithm 1 to compute X(k), the iterative errors
δ := ∥X(k) − X∥F/∥X∥F versus k are shown in Fig. 4 by Matlab command semilogy.

Obviously, when the convergent factor µ = 0.0207, the convergent rate is fastest, and when µ ≥ 0.0220
Algorithm 1 will diverge (see Fig. 5), which are consistent with the theoretical analysis.
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