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A new application of generalized power increasing sequences

Hüseyin Bora

aP. O. Box 121, 06502 Bahçelievler, Ankara, Turkey

Abstract. In this paper, an application of quasi-σ-power increasing sequences has been generalized for
quasi- f -power increasing sequences. We have also obtained some new results.

1. Introduction

Let
∑

an be a given infinite series with partial sums (sn). We denote by tαn nth Cesàro mean of order α,
with α > −1, of the sequence (nan), that is

tαn =
1

Aαn

n∑
v=1

Aα−1
n−vvav, (1)

where

Aαn =
(
n + α

n

)
= O(nα), Aα0 = 1 and Aα−n = 0 f or n > 0. (2)

The series
∑

an is said to be summable | C, α; δ |k, k ≥ 1, α > −1 and δ ≥ 0, if (see [5])

∞∑
n=1

nδk−1 | tαn |k< ∞. (3)

A positive sequence (bn) is said to be almost increasing if there exists a positive increasing sequence (cn) and
two positive constants A and B such that Acn ≤ bn ≤ Bcn (see[1]). A positive sequence X = (Xn) is said to
be a quasi-σ-power increasing sequence if there exists a constant K = K(σ,X) ≥ 1 such that KnσXn ≥ mσXm
holds for all n ≥ m ≥ 1 (see [6]). It should be noted that every almost increasing sequence is a quasi-σ-power
increasing sequence for any nonnegative σ, but the converse may not be true as can be seen by taking an
example, say Xn = n−σ for σ > 0. A sequence (λn) is said to be of bounded variation, denote by (λn) ∈ BV, if∑∞

n=1 |∆λn| =
∑∞

n=1 | λn−λn+1 |< ∞. In [3], we have proved the following theorem dealing with an application
of a quasi-σ-power increasing sequences.
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Theorem 1.1. Let (Xn) be a quasi-σ-power increasing sequence for some σ (0 < σ < 1) . Suppose also that there exist
sequences (βn) and (λn), such that

| ∆λn |≤ βn (4)

βn → 0 as n→∞ (5)

∞∑
n=1

n | ∆βn | Xn < ∞ (6)

| λn | Xn = O(1) as n→∞. (7)

If the sequence (uαn) defined by (see [7])

uαn =| tαn |, α = 1 (8)

uαn = max
1≤v≤n

| tαv |, 0 < α < 1 (9)

satisfies the condition

m∑
n=1

nδk−1(uαn)k = O(Xm) as m→∞, (10)

then the series
∑

anλn is summable | C, α; δ |k, k ≥ 1 and 0 ≤ δ < α ≤ 1.

Remark 1.2. It may be noted that the condition ”(λn) ∈ BV ” should be added in the statement of Theorem
1.1.

2. The main result

The aim of this paper is to generalize Theorem 1.1 using a new class of power increasing sequences. For
this purpose, we need the concept of a quasi-f-power increasing sequence. A positive sequence X = (Xn)
is said to be a quasi-f-power increasing sequence, if there exists a constant K = K(X, f ) ≥ 1 such that
K fnXn ≥ fmXm, holds for n ≥ m ≥ 1, where f = ( fn) = [nσ(log n)γ, γ ≥ 0, 0 < σ < 1] (see [8]). It should be
noted that if we take γ=0, then we get a quasi-σ-power increasing sequence.

Now, we shall prove the following more general theorem.

Theorem 2.1. Let (λn) ∈ BV and (Xn) be a quasi-f-power increasing sequence. If the conditions from (4) to (7) and
(10) are satisfied, then the series

∑
anλn is summable | C, α; δ |k, k ≥ 1 and 0 ≤ δ < α ≤ 1.

We need the following lemmas for the proof of our theorem.

Lemma 2.2. Except for the condition (λn) ∈ BV, under the conditions on (Xn), (βn) and (λn) as expressed in the
statement of the theorem, the following conditions hold

∞∑
n=1

βnXn < ∞. (11)

nXnβn = O(1), (12)
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Proof. Since βn → 0, then we have ∆βn → 0, and hence
∞∑

n=1

βnXn ≤
∞∑

n=1

Xn

∞∑
v=n

|∆βv| =
∞∑

v=1

|∆βv|
v∑

n=1

Xn

=

∞∑
v=1

|∆βv|
v∑

n=1

nσ(log n)γXnn−σ(log n)−γ

= O(1)
∞∑

v=1

|∆βv|vσ(log v)γXv

v∑
n=1

n−σ(log n)−γ

= O(1)
∞∑

v=1

|∆βv|vσ(log v)γXv

v∑
n=1

nϵ(log n)−γn−σ−ϵ, 0 < ϵ < σ + ϵ < 1

= O(1)
∞∑

v=1

|∆βv|vσXv(log v)γvϵ(log v)−γ
v∑

n=1

n−σ−ϵ

= O(1)
∞∑

v=1

|∆βv|vσ+ϵXv

∫ v

0
x−σ−ϵdx

= O(1)
∞∑

v=1

|∆βv|vσ+ϵXvv1−σ−ϵ

= O(1)
∞∑

v=1

v|∆βv|Xv = O(1).

Again, we have that

nβnXn = nXn

∞∑
v=n

∆βv ≤ nXn

∞∑
v=n

|∆βv|

= n1−σ(log n)−γnσ(log n)γXn

∞∑
v=n

|∆βv|

≤ n1−σ(log n)−γ
∞∑

v=n

vσ(log v)γXv|∆βv|

≤
∞∑

v=n

v1−σ(log v)−γXvvσ(log v)γ|∆βv|

=

∞∑
v=1

vXv|∆βv| = O(1).

This completes the proof of Lemma 2.2.

Lemma 2.3. ([4]) If 0 < α ≤ 1 and 1 ≤ v ≤ n, then

|
v∑

p=0

Aα−1
n−pap |≤ max

1≤m≤v
|

m∑
p=0

Aα−1
m−pap | . (13)

Proof Theorem 2.1. Let (Tαn ) be the n-th (C, α), with 0 < α ≤ 1, mean
of the sequence (nanλn). Then, by (1), we have

Tαn =
1

Aαn

n∑
v=1

Aα−1
n−vvavλv. (14)
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Applying Abel’s transformation first and then using Lemma 2.3, we have that

Tαn =
1

Aαn

n−1∑
v=1

∆λv

v∑
p=1

Aα−1
n−ppap +

λn

Aαn

n∑
v=1

Aα−1
n−vvav,

| Tαn | ≤
1

Aαn

n−1∑
v=1

| ∆λv ||
v∑

p=1

Aα−1
n−ppap | +

| λn |
Aαn

|
n∑

v=1

Aα−1
n−vvav |

≤ 1
Aαn

n−1∑
v=1

Aαv uαv | ∆λv | + | λn | uαn

= Tαn,1 + Tαn,2.

Since

| Tαn,1 + Tαn,2 |k≤ 2k(| Tαn,1 |k + | Tαn,2 |k),

to complete the proof of the theorem, by (3), it is enough to show that

∞∑
n=1

nδk−1 | Tαn,r |k< ∞, f or r = 1, 2.

Now, when k > 1, applying Hölder’s inequality with indices k and k′, where 1
k +

1
k′ = 1, we get

m+1∑
n=2

nδk−1 | Tαn,1 |k ≤
m+1∑
n=2

nδk−1(Aαn)−k{
n−1∑
v=1

(Aαv )k(uαv )k| ∆λv |} × {
n−1∑
v=1

| ∆λv |}k−1

= O(1)
m+1∑
n=2

nδk−αk−1{
n−1∑
v=1

vαk(uαv )kβv}

= O(1)
m∑

v=1

vαk(uαv )kβv

m+1∑
n=v+1

1
n1+αk−δk

= O(1)
m∑

v=1

vαk(uαv )kβv

∫ ∞

v

dx
x1+αk−δk

= O(1)
m∑

v=1

vδk(uαv )kβv = O(1)
m∑

v=1

vβvvδk−1(uαv )k

= O(1)
m−1∑
v=1

∆(vβv)
v∑

r=1

rδk−1(uαr )k +O(1)mβm

m∑
v=1

vδk−1(uαv )k

= O(1)
m−1∑
v=1

| ∆(vβv) | Xv +O(1)mβmXm

= O(1)
m−1∑
v=1

| (v + 1)∆βv − βv | Xv +O(1)mβmXm

= O(1)
m−1∑
v=1

v | ∆βv | Xv +O(1)
m−1∑
v=1

βvXv +O(1)mβmXm

= O(1) as m→∞,
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by virtue of the hypotheses of the theorem and Lemma 2.2. Finally, we have that

m∑
n=1

nδk−1 | Tαn,2 |k =

m∑
n=1

| λn |k−1| λn | nδk−1(uαn)k

= O(1)
m∑

n=1

| λn | nδk−1(uαn)k

= O(1)
m−1∑
n=1

∆ | λn |
n∑

v=1

vδk−1(uαv )k +O(1) | λm |
m∑

n=1

nδk−1(uαn)k

= O(1)
m−1∑
n=1

| ∆λn | Xn +O(1) | λm | Xm

= O(1)
m−1∑
n=1

βnXn +O(1) | λm | Xm = O(1) as m→∞,

by virtue of the hypotheses of the theorem and Lemma 2.2. This completes the proof of the theorem.

It should be noted that, if we take δ = 0 (resp. α = 1), then we get a new result for | C, α |k (resp. | C, 1; δ |k)
summability. Also, if we take (Xn) as an almost increasing sequence, then we obtain a result of Bor [2] (in
this case the condition (λn) ∈ BV is not needed). If we take γ = 0, then we get Theorem 1.1.
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