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Geodesic mappings of equiaffine and anti-equiaffine general affine
connection spaces preserving torsion

Mića S. Stankovića, Marija S. Ćirića, Milan Lj. Zlatanovića

aUniversity of Niš, Faculty of Science and Mathematics, Višegradska 33, 18000 Niš, Serbia

Abstract. In this paper we consider equitorsion geodesic mappings of equiaffine spaces of the θ-kind,
θ ∈ {0, ..., 5}. In the case whenθ ∈ {0, 5}, vectorψi, which determines that mapping, is gradient, which doesn’t
hold in general case. We found the condition when the vectorψi is gradient in the case of θ ∈ {1, ..., 4}. Some
invariant geometric objects of such mappings are found. Anti-equiaffine spaces of θ-kind, θ ∈ {0, ..., 5}
are introduced and discussed. Equitorsion geodesic mappings of such spaces are described and some
invariants are found.

1. Motivation

The study of the theory of geodesic mappings of Riemannian spaces, affine connection spaces and
their generalizations has been an active field over the past several decades. Many new and interesting
results appeared in the papers of N. S. Sinyukov [26], J. Mikeš [7]-[10], G. S. Hall and D. P. Lonie [4]-[6],
M. Prvanović [21, 22], S. Minčić [18, 19, 27, 29], Z. Radulović [25], N. Pušić [23, 24], etc. The investigation of
geodesic mappings theory for special spaces is an important and active research topic.

The beginning of the study of general (non-symmetric) affine connection spaces is especially related to
the works of A. Einstein [1, 2] on Unified Field Theory (UFT). Einstein was not satisfied with his General
Theory of Relativity (GTR, 1916), and from 1923 to the end of his life (1955), he worked on different variants
of UFT. This theory had the aim to unite the gravitation theory, to which is related GTR, and the theory of
electromagnetism.

At the second step, L. P. Eisenhart [3] investigated the properties of generalized Riemannian spaces
enabled with non-symmetric metrics. He put the problem to define the class of linear connections which
are compatible with the symmetric part of a non-symmetric metric. Further developments extended the
problem of generalization to noncommutative quantum gravity and applications in modern cosmology.

Equiaffine spaces are determined by the symmetry of the Ricci tensor. These spaces with symmetric
affine connection in which the volume of an N-dimensional parallelepiped is invariant under parallel
transport, play an important role in the theory of geodesic mappings. Geodesic mappings of equiaffine
spaces with symmetric affine connection were studied in [10]-[14]. For instance, in [11], it is proved that a
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manifold with symmetric affine connection is locally projectively equivalent to an equiaffine manifold. In
[14] more general theorem is given: All manifold with affine connection are projectively equiaffine. In [10]
fundamental equations of geodesic mappings of equiaffine spaces into (pseudo-) Riemannian spaces were
found.

Four kinds of covariant derivatives [15], five independent curvature tensors [17] and five Ricci tensors
exist in the spaces with non-symmetric affine connection. Also, there exists one more Ricci tensor, which
we take from the adjoint symmetric space. If one of them is symmetric, it doesn’t mean that all other Ricci
tensors are symmetric, too. In this way, we can define six types of equiaffine spaces with non-symmetric
affine connection. We consider geodesic mappings of such spaces. Also, if we suppose anti-symmetry of
any Ricci tensor, we get anti-equiaffine space. Geodesic mapping of anti-equiaffine spaces are especially
interesting.

Equitorsion mappings are special geodesic mappings of non-symmetric affine connection spaces. These
mappings are introduced by M. Stanković at [18] and they represent geodesic mappings which preserve
torsion of the spaces.

The paper is organized in the following way. In Section 2, some used notations and preliminaries
are introduced. In Section 3, equiaffine general affine connection spaces of the θ-kind, θ ∈ {0, ..., 5} are
introduced and equitorsion geodesic mappings of such spaces are considered. It is proved that in the case
when θ ∈ {0, 5}, vector ψi, which determines that mapping, is gradient. For the rest of the cases vector ψi
is not a gradient. Also, we found the condition when the vector ψi is gradient in the case of θ ∈ {1, .., 4}.
Some invariant geometric objects of such mapping are found. In Section 4, anti-equiaffine general affine
connection spaces of θ-kind, θ ∈ {0, ..., 5} are introduced and discussed. Equitorsion geodesic mappings of
such spaces is described and some invariants were found. Specially, it is proved that the fifth curvature
tensor is invariant of equitorsion geodesic mappings of anti-equiaffine generalized Riemannian spaces of
θ-kind, θ ∈ {1, ..., 4}. In Section 5, we give a concluding remark of the paper.

2. Notations and preliminaries

A generalized Riemannian space GRN in the sense of Eisenhart’s definition [3] is a differentiable N-
dimensional manifold, equipped with a non-symmetric basic tensor 1i j.

The general (non-symmetric) affine connection spaceGAN is a differentiable N-dimensional manifold where
introduced magnitudes are Li

jk instead of basic tensor 1i j which transform themselves by the low:

Li′
j′k′(x

′) = Li
jk(x)xi′

i x j
j′x

k
k′ + xi′

i xi
j′k′ ,

(xi
i′ =

∂xi

∂xi′ , xi′
i =

∂xi′

∂xi , xi
j′k′ =

∂2xi

∂x j′∂xk′ , (xi) and (xi′) are two kinds of local coordinates) where is

Li
jk , Li

k j (2.1)

in the general case. The magnitudes Li
jk are coefficients of the non-symmetric affine connection.

The spaceGRN is special case of the spaceGAN. Connection coefficients of the spaceGRN are generalized
Cristoffel’s symbols of the second kind Γi

jk. Generally, Γi
jk , Γ

i
k j.

Based on (2.1), one can define the symmetric part of Li
jk :

Li
jk =

1
2

(Li
jk + Li

k j) =
1
2

Li
( jk)

and anti-symmetric part Li
jk
∨

= 1
2 (Li

jk − Li
k j) =

1
2 Li

[ jk].

The magnitude Li
jk
∨

is torsion tensor. Obviously,

Li
jk = Li

jk + Li
jk
∨

. (2.2)
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The magnitudes Li
jk can be considered as the coefficients of the symmetric affine connection spaceAN.

Using the non-symmetric connection in the spaceGAN one can define four kinds of covariant derivatives
[15, 16]. For example, for a tensor ai

j, we have

ai
j |
1
m = ai

j,m + Li
pmap

j − Lp
jmai

p, ai
j |
2
m = ai

j,m + Li
mpap

j − Lp
mja

i
p,

ai
j |
3
m = ai

j,m + Li
pmap

j − Lp
mja

i
p, ai

j |
4
m = ai

j,m + Li
mpap

j − Lp
jmai

p.
(2.3)

In the case of the space GAN we have five independent curvature tensors [17]:

R
1

i
jmn = Li

jm,n − Li
jn,m + Lp

jmLi
pn − Lp

jnLi
pm,

R
2

i
jmn = Li

mj,n − Li
nj,m + Lp

mjL
i
np − Lp

njL
i
mp,

R
3

i
jmn = Li

jm,n − Li
nj,m + Lp

jmLi
np − Lp

njL
i
pm + Lp

nm(Li
pj − Li

jp),

R
4

i
jmn = Li

jm,n − Li
nj,m + Lp

jmLi
np − Lp

njL
i
pm + Lp

mn(Li
pj − Li

jp),

R
5

i
jmn =

1
2

(Li
jm,n + Li

mj,n − Li
jn,m − Li

nj,m + Lp
jmLi

pn + Lp
mjL

i
nm − Lp

jnLi
pm − Lp

njL
i
pm).

(2.4)

These curvature tensors produce Ricci tensors of θ-kind, i.e. R
θ

α
jmα = R

θ
jm, θ ∈ {1, . . . , 5}.

Riemanian curvature tensor formed by symmetric part of connection Li
jk exists in the GAN:

Ri
jmn = Li

jm,n − Li
jn,m + Lp

jmLi
pn − Lp

jnLi
pm. (2.5)

The Ricci tensor is given by Rαi jα = Ri j.

Corollary 2.1. In the case when Li
jk
∨

= 0, all tensors given by (2.4) reduce to one curvature tensor (2.5).

Let GAN and GAN be two general affine connection spaces. A diffeomorphism f : GAN → GAN is
called geodesic mapping of GAN into GAN if f maps any geodesic curve in GAN into a geodesic curve in
GAN [18].

In the corresponding points M(x) and M(x) we can put

L
i
jk(x) = Li

jk(x) + Pi
jk(x), (i, j, k = 1, ...,N) (2.6)

where Pi
jk(x) is the deformation tensor of the connection L of GAN according to a mapping f .

A necessary and sufficient condition that the mapping f can be geodesic [18] is that the deformation
tensor Pi

jk has the form

Pi
jk = δ

i
jψk + δ

i
kψ j + ξ

i
jk, (2.7)

ψi =
1

1 +N
Pp

ip =
1

1 +N
(Lp

ip − Lp
ip), (2.8)

ξi
jk = Pi

jk
∨

= L
i
jk
∨
− Li

jk
∨

. (2.9)

Definition 2.1. ([18]) A geodesic mapping f : GAN → GAN is equitorsion if the torsion tensors of the spaces
GAN and GAN are equal in the corresponding points.

According to (2.9), it means that

L
i
jk
∨
− Li

jk
∨

= ξi
jk = 0. (2.10)
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3. Equitorsion geodesic mapping of equiaffine spaces

Definition 3.1. The general affine connection space GAN is equiaffine of the θ-kind, θ ∈ {1, ..., 5}, if the Ricci
tensor of the θ-kind is symmetric, i.e. R

θ
jm = R

θ
mj. The space GAN is zero-equiaffine if the Ricci tensor is

symmetric i.e. Ri j = R ji .

Let us consider an equitorsion geodesic mapping of two equiaffine spaces of the θ-kind, θ ∈ {0, 1, .., 5}.
By virtue of the geodesic mapping f : GAN → GAN we obtain tensors R

θ
, (θ = 1, ..., 5), where for example

R
1

i
jmn = Li

jm,n − Li
jn,m + Lp

jmLi
pn − Lp

jnLi
pm.

We demonstrate here how one can represent the tensor R
1

, given by equation (2.4), using (2.2):

R
1

i
jmn = Li

jm,n + Li
jm
∨
,n − Li

jn,m − Li
jn
∨
,m + Lp

jmLi
pn + Lp

jm
∨

Li
pn + Lp

jmLi
pn
∨
+ Lp

jm
∨

Li
pn
∨

− Lp
jnLi

pm − Lp
jn
∨

Li
pm − Lp

jnLi
pm
∨
− Lp

jn
∨

Li
pm
∨

= Ri
jmn + Li

jm;n − Li
jn;m + Lp

jmLi
pn − Lp

jnLi
pm,

(3.1)

where (;) denotes covariant derivative with respect to the symmetric connection Li
jk and Ri

jmn is Riemannian

curvature tensor given by (2.5).
Following this procedure, we obtain:

R
2

i
jmn = Ri

jmn − Li
jm
∨

;n + Li
jn
∨

;m + Lp
jm
∨

Li
pn
∨
− Lp

jn
∨

Li
pm
∨
,

R
3

i
jmn = Ri

jmn + Li
jm
∨

;n + Li
jn
∨

;m − Lp
jm
∨

Li
pn
∨
+ Lp

jn
∨

Li
pm
∨
− 2Lp

mn
∨

Li
pj
∨
,

R
4

i
jmn = Ri

jmn + Li
jm
∨

;n + Li
jn
∨

;m − Lp
jm
∨

Li
pn
∨
+ Lp

jn
∨

Li
pm
∨
+ 2Lp

mn
∨

Li
pj
∨
,

R
5

i
jmn = Ri

jmn + Lp
jm
∨

Li
pn
∨
+ Lp

jn
∨

Li
pm
∨
.

(3.2)

Contracting by indices i and n in (3.1) and (3.2) we get five Ricci tensors:

R
1

jm = R jm + Lp
jm
∨

;p − Lp
jp
∨

;m + Lp
jm
∨

Lq
pq
∨
− Lp

jq
∨

Lq
pm
∨
,

R
2

jm = R jm − Lp
jm
∨

;p + Lp
jp
∨

;m + Lp
jm
∨

Lq
pq
∨
− Lp

jq
∨

Lq
pm
∨
,

R
3

jm = R jm + Lp
jm
∨

;p + Lp
jp
∨

;m − Lp
jm
∨

Lq
pq
∨
+ Lp

jq
∨

Lq
pm
∨
− 2Lp

mq
∨

Lq
pj
∨

,

R
4

jm = R jm + Lp
jm
∨

;p + Lp
jp
∨

;m − Lp
jm
∨

Lq
pq
∨
+ Lp

jq
∨

Lq
pm
∨
+ 2Lp

mq
∨

Lq
pj
∨

,

R
5

jm = R jm + Lp
jm
∨

Lq
pq
∨
+ Lp

jq
∨

Lq
pm
∨
.

(3.3)

By alternating without division with respect to the indices j and m in (3.3) we get

R
1

[ jm] = R[ jm] + 2Lp
jm
∨

;p − Lp
jp
∨

;m + Lp
mp
∨

; j + 2Lp
jm
∨

Lq
pq
∨
,

R
2

[ jm] = R[ jm] − 2Lp
jm
∨

;p + Lp
jp
∨

;m − Lp
mp
∨

; j + 2Lp
jm
∨

Lq
pq
∨
,

R
3

[ jm] = R[ jm] + 2Lp
jm
∨

;p + Lp
jp
∨

;m − Lp
mp
∨

; j − 2Lp
jm
∨

Lq
pq
∨
,

R
4

[ jm] = R[ jm] + 2Lp
jm
∨

;p + Lp
jp
∨

;m − Lp
mp
∨

; j − 2Lp
jm
∨

Lq
pq
∨
,

R
5

[ jm] = R[ jm] + 2Lp
jm
∨

Lq
pq
∨
,

(3.4)
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where [ ] denotes anti-symmetrization without division.

Remark 3.1. In the space GAN is valid R
3

[ jm] = R
4

[ jm], where R
3

jm and R
4

jm are Rici tensors of the third and the

fourth kind, respectively.

In the case of geodesic mapping of two generalized Riemannian spaces, vectorψi given by formula (2.8),
which determines the geodesic mapping, is gradient [18]. Also, this fact is valid for geodesic mapping of
two spaces of symmetric affine connection i.e. the next theorem is valid:

Theorem 3.1. ([12]) If the mapping f : AN → AN is geodesic mapping of two equiaffine spaces, then the vector ψi
is gradient.

In the general case of geodesic mappings of two general affine connection spaces it is not valid. In that
case the next theorems are valid:

Theorem 3.2. If the mapping f : GAN → GAN is equitorsion geodesic mapping of two equiaffine spaces of the
θ-kind, θ ∈ {0, 5}, then the vector ψi is gradient.

Proof. Using (2.6), (2.7), (2.10) and (2.4) we get the relation between the fifth curvature tensors of the spaces
GAN and GAN under equitorsion geodesic mapping:

R
5

i
jmn = R

5
i
jmn +

1
2
δi

j(ψ
3

mn − ψ
4

nm + ψ
4

mn − ψ
3

nm) +
1
2
δi

m(ψ
3

jn + ψ
4

jn) − 1
2
δi

n(ψ
4

jm + ψ
3

jm), (3.5)

where we denoted

ψ
α

mn = ψm |
α
n − ψmψn, α ∈ {3, 4}. (3.6)

Contracting by indices i and n in (3.5), we get

R
5

jm = R
5

jm +
1
2

(ψ
3

mj − ψ
4

jm + ψ
4

mj − ψ
3

jm) +
1
2

(ψ
3

jm + ψ
4

jm) − 1
2

N(ψ
4

jm + ψ
3

jm). (3.7)

Alternating by indices j and m without division in (3.7), we get

R
5

[ jm] = R
5

[ jm] −
N + 1

2
(ψ

3
[ jm] + ψ

4
[ jm]). (3.8)

According to (2.3) and (3.6) we have

ψ
3

[ jm] + ψ
4

[ jm] = 2(ψ j,m − ψm, j). (3.9)

Replacing (3.9) in (3.8) one obtains

R
5

[ jm] = R
5

[ jm] − (N + 1)(ψ j,m − ψm, j). (3.10)

If we suppose that the tensors R
5

jm and R
5

jm are symmetric, it is valid ψ j,m = ψm, j, i.e. ψi is gradient.

Otherwise, replacing (3.4) into (3.10) we get

R[ jm] + 2L
p
jm
∨

L
q
pq
∨
= R[ jm] + 2Lp

jm
∨

Lq
pq
∨
− (1 +N)(ψ j,m − ψm, j).

As the spaces GAN and GAN have the same torsion tensors under the equitorsion mapping, we have

R[ jm] = R[ jm] − (1 +N)(ψ j,m − ψm, j). (3.11)

If the tensors R jm and R jm are symmetric, then ψi is gradient.
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From the equalities (3.10), (3.11) we have the following corollaries:

Corollary 3.1. Let f : GAN → GAN be equitorsion geodesic mapping. The tensor R[ jm] is invariant of this mapping
if and only if R

5
[ jm] is invariant of this mapping.

Corollary 3.2. If f : GAN → GAN is equitorsion geodesic mapping of two equiaffine spaces of the zero kind, then
the tensor R

5
[ jm], is an invariant of this mapping. And inversely, if f : GAN → GAN is equitorsion geodesic mapping

of two equiaffine spaces of fifth kind, then the tensor R[ jm], is an invariant of this mapping.

Under equitorsion geodesic mappings of two equiaffine spaces of θ-kind θ ∈ {1, ..., 4}, vector ψi isn’t
gradient in general case, but it holds

Theorem 3.3. Let f : GAN → GAN be equitorsion geodesic mapping of two equiaffine spaces of the θ-kind,
θ ∈ {1, ..., 4}. Vector ψi is gradient if and only if

Lp
mj
∨

ψp =
1

N − 1
(Lαmα

∨
ψ j − Lαjα

∨
ψm). (3.12)

Proof. Let us suppose that the spaces GAN and GAN are equiaffine of the first kind. Let us start from the
first curvature tensor. Using (2.6), (2.7), (2.10) and (2.4) we get the relation between the first curvature
tensors of the spaces GAN and GAN under equitorsion geodesic mapping

R
1

i
jmn = R

1

i
jmn + δ

i
j(ψ

1
mn − ψ

1
nm) + δi

mψ
1

jn − δi
nψ

1
jm + 2Li

mn
∨
ψ j + 2Lαmn

∨
ψαδ

i
j. (3.13)

Contracting by indices i and n in (3.13), we get

R
1

jm = R
1

jm + (ψ
1

mj − ψ
1

jm) + ψ
1

jm −Nψ
1

jm + 2Lαmα
∨
ψ j + 2Lαmj

∨
ψα, (3.14)

where we denoted

ψ
1

mn = ψm |
1
n − ψmψn. (3.15)

Alternating by indices j and m without division in (3.14), we get

R
1

[ jm] = R
1

[ jm] − (1 +N)ψ
1

[ jm] + 2Lαmα
∨
ψ j − 2Lαjα

∨
ψm + 4Lαmj

∨
ψα.

As R
1

[ jm] = 0, R
1

[ jm] = 0, we get

(1 +N)ψ
1

[ jm] = 2Lαmα
∨
ψ j − 2Lαjα

∨
ψm + 4Lαmj

∨
ψα. (3.16)

According to (3.15) and (2.3), we have

ψ
1

[ jm] = ψ j,m − ψm, j + 2Lp
mj
∨

ψp. (3.17)

Replacing (3.17) into (3.16), one obtains ψ j,m −ψm, j =
2

1+N

(
(1 −N)Lp

mj
∨

ψp + Lαmα
∨
ψ j − Lαjα

∨

ψm

)
. From here we can

see that ψi is gradient if and only if the equation (3.12) holds.
On the same way, it is easy to prove that for the other curvature tensors, equation (3.12) is necessary

and sufficient condition to ψi be gradient.

The Corollaries 3.1 and 3.2 don’t hold for the other Ricci tensors in general case, but they do in the case
of special equitorsion geodesic mappings. Namely,
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Theorem 3.4. Let f : GAN → GAN be equitorsion geodesic mapping of two general affine connection spaces which
satisfies

Lp
mj
∨

ψp =
1

N − 1
(Lαmα

∨
ψ j − Lαjα

∨
ψm). (3.18)

Then the next conditions are equivalent:

a) R[ jm] = R[ jm], b) R
1

[ jm] = R
1

[ jm], c) R
2

[ jm] = R
2

[ jm],

d) R
3

[ jm] = R
3

[ jm], e) R
4

[ jm] = R
4

[ jm], f ) R
5

[ jm] = R
5

[ jm].

Proof. Let us prove the equivalence (a) ⇔ (b), i.e. R[ jm] = R[ jm] ⇔ R
1

[ jm] = R
1

[ jm]. Let (;) denote covariant

derivative with respect to the symmetric connection Li
jk and (;) covariant derivative with respect to the L

i
jk.

According to (2.3) and (2.6), one obtains

L
i
jm
∨

;k = L
i
jm
∨
,k + L

i
pkL

p
jm
∨
− L

p
jkL

i
pm
∨
− L

p
mkL

i
jp
∨

= Li
jm
∨
,k + (Li

pk + Pi
pk)Lp

jm
∨

− (Lp
jk + Pp

jk)Li
pm
∨
− (Lp

mk + Pp
mk)Li

jp
∨

= Li
jm
∨

;k + Pi
pkLp

jm
∨

− Pp
jkLi

pm
∨
− Pp

mkLi
jp
∨
,

and from (3.4), we get

R
1

[ jm] = R[ jm] + 2L
p
jm
∨

;p − L
p
jp
∨

;m + L
p
mp
∨

; j + 2L
p
jm
∨

L
q
pq
∨

= R[ jm] + 2(Lp
jm
∨

;p + Pp
pqLq

jm
∨

− Pq
jpLp

qm
∨
− Pq

mpLp
jq
∨

) − (Lp
jp
∨

;k + Pp
qmLq

jp
∨

− Pq
jmLp

qp
∨
− Pq

pmLp
jq
∨

)

+ (Lp
mp
∨

; j + Pp
qjL

q
mp
∨
− Pq

mjL
p
qp
∨
− Pq

pjL
p
mq
∨

) + 2Lp
jm
∨

Lq
pq
∨

= R[ jm] + 2Lp
jm
∨

;p − Lp
jp
∨

;m + Lp
mp
∨

; j + 2Lp
jm
∨

Lq
pq
∨
+ 2(Pp

pqLq
jm
∨

− Pq
jpLp

qm
∨
− Pq

mpLp
jq
∨

),

Now, according to (2.7), (2.10) and (3.18), one obtains

Pp
pqLq

jm
∨

− Pq
jpLp

qm
∨
− Pq

mpLp
jq
∨

= (δp
qψp + δ

p
pψq)Lq

jm
∨

− (δq
jψp + δ

q
pψ j)L

p
qm
∨
− (δq

mψp + δ
q
pψm)Lp

jq
∨

= Lp
jm
∨

ψp +NLp
jm
∨

ψp − Lp
jm
∨

ψp − Lp
pm
∨
ψ j − Lp

jm
∨

ψp − Lq
jq
∨

ψm

= (N − 1)Lp
jm
∨

ψp + Lp
mp
∨
ψ j − Lq

jq
∨

ψm = 0,

Therefore, R
1

[ jm] = R[ jm] + 2Lp
jm
∨

;p − Lp
jp
∨

;m + Lp
mp
∨

; j + 2Lp
jm
∨

Lq
pq
∨
. It is easy to see that R[ jm] = R[ jm] ⇔ R

1
[ jm] = R

1
[ jm]

holds. On the same way we get the other equivalences.

Immediately follows

Corollary 3.3. Let f : GAN → GAN be equitorsion geodesic mapping of two equiaffine spaces of the θ-kind,
θ ∈ {0, ..., 5}, which satisfies the condition (3.18), then R[ jm],R

1
[ jm],R

2
[ jm],R

3
[ jm],R

4
[ jm],R

5
[ jm] are invariants of this

mapping.
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Specially, in the generalized Riemannian space GRN it is valid that Γp
ip
∨

= Γ
p
pi
∨

= 0 (see [3]), and Ricci

tensor is always symmetric, so the equations (3.4) are reduced to

R
1

[ jm] = 2Γp
jm
∨

;p, R
2

[ jm] = −2Γp
jm
∨

;p, R
3

[ jm] = 2Γp
jm
∨

;p, R
4

[ jm] = 2Γp
jm
∨

;p, R
5

[ jm] = 0.

Corollary 3.4. In the space GRN is valid

R
1

[ jm] = −R
2

[ jm] = R
3

[ jm] = R
4

[ jm], R
5

[ jm] = 0,

i.e. the fifth Ricci tensor R
5

jm is always symmetric.

Also, ψi is always gradient, and if the spaces GRN and GRN are equiaffine of the θ-kind, θ ∈ {1, 2, 3, 4},
then the other Ricci tensors are symmetric, too. The equality (3.12) holds and it is reduced to Γαmj

∨

ψα = 0.

The simplified connections between curvature tensors in the case of equitorsion geodesic mapping of
the generalized Riemannian spaces which are equiaffine of θ-kind, θ ∈ {0, ..., 5} are:

R
1

i
jmn = R

1

i
jmn + δ

i
mψ

1
jn − δi

nψ
1

jm + 2Li
mn
∨
ψ j,

R
2

i
jmn = R

2
i
jmn + δ

i
mψ

2
jn − δi

nψ
2

jm + 2Li
nm
∨
ψ j,

R
3

i
jmn = R

3
i
jmn + δ

i
mψ

2
jn − δi

nψ
1

jm + 2Li
mj
∨
ψn + 2Li

nj
∨
ψm,

R
4

i
jmn = R

4

i
jmn + δ

i
mψ

2
jn − δi

nψ
1

jm + 2Li
mj
∨
ψn + 2Li

nj
∨
ψm,

R
5

i
jmn = R

5
i
jmn + δ

i
mψ

4
jn − δi

nψ
4

jm,

where ψ
α

jm = ψ j |
α
m − ψ jψm, α ∈ {1, ..., 4}.

4. Equitorsion geodesic mappings of anti-equiaffine spaces

Definition 4.1. The general affine connection space GAN is anti-equiaffine of the θ-kind, θ ∈ {1, ..., 5}, if the
Ricci tensor of the θ-kind is anti-symmetric, i.e R

θ
jm = −R

θ
mj. The spaceGAN is zero-anti-equiaffine if the Ricci

tensor is anti-symmetric, i.e. Ri j = −R ji.

In the sequel we will describe equitorsion geodesic mappings of two anti-equiaffine spaces of theθ-kind,
θ ∈ {0, 1, .., 5}.

By symmetrization with respect to the indices j and m without division in (3.3) we get

R
1

( jm) = R( jm) − Lp
jp
∨

;m − Lp
mp
∨

; j − 2Lp
jq
∨

Lq
pm
∨
,

R
2

( jm) = R( jm) + Lp
jp
∨

;m + Lp
mp
∨

; j − 2Lp
jq
∨

Lq
pm
∨
,

R
3

( jm) = R( jm) + Lp
jp
∨

;m + Lp
mp
∨

; j − 2Lp
jq
∨

Lq
pm
∨
,

R
4

( jm) = R( jm) + Lp
jp
∨

;m + Lp
mp
∨

; j + 6Lp
jq
∨

Lq
pm
∨
,

R
5

( jm) = R( jm) + 2Lp
jq
∨

Lq
pm
∨
.

(4.1)

where ( ) denotes symmetrization without division.
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Remark 4.1. In the space GAN is valid R
2

( jm) = R
3

( jm).

Let us denoteψ jm = ψ j;m−ψ jψm, whereψ j is given at (2.8) and (;) is covariant differentiation with respect
to the symmetric part of connection Li

jk.

Theorem 4.1. Let f : GAN → GAN be equitorsion geodesic mapping of two anti-equiaffine spaces of θ-kind,
θ ∈ {0, 5}, then ψi j is anti-symmetric.

Proof. By symmetrization of the equation (3.7) with respect to the indices j and m, we get

R
5

( jm) = R
5

( jm) +
1 −N

2

(
ψ
3

( jm) + ψ
4

( jm)

)
,

where

ψ
3

( jm) + ψ
4

( jm) = ψ j,m − Lp
mjψp + ψm, j − Lp

jmψp + ψ j,m − Lp
jmψp + ψm, j − Lp

mjψp − 4ψmψ j

= 2(ψ j,m − Lp
jmψp + ψm, j − Lp

mjψp − 2ψmψ j)

= 2(ψ jm + ψmj) = 2ψ( jm).

Finally,

R
5

( jm) = R
5

( jm) + (1 −N)ψ( jm). (4.2)

Suppose that the spaces GAN and GAN are anti-equiaffine of the fifth kind. Then ψ( jm) = 0, i.e. ψ jm is anti-
symmetric. Otherwise, using (4.1) and the fact that the corresponding torsions are equal under equitorsion
mapping, we have

R( jm) = R( jm) + (1 −N)ψ( jm). (4.3)

Suppose that GAN and GAN are anti-equiaffine spaces of the zero kind, then ψ( jm) = 0, and ψ jm is anti-
symmetric.

Obviously, under equitorsion geodesic mapping of two anti-equiaffine spaces of θ-kind, θ ∈ {0, 5},
ψi j = 0 if and only if ψi is gradient.

From the equations (4.2) and (4.3), we have

Corollary 4.1. Let f : GAN → GAN be equitorsion geodesic mapping. A necessary and sufficient that the tensor
R( jm) is invariant of this mapping is that the tensor R

5
( jm) is invariant of this mapping.

Corollary 4.2. If f : GAN → GAN is equitorsion geodesic mapping of two anti-equiaffine spaces of the zero kind,
then the tensor R

5
( jm), is an invariant of this mapping. And inversely, if f : GAN → GAN is equitorsion geodesic

mapping of two anti-equiaffine spaces of the fifth kind, then the tensor R( jm) is an invariant of this mapping.

Theorem 4.2. Let f : GAN → GAN be equitorsion geodesic mapping of two anti-equiaffine spaces of the θ-kind,
θ ∈ {1, ..., 4}. The magnitude ψi j is antisymmetric if and only if

Lαmα
∨
ψ j + Lαjα

∨
ψm = 0. (4.4)
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Proof. Assume that the spaces GAN and GAN are anti-equiaffine of the first kind. The relation between the
first curvature tensors of the spaces GAN and GAN under equitorsion geodesic mapping is

R
1

i
jmn = R

1

i
jmn + δ

i
j(ψ

1
mn − ψ

1
nm) + δi

mψ
1

jn − δi
nψ

1
jm + 2Li

mn
∨
ψ j + 2Lαmn

∨
ψαδ

i
j. (4.5)

By symmetrization with respect to the indices j and m without division in (4.5) we get

R
1

( jm) = R
1

( jm) + (1 −N)ψ
1

( jm) + 2Lαmα
∨
ψ j + 2Lαjα

∨
ψm.

As R
1

( jm) = 0, R
1

( jm) = 0, one obtains (N − 1)ψ
1

( jm) = 2Lαmα
∨
ψ j + 2Lαjα

∨

ψm. On the other hand

ψ
1

( jm) = ψ j,m − Lp
jmψp + ψm, j − Lp

mjψp − 2ψmψ j

= ψ j,m − Lp
jmψp + ψm, j − Lp

mjψp − 2ψmψ j

= ψ jm + ψmj = ψ( jm).

Obviously, ψi j is anti-symmetric if and only if the condition (4.4) is satisfied. On the same way, if we start
from R

θ
jm, θ ∈ {2, 3, 4}, we get the same condition.

The Corollaries 4.1 and 4.2 don’t hold for the other Ricci tensors in general case, but they do in the case
of special equitorsion geodesic mappings. Namely,

Theorem 4.3. Let f : GAN → GAN be equitorsion geodesic mapping of two general affine connection spaces which
satisfies

Lαmα
∨
ψ j + Lαjα

∨
ψm = 0. (4.6)

Then the next conditions are equivalent:

a) R( jm) = R( jm), b) R
1

( jm) = R
1

( jm), c) R
2

( jm) = R
2

( jm),

d) R
3

( jm) = R
3

( jm), e) R
4

( jm) = R
4

( jm), f ) R
5

( jm) = R
5

( jm).

Proof. Let us prove the equivalence R( jm) = R( jm) ⇔ R
1

( jm) = R
1

( jm). According to (2.3), (2.6) and (4.1) we have

R
1

( jm) = R( jm) − L
p
jp
∨

;m − L
p
mp
∨

; j − 2L
p
jq
∨

L
q
pm
∨
= R( jm) − Lp

jp
∨

;m − Lp
mp
∨

; j − 2Lp
jq
∨

Lq
pm
∨
+ 2Pq

jmLp
qp
∨
,

where 2Pq
jmLp

qp
∨
= 2(δq

jψm + δ
q
mψ j)L

p
qp
∨
= 2(ψmLp

jp
∨

+ ψ jL
p
mp
∨

) = 0, i.e. R
1

( jm) = R( jm) − Lp
jp
∨

;m − Lp
mp
∨

; j − 2Lp
jq
∨

Lq
pm
∨
. It is

easy to see that R( jm) = R( jm) ⇔ R
1

( jm) = R
1

( jm) holds. On the same way we get the other equivalences.

Immediately follows

Corollary 4.3. Let f : GAN → GAN be equitorsion geodesic mapping of two anti-equiaffine spaces of θ-kind,
θ ∈ {0, ..., 5}, which satisfies the condition (4.6), then R( jm),R

1
( jm),R

2
( jm),R

3
( jm),R

4
( jm),R

5
( jm) are invariants of this

mapping.



M.S. Stanković et al. / Filomat 26:3 (2012), 439–451 449

Specially, in the generalized Riemannian space GRN(GRN) the equations (4.1) reduce to

R
1

( jm) = 2R jm − 2Γp
jq
∨

Γ
q
pm
∨
, R

1
( jm) = 2R jm − 2Γ

p
jq
∨
Γ

q
pm
∨
,

R
2

( jm) = 2R jm − 2Γp
jq
∨

Γ
q
pm
∨
, R

2
( jm) = 2R jm − 2Γ

p
jq
∨
Γ

q
pm
∨
,

R
3

( jm) = 2R jm − 2Γp
jq
∨

Γ
q
pm
∨
, R

3
( jm) = 2R jm − 2Γ

p
jq
∨
Γ

q
pm
∨
,

R
4

( jm) = 2R jm + 6Γp
jq
∨

Γ
q
pm
∨
, R

4
( jm) = 2R jm + 6Γ

p
jq
∨
Γ

q
pm
∨
,

R
5

jm = R jm + Γ
p
jq
∨

Γ
q
pm
∨
, R

5
jm = R jm + Γ

p
jq
∨
Γ

q
pm
∨
.

Corollary 4.4. In the space GRN is valid R
1

( jm) = R
2

( jm) = R
3

( jm).

Corollary 4.5. Under equitorsion geodesic mapping of two generalized Riemannian spaces GRN and GRN the next
tensors are invariants of this mapping: R

1
( jm) − 2R jm, R

2
( jm) − 2R jm, R

3
( jm) − 2R jm, R

4
( jm) − 2R jm, R

5
jm − R jm.

Let f : GRN → GRN be equitorsion geodesic mapping of two generalized Riemannian spaces GRN and
GRN. In this case vector ψ j is always gradient and R jm, R jm, R

5
jm, R

5
jm are symmetric. The equation (4.4)

always holds.
Suppose that some other pair of Ricci tensors is anti-symmetric, for example R

1
jm and R

1
jm. Then we have

ψ( jm) = 0, and according to Corollary 4.3, R jm and R
5

jm are invariants of that mapping. As ψ j is gradient, we

get 0 = ψ jm = ψ j,m − Lp
jmψp − ψ jψm + Lp

jm
∨

ψp = ψ
1

jm + Lp
jm
∨

ψp, i.e. ψ
1

jm = ψ
4

jm = −Lp
jm
∨

ψp, and, on the same way

ψ
2

jm = ψ
3

jm = −Lp
mj
∨

ψp.Using these facts and (2.6), (2.7), (2.10), (2.4) and (2.5), we get the connections between

the curvature tensors

R
1

i
jmn = R

1

i
jmn − δi

mΓ
p
jn
∨

ψp + δ
i
nΓ

p
jm
∨

ψp + 2Γi
mn
∨
ψ j,

R
2

i
jmn = R

2
i
jmn − δi

mΓ
p
nj
∨

ψp + δ
i
nΓ

p
mj
∨

ψp + 2Γi
nm
∨
ψ j,

R
3

i
jmn = R

3
i
jmn − 2δi

jΓ
p
nm
∨
ψp − δi

mΓ
p
nj
∨

ψp − δi
nΓ

p
mj
∨

ψp + 2Γi
mj
∨
ψn + 2Γi

nj
∨
ψm,

R
4

i
jmn = R

4

i
jmn − 2δi

jΓ
p
nm
∨
ψp − δi

mΓ
p
nj
∨

ψp − δi
nΓ

p
mj
∨

ψp + 2Γi
mj
∨
ψn + 2Γi

nj
∨
ψm,

R
5

i
jmn = R

5
i
jmn, R

i
jmn = Ri

jmn.

(4.7)

If we start from the tensors R
θ

jm and R
θ

jm, θ ∈ {2, 3, 4}, and suppose their anti-symmetry, we get the same

equations (4.7). Obviously,

Theorem 4.4. Let f : GRN → GRN be equitorsion geodesic mapping of two generalized Riemannian spaces GRN

andGRN which are anti-equiaffine of θ-kind, θ ∈ {1, ..., 4}, then the tensors R
1

i
jmn +R

2
i
jmn, R

3
i
jmn −R

4
i
jmn, R

5
i
jmn, Ri

jmn are

the invariants of that mapping.

In [17] several Ricci type identities are obtained by using non-symmetric affine connection. In these
identities 12 curvature tensors R

1
, R

2
, R

3
, R

4
, R̃

1
, R̃

2
,..., R̃

8
appear. In (2.4) five independent tensors are given,

and the rest can be expressed as their linear combinations and of the tensor R given at (2.5). Following the
notation in [17], we get
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Corollary 4.6. Under equitorsion geodesic mapping of two anti-equiaffine generalized Riemannian spaces of θ-kind,
θ ∈ {1, ..., 4}, the next curvature tensors are invariant:

Ri
jmn, R̃

1

i
jmn = 2Ri

jmn −
1
2

(R
1

i
jmn + R

2
i
jmn), R̃

2
i
jmn = R

5
i
jmn, R̃

3
i
jmn = 2Ri

jmn − R̃
2

i
jmn.

5. Conclusion

It is clearly, that a curve γ is a geodesic of connection Li
jk if and only if it is a geodesic of the symmetrized

connection Li
jk =

1
2 (Li

jk + Li
k j). Any invariant object of the projective class of the connection Li

jk, is also

invariant object of the projective class of the connection Li
jk, but it is not valid inversely.

Since the tensors R
θ

i
jmn, θ ∈ {1, . . . , 5} are generalizations of Riemannian curvature tensor, then the

magnitudes E
θ
, θ ∈ {1, . . . , 5} are generalizations of the Weyl projective curvature tensor [29]. That means

than in geodesic mapping for finding some others invariants the antisymmetric part of connection would
be included (2.7). This fact means that geodesic mapping of two non-symmetric affine connection spaces
has a sense.

In the case of symmetric affine connection spaces, Ricci tensors of the θ-kind, θ ∈ {1, ..., 5}, reduce to
the Ricci tensor obtained from the Riemannian curvature tensor (2.5). Geodesic mapping of two equiaffine
spaces of the θ-kind reduces to the geodesic mapping of two equiaffine spaces. Under such mapping,
vector ψi is always gradient.

Anti-equiaffine spaces of the θ-kind, θ ∈ {1, ..., 5} reduce to the anti-equiaffine spaces of symmetric
connection, when Ricci tensor is anti-symmetric.

Specially, generalized Riemannian spaces are interesting, in which Ricci tensor R jm and Ricci tensor
of the fifth kind R

5
jm are always symmetric. Under equitorsion geodesic mapping of two anti-equiaffine

generalized Riemannian spaces of theθ-kind,θ ∈ {1, ..., 4}, the curvature tensors R
5

i
jmn and Ri

jmn are invariants.
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[10] J. Mikeš, V. Berezovski, Geodesic mappings of affine-connection spaces into Riemannian spaces, Colloquia Mathematica Societatis
János Bolyai, Differential Geometry, Eger (Hungary) 56 (1989) 491–494.
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