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Geodesic mappings of equiaffine and anti-equiaffine general affine
connection spaces preserving torsion

Mica S. Stankovié?, Marija S. Ciri¢?, Milan Lj. Zlatanovié®

*University of Nis, Faculty of Science and Mathematics, Visegradska 33, 18000 Nis, Serbia

Abstract. In this paper we consider equitorsion geodesic mappings of equiaffine spaces of the 6-kind,
0 €{0,...,5}. Inthe case when 6 € {0, 5}, vector ¢;, which determines that mapping, is gradient, which doesn’t
hold in general case. We found the condition when the vector 1; is gradient in the case of 6 € {1, ..., 4}. Some
invariant geometric objects of such mappings are found. Anti-equiaffine spaces of 0-kind, 0 € {0, ...,5}
are introduced and discussed. Equitorsion geodesic mappings of such spaces are described and some
invariants are found.

1. Motivation

The study of the theory of geodesic mappings of Riemannian spaces, affine connection spaces and
their generalizations has been an active field over the past several decades. Many new and interesting
results appeared in the papers of N. S. Sinyukov [26], ]. Mikes$ [7]-[10], G. S. Hall and D. P. Lonie [4]-[6],
M. Prvanovi¢ [21, 22], S. Min¢i¢ [18, 19, 27, 29], Z. Radulovi¢ [25], N. Pusi¢ [23, 24], etc. The investigation of
geodesic mappings theory for special spaces is an important and active research topic.

The beginning of the study of general (non-symmetric) affine connection spaces is especially related to
the works of A. Einstein [1, 2] on Unified Field Theory (UFT). Einstein was not satisfied with his General
Theory of Relativity (GTR, 1916), and from 1923 to the end of his life (1955), he worked on different variants
of UFT. This theory had the aim to unite the gravitation theory, to which is related GTR, and the theory of
electromagnetism.

At the second step, L. P. Eisenhart [3] investigated the properties of generalized Riemannian spaces
enabled with non-symmetric metrics. He put the problem to define the class of linear connections which
are compatible with the symmetric part of a non-symmetric metric. Further developments extended the
problem of generalization to noncommutative quantum gravity and applications in modern cosmology.

Equiaffine spaces are determined by the symmetry of the Ricci tensor. These spaces with symmetric
affine connection in which the volume of an N-dimensional parallelepiped is invariant under parallel
transport, play an important role in the theory of geodesic mappings. Geodesic mappings of equiaffine
spaces with symmetric affine connection were studied in [10]-[14]. For instance, in [11], it is proved that a

2010 Mathematics Subject Classification. Primary 53A45; Secondary 53B05

Keywords. Equitorsion geodesic mapping, general affine connection space, generalized Riemannian space, equiaffine space,
anti-equiaffine space

Received: 07 July 2011; Accepted: 21 September 2011

Communicated by Dragan S. Djordjevié¢

Research supported by Ministry Education and Science, Republic of Serbia, Grant No. 174012

Email addresses: stmica@ptt.rs (Mi¢a S. Stankovi¢), marijamath@yahoo.com (Marija S. Ciri¢), zlatmilan@yahoo. com (Milan Lj.
Zlatanovic¢)



M.S. Stankovi¢ et al. / Filomat 26:3 (2012), 439-451 440

manifold with symmetric affine connection is locally projectively equivalent to an equiaffine manifold. In
[14] more general theorem is given: All manifold with affine connection are projectively equiaffine. In [10]
fundamental equations of geodesic mappings of equiaffine spaces into (pseudo-) Riemannian spaces were
found.

Four kinds of covariant derivatives [15], five independent curvature tensors [17] and five Ricci tensors
exist in the spaces with non-symmetric affine connection. Also, there exists one more Ricci tensor, which
we take from the adjoint symmetric space. If one of them is symmetric, it doesn’t mean that all other Ricci
tensors are symmetric, too. In this way, we can define six types of equiaffine spaces with non-symmetric
affine connection. We consider geodesic mappings of such spaces. Also, if we suppose anti-symmetry of
any Ricci tensor, we get anti-equiaffine space. Geodesic mapping of anti-equiaffine spaces are especially
interesting.

Equitorsion mappings are special geodesic mappings of non-symmetric affine connection spaces. These
mappings are introduced by M. Stankovi¢ at [18] and they represent geodesic mappings which preserve
torsion of the spaces.

The paper is organized in the following way. In Section 2, some used notations and preliminaries
are introduced. In Section 3, equiaffine general affine connection spaces of the 6-kind, 6 € {0, ..., 5} are
introduced and equitorsion geodesic mappings of such spaces are considered. It is proved that in the case
when 0 € {0, 5}, vector ¢;, which determines that mapping, is gradient. For the rest of the cases vector 1;
is not a gradient. Also, we found the condition when the vector 1; is gradient in the case of 0 € {1, .., 4}.
Some invariant geometric objects of such mapping are found. In Section 4, anti-equiaffine general affine
connection spaces of 0-kind, 0 € {0, ..., 5} are introduced and discussed. Equitorsion geodesic mappings of
such spaces is described and some invariants were found. Specially, it is proved that the fifth curvature
tensor is invariant of equitorsion geodesic mappings of anti-equiaffine generalized Riemannian spaces of
0-kind, 6 € {1, ...,4}. In Section 5, we give a concluding remark of the paper.

2. Notations and preliminaries

A generalized Riemannian space GRy in the sense of Eisenhart’s definition [3] is a differentiable N-
dimensional manifold, equipped with a non-symmetric basic tensor g;;.

The general (non-symmetric) affine connection space GAy is a differentiable N-dimensional manifold where
introduced magnitudes are L;k instead of basic tensor g;; which transform themselves by the low:

L;., p(X) = L}k(x)x§ x;.,xk, +X; x;, 1

i oo i _ o i _ P i i ; ; ;
(x, = 57, x; =57, Xk = Guron s (x') and (x") are two kinds of local coordinates) where is
i i
ij + ij (2.1)

in the general case. The magnitudes L;',k are coefficients of the non-symmetric affine connection.
The space GRy is special case of the space GAy. Connection coefficients of the space GIRy are generalized
Cristoffel’s symbols of the second kind I i Generally, I # Ty
Based on (2.1), one can define the symmetric part of L;k :
A . 1.,
i _ (71 iy _ 71
Ly = 5 Wi+ Lig) = 5L

i i i g
and anti-symmetric part L;.k = E(Lz,k - L;(J.) = ELl[jk]'

The magnitude Lé,k is torsion tensor. Obviously,

\

Ly = Ly + Ly (2.2)
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The magnitudes L;k can be considered as the coefficients of the symmetric affine connection space Ay.

Using the non-symmetric connection in the space GAy one can define four kinds of covariant derivatives
[15, 16]. For example, for a tensor a}, we have

+ Lt a! L a +LEah —1F a

J’lm J pim jmp7 Jlm ] mpj mj P’
a T Ll a -’ a a, = T L a 1" a @3)
]gm mj P’ ]J}m mp'j jm P
In the case of the space GAy we have five independent curvature tensors [17]:
_ p p
R;mn L;m — L;n mt L]mL;m - L L;m,
_ p p
122;,”" —Lm]n—L;]m+L .Ll -L L’mp,
i _7i i P ori pPri p i i
ijn L]m no Ln]m + L]mL - Ln]me + an(Lp]' - Ljp)r (24)
_ p p pori i
5;"’" Ll]m no L;] m + L/le -L ]L;’m + Lmn(L;’] - L}p)’
p p p p
I;;mn - _(L;mn + Linjn Ll]nm - Lln]m + L]mL;m + Lm]Lilm - L]nL;m -L LP’")
These curvature tensors produce Ricci tensors of 6-kind, i.e. Ié?ma = 1§ m, 0 €{1,...,5}.
Riemanian curvature tensor formed by symmetric part of connection L;k exists in the GAn:
R =p[i i [P i [P (2.5)

jmn jmn jnm jmpn jn pm:
The Ricci tensor is given by R¢. = R;;.
ija

Corollary 2.1. In the case when Lj.k =0, all tensors given by (2.4) reduce to one curvature tensor (2.5).

\

Let GAy and GAy be two general affine connection spaces. A diffeomorphism f : GAy — GAy is
called geodesic mapping of GAy into GAy if f maps any geodesic curve in GAy into a geodesic curve in
GAy [18]. .

In the corresponding points M(x) and M(x) we can put

Li(@) = L@ + Po(), G jk=1,..,N) 2.6)

where P;.k(x) is the deformation tensor of the connection L of GAy according to a mapping f.

A necessary and sufficient condition that the mapping f can be geodesic [18] is that the deformation
tensor Pi. has the form

= Sl + 0L + &6, 2.7)

. 1 P TP p
Yi= 1+NP 1+ N(L Liﬂ)’ (2.8)

. . —i ,
= Phe =Ty~ Ly 2.9)

Definition 2.1. ([18]) A geodesic mapping f : GAy — GAy is equitorsion if the torsion tensors of the spaces
GAy and GAy are equal in the corresponding points.

According to (2.9), it means that

—i , .
Ly —Li =&, =0. (2.10)
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3. Equitorsion geodesic mapping of equiaffine spaces

Definition 3.1. The general affine connection space GAy is equiaffine of the 0-kind, 6 € {1,

442

,5}, if the Ricci

tensor of the 0-kind is symmetric, i.e. Iéjm = 1§m j- The space GAy is zero-equiaffine if the Ricci tensor is

symmetric i.e. R;; = R;; .

Let us consider an equitorsion geodesic mapping of two equiaffine spaces of the 6-kind, 6 € {0,1, .., 5}.

By virtue of the geodesic mapping f : GAy — GAy we obtain tensors R o=1,.

R =T' Tt 4+IFPI1i —TFPTi

1 jmn jmmn jnm jmpn jnpm:

.., 5), where for example

We demonstrate here how one can represent the tensor llQ, given by equation (2.4), using (2.2):

Ri, =Ly +Lh  — L —L o+ Lo+ L+ L, + L0 L

jmn jm ]mn jn,m ]nm m—pn m—pn m P” m P”
1 jm J m ]

_gbgi _gqPgi _gPgi _gP7i
L]nLPm L]nLPm L}nLPm L]nLPm

=R, +L, L +L1' L —LL

jmn jm;n jm jmpn jn—pm’

where (;) denotes covariant derivative with respect to the symmetric connection L., and R. _ is Riemannian
p y jk jmn

curvature tensor given by (2.5).
Following this procedure, we obtain:

R =R, —[i 4l [P i —[PL

o jmn jmn ]m n ]n m ]m ,U” ]n pm'

R =R 4L 4L [P L 4[] 2Lf,mL'

3 jmn jmn ]m n ]n m ]m P" ]n pm P]’

R =R 4t 4l [Pl 4P +2L” JLi

4 jmn jmn ]mn ]nm ]m P” ]n Pm P]’

R. =R 4P [l 4P}

5 jmn Jmn ]m Pn ]n PWI

Contracting by indices i and # in (3.1) and (3.2) we get five Ricci tensors:

. =R. P _qF P14 _g1Pr4
Rim = Ry + Ly = L+ Ly Ly = L L
Vv \4

. —R. _7TF P P r4q Pra
I;]m - R]m ij;p + Ljp;m + L]le’q L qumr
v

4 P P r4q Prd Nk
Bin = R + Ly, + Ly = Ly Ly + L L = 2LogLy,

— p P _ 7P 74 Pra P 14
Rim = Ry + L + L, = Ly Ly + LiLim + 2Ly,

= R. q P14
Rjn = Rjn + ijqu + LMme

By alternating without division with respect to the indices j and m in (3.3) we get

- . p _ 7P P P 749
Rijng = Riju) + 2L].T L’ o * me] + ZLWLW,

Rijmt = Ryjmy = 21t o+ 1P 1P +21F LT

jmp jpim mrJ] jm ra
O —R.. p P _ P  _o7P 74
13{[]"1] R[]Wl] + 2Lan;p + Ljf;m me] 2L]mLP‘7’
=R p P _ P _o7P 714
{fw] = Ryjm + 2ij;p + Ljfl_m me] 2L]mqu,

— q
Ryjm) = Ryjmy +2L ]mLW’

(3.1)

(3.2)

(3.3)

(3.4)
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where [ ] denotes anti-symmetrization without division.

Remark 3.1. In the space GAy is valid 13{[ jm] = 14{[ jm), Where 13{ jm and 14{ jm are Rici tensors of the third and the
fourth kind, respectively.

In the case of geodesic mapping of two generalized Riemannian spaces, vector i; given by formula (2.8),
which determines the geodesic mapping, is gradient [18]. Also, this fact is valid for geodesic mapping of
two spaces of symmetric affine connection i.e. the next theorem is valid:

Theorem 3.1. ([12]) If the mapping f : An — Ay is geodesic mapping of two equiaffine spaces, then the vector ;
is gradient.

In the general case of geodesic mappings of two general affine connection spaces it is not valid. In that
case the next theorems are valid:

Theorem 3.2. If the mapping f : GAn — GAy is equitorsion geodesic mapping of two equiaffine spaces of the
O-kind, 6 € {0, 5}, then the vector \; is gradient.

Proof. Using (2.6), (2.7), (2.10) and (2.4) we get the relation between the fifth curvature tensors of the spaces
GAy and GAy under equitorsion geodesic mapping;:

_. 1. 1.
R;'mn = R]mn + 61(1#’"” Ian + lp"m - lp”m) + _6;1(1!)]71 + ll}]”) - _&ﬂ(l/)]m + Ivb]m)l (35)
5 5 4 4 3 273 4 27 3

where we denoted
1,bmn = Ebmln - ¢m¢n1 S {3/ 4} (36)
a (23

Contracting by indices i and 7 in (3.5), we get

Rim = Rim + = nj — Wi+ P — Vi) + 2 @i+ Vi) — N + Y- (3.7)
5 273 4 4 3 23 4 2 0y 3

5

Alternating by indices j and m without division in (3.7), we get

Rijm = Rijm = I%(%‘m] + Pgjm)- (3-8)

3 4

According to (2.3) and (3.6) we have

Quim + Y1jm = 2 = Y} (3.9)
Replacing (3.9) in (3.8) one obtains

Rijm = Rijm = (N + D)jm = ). (3.10)
If we suppose that the tensors E]-m and 152 jm are symmetric, it is valid 1, = ¥y, j, i.e. ¥; is gradient.

Otherwise, replacing (3.4) into (3.10) we get

Ryjm) + 2L]mqu = Ryjm + 2L” =X+ N)Wjm — Pm,j)-

As the spaces GAy and GAy have the same torsion tensors under the equitorsion mapping, we have
R Gml = Rijm) = (L + NYWjm — P, j)- (3.11)

If the tensors ij and R, are symmetric, then ¢; is gradient. [
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From the equalities (3.10), (3.11) we have the following corollaries:

Corollary 3.1. Let f : GAy — GAy be equitorsion geodesic mapping. The tensor R{jm) is invariant of this mapping
if and only if 152[jm] is invariant of this mapping.

Corollary 3.2. If f : GAy — GAy is equitorsion geodesic mapping of two equiaffine spaces of the zero kind, then
the tensor 15{[jm], is an invariant of this mapping. And inversely, if f : GAy — GAN is equitorsion geodesic mapping
of two equiaffine spaces of fifth kind, then the tensor Ryjm), is an invariant of this mapping.

Under equitorsion geodesic mappings of two equiaffine spaces of 0-kind 0 € {1, ...,4}, vector ¢; isn’t
gradient in general case, but it holds

Theorem 3.3. Let f : GAy — GAy be equitorsion geodesic mapping of two equiaffine spaces of the 0-kind,
0 € (1, ..., 4}). Vector y; is gradient if and only if

1 a a
Ly = =7 Lt = Liytom)- (3.12)

Proof. Let us suppose that the spaces GAy and GAy are equiaffine of the first kind. Let us start from the
first curvature tensor. Using (2.6), (2.7), (2.10) and (2.4) we get the relation between the first curvature

tensors of the spaces GAy and GAy under equitorsion geodesic mapping
R, = R, + 6§(11pnm = Yun) * 51',111p jn = 5;1{;,-,11 + 2Ly + 25 ad). (3.13)

Contracting by indices i and # in (3.13), we get

?]'m = Ifjm + (l,bmj - I!J]m) + lubjm - Nl#]m + ZL(;ml)l)] + ZL;L]-I][JD(, (3.14)
1 1 1 1 v v
where we denoted

1,fmn = lpmln - Ebmlpn' (315)

Alternating by indices j and m without division in (3.14), we get

Rejmy = Ryjmy = (L + N)gjm + 2Ly = 2L Y + 4L, o
1 %

As E[jm] =0, Ili[jm] =0, we get

1+ N)lfl[]'m] = 2Ljyp; — 2L5, Y +4L3, . (3.16)
According to (3.15) and (2.3), we have

Yt = Yim = P + 2L%j¢p~ (3.17)

Replacing (3.17) into (3.16), one obtains ¢, — ,j = ﬁ((l - N)Lfn Uy + Ly ¥i— L?‘aybm). From here we can

see that 1); is gradient if and only if the equation (3.12) holds.
On the same way, it is easy to prove that for the other curvature tensors, equation (3.12) is necessary
and sufficient condition to 1); be gradient. [

The Corollaries 3.1 and 3.2 don’t hold for the other Ricci tensors in general case, but they do in the case
of special equitorsion geodesic mappings. Namely,
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Theorem 3.4. Let f : GAy — GAy be equitorsion geodesic mapping of two general affine connection spaces which
satisfies

Ly Wy = 1 Chat = Liutom)- (3.18)
Then the next conditions are equivalent:
@) Rijm = Rijm, ) Rijm = Rijm, ) Rijm = Rijm,

) Rijm = Rijm, €) Rijmg = Rijmy, f) - Rijmg = Rijm-

Proof. Let us prove the equivalence (1) & (D), i.e. E[jm] = Rjjm © E[]-m R[]m Let (;) denote covariant

derivative with respect to the symmetric connection Lj.k and () covariant derivative with respect to the L k-
According to (2.3) and (2.6), one obtains B

—i —i —p —i —p —i
L]mk +T L]m = Dl = Tl

L = 2
\2

:L’mk+(L +P1k)L§.’ (L”+Pk)L (L” +P”k)L

Tl i 7P _pPri _pPogi
ijk+P L ijme Pka]p,

and from (3.4), we get

= TP
112[]'”1] R[]m + ZLJmp L]pm + me] + 2L]mqu

_ R p P 14 q TP q 1P P14 q 1P q 1P

= Riju + 2(LW + PWL]m = P L - PmpLM) - (L]p Lt quL = P}, Ly - Pme )
p P 14 q 1P q 1P P ra

+(me]+P Loy = Py, Ly = P Lmq)+2L]mLW

= R[jm] + ZL?m’_p - L’;p;m +L i + 2L” Lq + 2(PZqL7m - PquZm - P‘anqu)
Now, according to (2.7), (2.10) and (3.18), one obtains
quij Pij’;m - P‘ZﬂpL’jq = (O, + 5”%)L — (87 + 6, ¢])L — (80 Yy +0) lpm)L
_ Lv Uy +NLP % U?mxpp - pmlpj - jsnl,up - Lj.vngm

(N 1)L” ¢p + Li’,,plp] Lmlpm =0,

R. —7R 4 p p Prd T4 Ry = Rt =
Therefore, 112[]-,,1] = Ryjmy + 2L].T;p - Ljf;m + me] + 2L]mqu It is easy to see that Rju) = Rjjm © If[jm] = If[jm]

holds. On the same way we get the other equivalences O

Immediately follows

Corollary 3.3. Let f : GAy — GAy be equitorsion geodesic mapping of two equiaffine spaces of the 6-kind,
0 € {0,..., 5}, which satisfies the condition (3.18), then R[]’m],If[jm],1§[jm],1§[jm],§[jm],1§[jm] are invariants of this

mapping.
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Specially, in the generalized Riemannian space GRy it is valid that Ffp = Fz . = 0 (see [3]), and Ricci
tensor is always symmetric, so the equations (3.4) are reduced to

Rijmy = 207, s Rijmy = =205, Rijm = 2T o Rijm = 20,0 Rijug = 0.

jmip? jmp’ 3
Corollary 3.4. In the space GRy is valid
Rijmy = =Ryjm = Ryjmy = Rjmy, Rijm =0,
i.e. the fifth Ricci tensor 152 jm 15 always symmetric.

Also, 1; is always gradient, and if the spaces GRy and GRy are equiaffine of the 6-kind, 0 € {1,2,3,4},
then the other Ricci tensors are symmetric, too. The equality (3.12) holds and it is reduced to I' Pa = 0.

The simplified connections between curvature tensors in the case of equitorsion geodesic mapping of
the generalized Riemannian spaces which are equiaffine of 6-kind, 9 € {0, ..., 5} are:

i _ pi i Sioy. i .
11{]"1" R]mn + 6m4}]" 611111[’]"1 + 2Lmvn¢]'
i i i, i .
1§ij1 - 2]111;1 +0 IIDJ” - 67111[)]7” + 2an¢]!
2 \%2
i _ pi i N i i
1§]mn R]mn + 0, 2},4 6,41{1],,1 + ZLijPn + 2L ]1/Jm,
v

R =R+ 5;1¢jn = 8 Wjm + 2L, Wn + 2L, b,
1 % %

4 imn g jmn
i _ pi i i,
1§/mn R]mn +0 IIDJ” 67!%@’

where Yy = Yjim — Yjm, a €{1,...,4}.

4. Equitorsion geodesic mappings of anti-equiaffine spaces

Definition 4.1. The general affine connection space GAy is anti-equiaffine of the 6-kind, 6 € {1,...,5}, if the
Ricci tensor of the 0-kind is anti-symmetric, i.e 1§ im = —lém j- The space GAy is zero-anti-equiaffine if the Ricci
tensor is anti-symmetric, i.e. R;; = —R;;.

In the sequel we will describe equitorsion geodesic mappings of two anti-equiaffine spaces of the 6-kind,
0¢€{0,1,.,5}.

By symmetrization with respect to the indices j and m without division in (3.3) we get

Ilz(].m) =Rjm-L —L 2L” L

jpm mz’J pm
\%

Riimy = Rejmy + L L+ - 2L” L

mp] Pm’
) p P q
1§(]m Ryjm + L]p m T me] 2L qLPm’ (4.1)
— p P14
1}(jm) = R(jm) + L + me] + 6LMme’

- , 17 q
Ig(]m) R(jm) + ZLJ;/qLP\'/"

where () denotes symmetrization without division.
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Remark 4.1. In the space GAy is valid Izi(jm) = I§(jm).

Let us denote ¢, = ¢, — i, where ¢ is given at (2.8) and (;) is covariant differentiation with respect
to the symmetric part of connection Lj,k.

Theorem 4.1. Let f : GAy — GAy be equitorsion geodesic mapping of two anti-equiaffine spaces of 0-kind,
0 € {0, 5}, then 1);; is anti-symmetric.

Proof. By symmetrization of the equation (3.7) with respect to the indices j and m, we get

EM:§WWJ3E@WM+%m)
where
Yo + Y = Yjm = Ly Wy + Ymj = Ly + i — L oy + P — Lty = dp
=2 jm — L@‘/’p + Ym,j— L&‘PP = 2Ymy))
= 2 jm + Ymj) = 28 (jm)-
Finally,

Ry = Rejmy + (1= N)(jmy. 4.2)

Suppose that the spaces GAy and GAy are anti-equiaffine of the fifth kind. Then Y(jmy = 0,i.e. Py is anti-
symmetric. Otherwise, using (4.1) and the fact that the corresponding torsions are equal under equitorsion
mapping, we have

Rijm = Rejmy + (1= N)W(jm)- (4.3)

Suppose that GAy and GAy are anti-equiaffine spaces of the zero kind, then Yimy = 0, and ¢jy, is anti-
symmetric. []

Obviously, under equitorsion geodesic mapping of two anti-equiaffine spaces of 0-kind, 6 € {0,5},
Yi; = 0if and only if ¢; is gradient.
From the equations (4.2) and (4.3), we have

Corollary 4.1. Let f : GAy — GAy be equitorsion geodesic mapping. A necessary and sufficient that the tensor
Rjm) is invariant of this mapping is that the tensor 152(]-,,,) is invariant of this mapping.

Corollary 4.2. If f : GAy — GAy is equitorsion geodesic mapping of two anti-equiaffine spaces of the zero kind,
then the tensor 1§(jm), is an invariant of this mapping. And inversely, if f : GAny — GAn is equitorsion geodesic

mapping of two anti-equiaffine spaces of the fifth kind, then the tensor R is an invariant of this mapping.

Theorem 4.2. Let f : GAy — GAy be equitorsion geodesic mapping of two anti-equiaffine spaces of the -kind,
0 € {1, ..., 4}. The magnitude ;; is antisymmetric if and only if

Loy + Ljythm = 0. (4.4)

%
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Proof. Assume that the spaces GAy and GAy are anti-equiaffine of the first kind. The relation between the
first curvature tensors of the spaces GAy and GAy under equitorsion geodesic mapping is

?;’mn = If;mn + 6;(?mn - Hlbnm) + 6;,771%}; - (Sillf)]m + ZLinvnlpj + ZL%HI{JQ(S;. (4.5)
By symmetrization with respect to the indices j and m without division in (4.5) we get

?(ﬁn) = Rjuy + (1= N)W(m) + 2Lapj + 2L5 Y-
1 v v
As E(jm) =0, If(fm) = 0, one obtains (N — 1)1{)(jm) = ZL%alp]- + ZL;?agbm. On the other hand

lll’(jm = Yjm— L?,ﬂ’vl’p + Pm,j — Llr;]‘lljﬁ = 2P
= Yjm = L’;ﬂ% + Pm,j — L@‘PP = 2Ymip;
= Yjm + Ymj = P(jmy-

Obviously, Yjj is anti-symmetric if and only if the condition (4.4) is satisfied. On the same way, if we start
from Iéjm, 0 € {2,3,4}, we get the same condition. [

The Corollaries 4.1 and 4.2 don’t hold for the other Ricci tensors in general case, but they do in the case
of special equitorsion geodesic mappings. Namely,

Theorem 4.3. Let f : GAy — GAy be equitorsion geodesic mapping of two general affine connection spaces which
satisfies

Laj + Ligm = 0. (4.6)
Then the next conditions are equivalent:
@) R = Remy, 8) Rjmy = Rijmg, ) Rejuy = Rijoy,

d) Rijm = Rim,€) Rim = Remy, f) - Rimy = Rejmy-
Proof. Let us prove the equivalence E(]-m) = R(jm) © E(jm) = 112(]-,”). According to (2.3), (2.6) and (4.1) we have

Riv=Rin—Tt. TV . _oT’T" R _IP _IFP _o1P17 arp

where ZP?mLva = 2(6¢m + 5Zn¢,-)L;’vp = 2(Yul’, + 1/;]-%,) =0, ie. Rm = Rijm) = L = Lo — 2L7qLZ¢ﬂ. It is

easy to see that Rju) = R(jm) © E(jm) = 11{( jm holds. On the same way we get the other equivalences. [J

Immediately follows

Corollary 4.3. Let f : GAy — GAy be equitorsion geodesic mapping of two anti-equiaffine spaces of 6-kind,
0 € {0,...,5}, which satisfies the condition (4.6), then R(jm),lf(jm),1§(jm),1§(jm),§(jm),1§(jm) are invariants of this

mapping.
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Specially, in the generalized Riemannian space GRy(GRy) the equations (4.1) reduce to

o = =P =1
Ilz(jm = 2R}y — 21”” rgm, 13(]-,,1) = 2R, — 2T, T

]vq PC"’

Rim = 2Ry 2r’/’qr;m, Rim = 2Rjm = 21"“%?%,1,

1§(jm) =2Rjy — ZFMFZW E(]'m) = Zﬁfm - ZI:?QI:ZW

R(jm = 2Rjm + 61"” r;’;m, E(J,,,) 2R + 6r]qrpm,
Rjn = Ry + rfqr,,m, Rin = R + T}

Corollary 4.4. In the space GIRy is valid If(jm) = IZQ(jm) = 1§(]-m).

Corollary 4.5. Under equitorsion geodesic mapping of two generalized Riemannian spaces GRy and GRy the next
tensors are invariants of this mapping: Ili(jm) = 2R, 122(]-,,1) = 2R, 1§(jm) = 2R, §(jm) = 2R, 15{jm —Rjn.

Let f : GRy — GRy be equitorsion geodesic mapping of two generalized Riemannian spaces GRy and
GRy. In this case vector y; is always gradient and R, R jmr Rj R jms R]m are symmetric. The equation (4.4)

always holds.
Suppose that some other pair of Ricci tensors is anti-symmetric, for example Ifj’" and 11{ jm- Then we have

Y(jmy = 0, and according to Corollary 4.3, R, and ij are invariants of that mapping. As v; is gradient, we
get0 =, =Yjm— L]ml/)p Y + L]mz,bp yb,m + L]mw,,, ie. z,b]m = %m = L]ml/)p, and, on the same way
yzb]m = lél im = Lm].l,bp. Using these facts and (2.6), (2.7), (2.10), (2.4) and (2.5), we get the connections between
the curvature tensors

R, =R}, —o,I" 4;,, + 64T % + zr;yq%,

1 jmn 1 jmn

R, =R &, r” % + 6, r” Wy + 2,

zjmn ]mn
R, =R —251r” ¥y — O r”q; -8, +2r1 W+ 20,
3 jmn 3 jmn jonmyp m i rp = mjtp n nj ms (47)

4 Jmn 4 jmn

R =R 253.1*’;&"% = Ty = 0,17y + 20, ¢n +2I0 ]z,z;m,

1§;mn = I;}mn’ R]m" = R;mn
If we start from the tensors E,-,,, and léjm, 0 € {2,3,4}, and suppose their anti-symmetry, we get the same

equations (4.7). Obviously,

Theorem 4.4. Let f : GRy — GRy be equitorsion geodesic mapping of two generalized Riemannian spaces GRy
and GRRy which are anti-equiaffine of 6-kind, 6 € {1, ..., 4}, then the tensors R;mn + I;mn, R;mn - lgmn, R’]mn, R;mn are
the invariants of that mapping.

In [17] several Ricci type identities are obtained by using non-symmetric affine connection. In these
identities 12 curvature tensors R R R 142 R, R, Y R appear. In (2.4) five independent tensors are given,

and the rest can be expressed as thelr hnear combmatlons and of the tensor R given at (2.5). Following the
notation in [17], we get
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Corollary 4.6. Under equitorsion geodesic mapping of two anti-equiaffine generalized Riemannian spaces of 0-kind,
0 € {1,...,4}, the next curvature tensors are invariant:

. —. . 1 . . —. . —. . —.
R R. =2R' —E(Rl +R. ), R. =R R. =2R' —R

jmn’ 1 jmn jmn 1 jmn o jmn o jmn 5 jmn’ 3 jmn jmn o jmn’

5. Conclusion

It is clearly, that a curve y is a geodesic of connection L;k if and only if it is a geodesic of the symmetrized
connection Lj.k = %(Lj.k + L;{J.). Any invariant object of the projective class of the connection L;,k, is also
invariant object of the projective class of the connection Lljk, but it is not valid inversely.

Since the tensors lg;mn, 0 € {1,...,5} are generalizations of Riemannian curvature tensor, then the
magnitudes ?’ 0 € {1,...,5} are generalizations of the Weyl projective curvature tensor [29]. That means

than in geodesic mapping for finding some others invariants the antisymmetric part of connection would
be included (2.7). This fact means that geodesic mapping of two non-symmetric affine connection spaces
has a sense.

In the case of symmetric affine connection spaces, Ricci tensors of the 6-kind, 0 € {1, ...,5}, reduce to
the Ricci tensor obtained from the Riemannian curvature tensor (2.5). Geodesic mapping of two equiaffine
spaces of the 0-kind reduces to the geodesic mapping of two equiaffine spaces. Under such mapping,
vector 1; is always gradient.

Anti-equiaffine spaces of the 0-kind, 6 € {1,...,5} reduce to the anti-equiaffine spaces of symmetric
connection, when Ricci tensor is anti-symmetric.

Specially, generalized Riemannian spaces are interesting, in which Ricci tensor Rj,;, and Ricci tensor
of the fifth kind 1§jm are always symmetric. Under equitorsion geodesic mapping of two anti-equiaffine

generalized Riemannian spaces of the 0-kind, 0 € {1, ..., 4}, the curvature tensors Igj.mn and Rj.mn are invariants.
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