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Abstract. It is proved that some classes of sequences of measurable functions satisfy certain selection prin-
ciples related to special modes of convergence (convergence in measure, almost everywhere convergence,
almost uniform convergence, mean convergence).

1. Introduction

By N, R and R we denote the set of natural numbers, real numbers, and the extended real line
R ∪ {−∞,∞}, respectively.

Throughout this note (X,M, µ), or shortly X, denotes a measure space with a complete measure µ :
M → R (andM a σ-algebra of subsets of X measurable with respect to µ). E is always an element inM
such that µ(E) < ∞. All functions are measurable and finite almost everywhere on E.

Our notation and terminology concerning measure spaces are standard and follow [2, 8, 9, 13–15].
The paper deals with the following problem. Let a sequence (Sn : n ∈ N) of sequences of measurable

functions, all converging (in a mode of convergence) to a function f , be given. Apply a selection procedure
π to find a sequence s constructed by choosing elements from each Sn using π, and converging to f in the
same or different mode of convergence.

We begin with the following definition of the selection principle we basically consider in this article.
LetA and B be collections of sequences of measurable functions from a measure space (X,M, µ) into R

or R. Then:
The symbol S1(A,B) denotes the selection principle:

For each sequence (An : n ∈ N) of elements of A there is a sequence b = (bn : n ∈ N) ∈ B such
that bn ∈ An for each n ∈N.

For more information on selection principles (and corresponding infinitely long games) see the survey
papers [10, 12] and references therein.

In a number of papers by the authors that appeared recently in the literature it was demonstrated that
some classesA and B of sequences of positive real numbers have certain nice selection properties ([3–7]).

In this article our selections are related to special modes of convergence of sequences of measurable
functions which converge in measure, or are (uniformly) almost everywhere convergent to a function.
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2. Definitions

Let (X,M, µ) be a measure space. A function f : E→ R is almost everywhere finite on E if µ({x ∈ E : f (x) =
∞ or f (x) = −∞}) = 0.

A function f : E → R is a measurable function if for each c ∈ R, {x ∈ A : f (x) > c} ∈ M or, equivalently,
f←(B) ∈ M for each B ∈ BR, where BR = {E ⊂ R : E ∩R ∈ BR} is the σ-algebra of Borel sets in R.

Let E ∈ M and let fn : E → R, n ∈ N, be measurable and almost everywhere finite functions, and
f : E→ R. Then:

1. ( fn)n∈N converges almost everywhere to f on E, denoted ( fn)n∈N
a.e.−→ f , ifµ({x ∈ E : ( fn(x))n∈N 9 f (x)})=0.

2. ( fn)n∈N converges in measure (or µ-converges) to f on E, denoted ( fn)n∈N
µ−→ f , if for each ε > 0 it holds

limn→∞ µ({x ∈ E : fn(x) finite ∀ n ∈N and | fn(x) − f (x)| ≥ ε}) = 0.

3. ( fn)n∈N converges almost uniformly to f on E, denoted ( fn)n∈N
a.u.−→ f , if for each ε > 0 there is a

measurable subset Eε ⊂ E with µ(Eε) < ε such that ( fn(x))n∈N ⇒ f (x) on E \ Eε.
Notice the fact that in each of the above three kinds of convergence the function f is measurable and

almost everywhere finite on E.
Clearly, almost uniform convergence on E implies almost everywhere convergence (without assumption

µ(E) < ∞).

If µ(E) < ∞ and f , fn : E → R for each n ∈ N, then according to the well-known theorems in measure
theory, the following holds:

a.e. convergence⇔ a.u. convergence⇒ µ convergence
⇑ ⇑

pointwise convergence⇐ uniform convergence

Notation

Let (X,M, µ) be a measure space, E ∈ M, µ(E) < ∞, and f a function measurable and finite a.e. on E.
Then:

Σa.e.
f (E) = {( fn)n∈N : ( fn)n∈N

a.e.−→ f on E} = {( fn)n∈N : ( fn)n∈N
a.u.−→ f on E}.

Σ
µ
f (E) = {( fn)n∈N : ( fn)n∈N

µ−→ f on E}.

3. Results

Throughout this section, as we mentioned in Introduction, (X,M, µ) will be always a measure space,
and E an element inM such that µ(E) < ∞.

We prove first a theorem which is, in a sense, a selective version of the celebrated Egorov theorem [2,
Theorem 2.2.1].

Theorem 3.1. The selection principle S1(Σa.e.
f (E),Σa.e.

f (E)) is satisfied.

Proof. Let (Sn = ( f m
n )m∈N : n ∈ N) be a sequence of elements from Σa.e.

f (E). Let δ > 0 (δ ≤ µ(E)). For each

n ∈ N we have ( f m
n )m∈N

a.u.−→ f on E, and thus for each n ∈ N there is a measurable set En ⊂ E such that
µ(En) < δ

2n and ( f m
n )m∈N uniformly converges to f on E \ En. Let Eδ =

∪
n∈N En. Then Eδ is measurable,

µ(Eδ) > 0, and

µ(Eδ) ≤
∞∑

n=1

µ(En) <
∞∑

n=1

δ
2n = δ.
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Also, for each n ∈N, ( f m
n )m∈N uniformly converges to f on E \Eδ, so that there are mn ∈N, n ∈N, such that

| f m
n (x) − f (x)| < 1

2n for each x ∈ E \ Eδ and each m ≥ mn.
Construct now the sequence (1n)n∈N of functions defined on E \ Eδ in the following way:

1n(x) = f m∗n
n (x), for some m∗n ≥ mn, n ∈N.

In this way, we have constructed a sequence of functions defined on E (we can redefine functions 1n on the
set Eδ) which uniformly converges to f on the set E \ Eδ.

We prove that the sequence (1n : n ∈ N) is a required selector for (Sn : n ∈ N). Let ε > 0. Consider two
cases:

Case 1: ε ≥ δ.
Then, by the construction of functions 1n, n ∈ N, we conclude that Eδ is the subset of E with µ(Eδ) < ε

such that (1n)n∈N uniformly converges to f on E \ Eδ.

Case 2: ε < δ.

There is n0 ∈ N such that
∑∞

n=n0
δ
2n < ε. Set Eε =

∪∞
n=n0

En. Then µ(Eϵ) < ε (and µ(Eε) > 0), and for each
n ≥ n0 it holds |1n(x) − f (x)| < 2−n for each x ∈ E \ Eε. This means that (1n)n∈N

a.u.−→ f on E. This completes
the proof.

Remark 3.2. Notice that this theorem remains true if f m
n , n,m ∈ N, and f are functions from E into a

separable metric space Y, and f m
n ’s are measurable with respect toM and the Borel σ-algebra B(Y) (see [2,

Theorem 7.1.12]).

Remark 3.3. Theorem 3.1 holds also for the sets E with infinite measure provided there is a µ-integrable
function φ such that | f m

n | ≤ φ for all m,n ∈N (see [2, 2.12.45]).

¿From Theorem 3.1 we obtain the following corollary.

Corollary 3.4. The selection principle S1(Σa.e.
f (E),Σµf (E)) is satisfied.

Also, we have the following result.

Theorem 3.5. The selection principle S1(Σµf (E),Σa.e.
f (E)) is satisfied.

Proof. Let (Sn : n ∈ N), Sn = ( f m
n )m∈N, be a sequence of elements from Σµf (E). By the Riesz theorem (see [2,

Theorem 2.2.5], [15, Theorem 6.24]) for each n ∈ N the sequence Sn contains a subsequence sn converging
to f almost everywhere. Apply now Theorem 3.1 to the sequence (sn : n ∈ N) to conclude that there are
functions hn ∈ sn, hence hn ∈ Sn, n ∈ N, such that (hn)n∈N

a.e.−→ f , i.e. the sequence (hn : n ∈ N) witnesses for
(Sn : n ∈N) that S1(Σµf (E),Σa.e.

f (E)) is true.

The next theorem shows that for µ-convergence we have something more.

First, we define the following selection principle (see [11, 12] for general case, and [1] for special case
whenA and B are both the collection Σx of sequences in a topological space converging to a point x in the
space).

Let A and B be as above. Then the symbol α1(A,B) denotes the selection hypothesis that for each
sequence (an : n ∈ N) of elements of A there is an element b ∈ B such that for each n ∈ N the set an \ b is
finite. (A space X satisfying α1(Σx,Σx) for each x ∈ X is called an α1-space.)

Theorem 3.6. The selection principle α1(Σµf (E),Σµf (E)) is true.
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Proof. Let (Sn : n ∈ N), Sn = ( f m
n )m∈N, be a sequence of elements from Σµf (E) and let ε > 0. For all m,n ∈ N

let

Em
n = {x ∈ E : | f m

n (x) − f (x)| ≥ ε
n
}.

In this way, for each n ∈N the sequence sn = (µ(Em
n ))m∈N of real numbers corresponds to the sequence Sn of

functions. By definition of µ-convergence we have actually the sequence (sn : n ∈N) of real sequences each
converging to 0. Since R (as each first countable space) satisfies the α1 property, there is a sequence s in R
converging to 0 and such that for each n the set sn \ s is finite. Associate to s the sequence S of corresponding
functions from sequences Sn, n ∈N. Then Sn \ S is finite for each n ∈N and S

µ−→ f , i.e. α1(Σµf (E),Σµf (E)) is
satisfied.

If we take from the sequence s in the proof of the previous theorem a subsequence t = (tk)k∈N such that
tk ∈ Sk for each k ∈N, we obtain the following corollary.

Corollary 3.7. The selection principle S1(Σµf (E),Σµf (E)) is true.

Recall now another mode of convergence. A sequence ( fn)n∈N of integrable functions defined on a subset
E of a measure space (X,M, µ) is said to converge in mean (or that it is mean convergent) to a function f ,

denoted ( fn)n∈N
L1−→ f , if

lim
n→∞
|| fn − f ||1 = 0,

where || f ||1 =
∫

E f dµ is the L1-norm.

Denote by ΣL1
f (E) the set of all sequences of integrable functions which mean converge to a function f .

It is known that mean convergence implies convergence in measure (due to the Chebyshev inequality).
Thus from Corollary 3.7 we obtain:

Corollary 3.8. The selection principle S1(ΣL1
f (E),Σµf (E)) is true.

On the other hand, Theorem 3.1 and the Lebesgue dominated convergence theorem [2, Theorem 2.8.1]
imply the following theorem.

Theorem 3.9. Let (Sn = ( f m
n )m∈N : n ∈ N) be a sequence of elements of Σa.e.

f (E) such that there is a µ-integrable
function φ with | f m

n | ≤ φ for all n,m ∈N. Then there is a sequence s = ( f mn
n : n ∈N) which mean converges to f .

IfA andB are as above, then the symbolα4(A,B) denotes the selection hypothesis that for each sequence
(an : n ∈N) of elements fromA there is a sequence b ∈ B such that an ∩ b , ∅ for infinitely many n ∈N (see,
for example, [12])

By Corollary 3.8 for each sequence (Sn : n ∈N) of elements of ΣL1
f (E), there are elements 1n ∈ Sn, n ∈N,

such that (1n)n∈N converges in measure to f . By the Riesz theorem there is a subsequence (1nk ) = (hk) of (1n)
converging almost everywhere to f . But this means that for infinitely many n we have chosen hn ∈ Sn so
that (hn) almost everywhere converges to f . Therefore, we have the following result:

Theorem 3.10. The selection principles α4(ΣL1
f (E),Σa.e

f (E)) is satisfied.
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