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Abstract. We show that the sequence spaces ar
0, ar

c and ar
∞ are equal to the sets of all sequences whose

Cesàro means of order 1 converge to 0, converge and are bounded. As a consequence of this, we are able to
considerably simplify the known results and their proofs in [1, 2], and to add the characterisations of some
more classes of matrix transformations.

1. Introduction, notations and known results

Aydın and Başar defined the sequence spaces ar
0, ar

c, ar
0(∆) and ar

c(∆) for 0 < r < 1 in [1, 2]. They
determined some Schauder bases for their spaces, found the α–, β– and γ–duals, and characterised some
classes of matrix transformations on them. Furthermore, various classes of compact matrix operators on
the spaces ar

0, ar
c, ar

0(∆) and ar
c(∆) were characterised in [3, 4, 7]. We include the sets ar

∞ and ar
∞(∆) in our

studies, and show that the sets ar
0, ar

c and ar
∞ are equal to the matrix domains of the Cesàro matrix of order 1

in the sets c0, c and ℓ∞ of null, convergent and bounded sequences. Applying this result and using known
results on the spaces of generalised weighted means established in [6] and [8], we are able to considerably
simplify the results and their proofs in [1] and [2], and add the characterisations of some more classes of
matrix transformations; in particular, the sets ar

0(∆), ar
c(∆) and ar

∞(∆) reduce to simple special cases of the
spaces s0

α, sα and s(c)
α in [5].

Now we recall the most important notations, definitions and results needed in this paper.
A sequence (bn)∞n=0 in a linear metric space X is called a Schauder basis if, for each x ∈ X, there exists a

unique sequence (λn)∞n=0 of scalars such that x =
∑∞

n=0 λnbn.
By ω and ϕ we denote the set of all complex sequences x = (xk)∞k=0 and all finite sequences. We write bs

and cs for the sets of all bounded and convergent series; also let ℓp = {x ∈ ω :
∑∞

k=0|xk|p < ∞} for 1 ≤ p < ∞.
As usual, e and e(n) (n = 0, 1, . . . ) are the sequences with ek = 1 for all k, and e(n)

n = 1 and e(n)
k = 0 for k , n.

A subspace X ofω is said to be a BK space if it is a Banach space with continuous coordinates Pn : X→ C
(n = 0, 1, . . . ) where Pn(x) = xn for all x ∈ X. A BK space X ⊃ ϕ is said to have AK if every sequence
x = (xk)∞k=0 ∈ X has a unique representation x = limm→∞ x[m] where x[m] =

∑m
n=0 xne(n) is the mth section of the

sequence x.
If x and y are sequences and X and Y are subsets of ω, then we write x · y = (xkyk)∞k=0, x−1 ∗ Y = {a ∈ ω :

a · x ∈ Y} and M(X,Y) =
∩

x∈X x−1 ∗ Y = {a : ω : a · x ∈ Y for all x ∈ X} for the multiplier space of X and Y; in
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particular, we use the notations xα = x−1 ∗ ℓ1, xβ = x−1 ∗ cs and xγ = x−1 ∗ bs, and Xα =M(X, ℓ1), Xβ =M(X, cs)
and Xγ =M(X, bs) for the α–, β– and γ–duals of X.

Given any infinite matrix A = (ank)∞n,k=0 of complex numbers and any sequence x, we write An = (ank)∞k=0

for the sequence in the nth row of A, Anx =
∑∞

k=0ankxk (n = 0, 1, . . . ) and Ax = (Anx)∞n=0, provided An ∈ xβ for
all n. If X and Y are subsets of ω, then XA = {a ∈ ω : Ax ∈ X} denotes the matrix domain of A in X and (X,Y)
is the class of all infinite matrices that map X into Y; so A ∈ (X,Y) if and only if X ⊂ YA. A matrix A is said
to be regular, if A ∈ (c, c) and limn→∞Anx = limk→∞ xk for all x ∈ c.

An infinite matrix T = (tnk)∞n,k=0 is said to be a triangle if tnk = 0 (k > n) and tnn , 0 for all n. We writeU for
the set of all sequences u with uk , 0 for all k; if u ∈ U then 1/u = (1/uk)∞k=0. Let n + 1 = (n+ 1)∞n=0. We define
the matrices Σ, ∆, ∆+ and C(1) by Σnk = 1 (0 ≤ k ≤ n), Σnk = 0 (n > k), ∆nn = ∆

+
nn = 1, ∆n−1,n = ∆

+
n,n+1 = −1,

∆n,k = ∆
+
nk = 0 (otherwise) and C(1)

nk = (1/(n + 1))Σnk for all n, k = 0, 1, . . . .
Let u, v ∈ U and X be a subset of ω. The sets W(u, v; X) = v−1 ∗ (u−1 ∗X)Σ of generalised weighted means

were defined and studied in [6] and [8]. In particular, W (1/(n + 1), e, c0) = (c0)C(1) , W (1/(n + 1), e, c) = cC(1)

and W (1/(n + 1), e, ℓ∞) = (ℓ∞)C(1) are the spaces of all sequences that are summable to 0, summable, and
bounded by the Cesàro method C(1) of order 1; we write C0 = (c0)C(1) , C = cC(1) and C∞ = (ℓ∞)C(1) , for short.

Let 0 < r < 1 and A(r) = (a(r)
nk)∞n,k=0 be the triangle with ar

nk = (1 + rk)/(n + 1) (0 ≤ k ≤ n; n = 0, 1, . . . ).
Aydın and Başar defined the spaces ar

0 = (c0)A(r) and ar
c = cA(r) in [1]. We also define ar

∞ = (ℓ∞)A(r) , write
r̃ = (1 + rk)∞k=0, and observe ar

0 = r̃−1 ∗ C0 = W (1/(n + 1), r̃, c0), ar
c = r̃−1 ∗ C = W (1/(n + 1), r̃, c) and ar

∞ =

r̃−1 ∗ C∞ = W (1/(n + 1), r̃, ℓ∞). The spaces ar
0(∆) = (ar

0)∆ and ar
c(∆) = (ar

c)∆ were studied by the same authors
in [2]; we will also consider the space ar

∞(∆) = (ar
∞)∆.

We remark that since the matrices A(r) and ∆ are triangles, ℓ∞, c and c0 are BK spaces with respect to
their natural norms defined by ∥x∥∞ = supk |xk| ([10, p. 55]), c0 is a closed subspace of c and c is a closed
subspace of ℓ∞ ([10, Corollary 4.2.4]), the spaces ar

∞, ar
c and ar

0 are BK spaces with their natural norms defined
by ∥x∥ar

∞ = ∥A(r)x∥∞ = supn |Ar
nx| by [10, Theorem 4.3.12], ar

0 is a closed subspace of ar
c, and ar

c is a closed
subspace of ar

∞ by [10, Theorem 4.3.14]; similarly ar
∞(∆), ar

c(∆) and ar
0(∆) are BK spaces with their natural

norms defined by ∥x∥ar
∞(∆) = ∥∆x∥ar

∞ , ar
0(∆) is a closed subspace of ar

c(∆), and ar
c(∆) is a closed subspace of

ar
∞(∆). These results contain [1, Theorem 2.1] and [2, Theorem 2.1].

Schauder bases for ar
0 and ar

c were determined in [1, Theorem 3.1 (a) and (b)], and for ar
0(∆) and ar

c(∆) in
[2, Theorem 3.1 (a) and (b)]. We observe that, since c0 has AK and (e, e(0), e(1), . . . ) is a Schauder basis for c,
the statements in [1, Theorem 3.1 (a) and (b)] are an immediate consequence of the first part of [6, Theorem
2.2], and an application of the second part of [6, Theorem 2.2] to the bases of ar

0 and ar
c yields the statements

in [2, Theorem 3.1 (a) and (b)]. We remark that, since matrix multiplication is associative for triangles by
[10, Corollary 1.4.5], putting B(r) = A(r) · ∆, we obtain ar

0(∆) = (c0)B(r) and ar
c(∆) = cB(r) and [2, Theorem 3.1 (a)

and (b)] would also be an immediate consequence of [7, Corollary 2.3 (a) and (b)].

2. The main results

First, we determine simpler Schauder bases for the spaces ar
0, ar

c, ar
0(∆) and ar

c(∆).
If y is any sequence, we write σn(y) = C(1)

n y for the nth C(1) mean of y.

Theorem 2.1. Let 0 < r < 1. Then ar
0 has AK. Every sequence x = (xk)∞k=0 ∈ ar

c has a unique representation

x = ξ · e +
∞∑

k=0

(xk − ξ)e(k) where ξ = lim
n→∞
σn(x · r̃). (1)

Proof. Since ar
0 = r̃−1 ∗ C0 and C0 obviously is a BK space with the norm defined by ∥x∥C∞ = supn |σn(x)|, it

suffices to show by [10, Theorem 4.3.6] that C0 has AK.
First, we observe that ϕ ⊂ C0, since e(n) ∈ c0 for all n and the C(1) matrix is regular.
Let ε > 0 and x ∈ C0 be given. Then there exists N0 ∈N0 such that

|σn(x)| < ε
2

for all n ≥ N0. (2)
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Now let m ≥ N0 be given. Then we have for all n ≥ m + 1 by (2)∣∣∣∣σn

(
x − x[m]

)∣∣∣∣ =
∣∣∣∣∣∣∣ 1
n + 1

n∑
k=m+1

xk

∣∣∣∣∣∣∣ ≤ |σn(x)| + |σm(x)| < ε
2
+
ε
2
= ε,

whence ∥x − x[m]∥C∞ ≤ ε for all m ≥ N0. This shows x = limm→∞ x[m]. It is clear that this representation is
unique.

Let x ∈ ar
c be given. Then there is a unique ξ ∈ C such that limn→∞ σn(x · r̃) = ξ. It follows that

0 ≤ |σn((x − ξ · e) · r̃)| ≤ |σn(x · r̃) − ξ| + |σn(ξ · (e − r̃))|

≤ |σn(x · r̃) − ξ| + |ξ|
n + 1

n∑
k=0

rk ≤ |σn(x · r̃) − ξ| + |ξ|
(n + 1)(1 − r)

for all n.

Letting n→∞, we conclude limn→∞ σn((x− ξ · e)r̃) = 0. Thus, if x ∈ ar
c then there is a unique ξ ∈ C such that

x(0) = x − ξ · e ∈ ar
0. Since ar

0 has AK, as we have just shown, it follows that x(0) has a unique representation
x(0) =

∑∞
k=0x(0)

k e(k) =
∑∞

k=0(xk − ξ)e(k), hence x = ξ · e + x(0) has the unique representation in (1).

Remark 2.2. We put d(n) = e − ∑n−1
k=0 e(k) for n = 0, 1, . . . and define the sequence d(−1) by d(−1)

k = (k + 1)
(k = 0, 1, . . . ). Then it follows from [7, Corollary 2.3 (a)] and Theorem 2.1 that every sequence x ∈ ar

0(∆) has
a unique representation x =

∑∞
n=0(xn − xn+1)d(n). Since ar

c(∆) = (ar
0 ⊕ e)∆, it follows from (1) and [7, Corollary

2.3 (c)] that every sequence x ∈ ar
c(∆) has a unique representation x = ξ · d(−1) +

∑∞
n=0(xn − xn+1 − ξ)d(n), where

ξ is the uniquely determined complex number such that ∆x − ξe ∈ ar
0. These results will be simplified in

Remark 2.6.

We need the following lemma to establish a result which is fundamental in the simplification of the
results in [1] and [2].

Lemma 2.3. Let a ∈ ℓ1 and b = e + a. Then we have XC(1) ⊂ b−1 ∗ XC(1) for X = ℓ∞, c, c0.

Proof. First we prove the statement for X = c.
We assume x ∈ C. Let ε > 0 be given. It is well known that x ∈ C implies xn/(n + 1) → 0 (n → ∞) ([9,
Theorem I.1]). So there exist a complex number ξ and an integer N0 such that

|σn(x) − ξ| < ε
3

and
∣∣∣∣ xn

n + 1

∣∣∣∣ < ε
3(∥a∥1 + 1)

for all n ≥ N0, (3)

where ∥a∥1 =
∑∞

k=0|ak| is the natural norm on ℓ1. Now we choose an integer N1 > N0 so large that∣∣∣∣∣∣∣ 1
n + 1

N0∑
k=0

akxk

∣∣∣∣∣∣∣ < ε3 for all n ≥ N1. (4)

Then we obtain for all n ≥ N1 by (3) and (4)

|σn(x · b) − ξ| ≤ |σn(x) − ξ| +
∣∣∣∣∣∣∣ 1
n + 1

N0∑
k=0

xkak

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣ 1
n + 1

n∑
k=N0+1

xkak

∣∣∣∣∣∣∣
<

2ε
3
+

ε
3(∥a∥1 + 1)

·
n∑

k=N0+1

|ak| ≤
2ε
3
+
ε
3
= ε,

that is, x · b ∈ C, hence x ∈ b−1 ∗ C.
Thus we have shown C ⊂ b−1 ∗ C.
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The same proof with ξ = 0 yields the statement for X = c0.
Finally, if x ∈ C∞ then there is a constant M such that |σn(x)| ≤M for all n and we obtain∣∣∣∣ xn

n + 1

∣∣∣∣ = 1
n + 1

|(n + 1)σn(x) − nσn−1(x)| ≤ |σn(x)| + n
n + 1

· |σn−1(x)| ≤ 2 ·M for all n,

and so

|σn(x · b)| ≤ |σn(x)| + |σn(x · a)| ≤M + sup
k

|xk|
k + 1

n∑
k=0

|ak| ≤ (1 + 2∥a∥1)M for all n,

that is, x · b ∈ C∞, hence x ∈ b−1 ∗ C∞.

Thus we have shown C∞ ⊂ b−1 ∗ C∞.

Theorem 2.4. We have XA(r) = XC(1) for X = ℓ∞, c, c0.

Proof. We put ak = rk for k = 0, 1, . . . , a = (ak)∞k=0 and b = e + a.
Since clearly a ∈ ℓ1, Lemma 2.3 yields XC(1) ⊂ b−1 ∗ XC(1) = XA(r) .
We also have

1/b =
( 1

1 + rk

)∞
k=0
= e + a′ where a′k = −

rk

1 + rk
for all k and a′ ∈ ℓ1.

Now if y ∈ XA(r) , then z = b · y ∈ XC(1) and, applying Lemma 2.3 with 1/b, we obtain y = (1/b) · z ∈ XC(1) . Thus
we also have XA(r) ⊂ XC(1) .

Now we simplify the spaces ar
∞(∆), ar

c(∆) and ar
0(∆).

Corollary 2.5. Let 0 < r < 1 and B(r) = A(r) · ∆. Then we have

XB(r) = (1/(n + 1))−1 ∗ X for X = ℓ∞, c, c0. (5)

Proof. Since matrix multiplication of triangles is associative, it follows from Theorem 2.4 that XB(r) = X(A(r)·∆) =
(XA(r) )∆ = (XC(1) )∆. We also have for all x ∈ ω and all n ∈N0

C(1)
n (∆x) =

1
n + 1

n∑
k=0

(xk − xk−1) =
xn

n + 1
,

which immediately yields (5).

We observe that, by (5), the spaces ar
0(∆), ar

c(∆) and ar
∞(∆) are equal to s0

α, sα and s(c)
α for α = (n + 1) of [5].

Now we give bases for ar
0(∆) and ar

c(∆).

Remark 2.6. Let 0 < r < 1. Since c0 has AK and ar
0(∆) = (1/(n + 1))−1 ∗c0 by (5), ar

0(∆) has AK by [10, Theorem
4.3.6].
If x ∈ ar

c(∆) = (1/(n + 1))−1 ∗ c by (5), then there exists a unique ξ ∈ C such that

lim
n→∞

xn

n + 1
= ξ, and so lim

n→∞
xn − (n + 1)ξ

n + 1
= 0.

Therefore we have x(0) = x − (n + 1)ξ ∈ ar
0(∆), and since ar

0(∆) has AK, we obtain

x = (n + 1)ξ +
∞∑

n=0

(xn − (n + 1)ξ)e(n).
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Now we determine the α–, β– and γ–duals of the spaces ar
0, ar

c and ar
∞. We need the following known

result which we state here for the reader’s convenience.

Proposition 2.7. ([6, Theorem 3.1]) Let u, v ∈ U. We write b = (1/u)∆+(a/v) for a ∈ ω and S(u, v) = {a ∈ ω : b ∈
ℓ1}. Then we have
(a) (W(u, v,X))α = S(u, v) ∩ [(1/(uv))−1 ∗ ℓ1] for X = ℓ∞, c, c0;
(b) (W(u, v, ℓ∞))β = S(u, v) ∩ [(1/(uv))−1 ∗ c0], (W(u, v, c))β = S(u, v) ∩ [(1/(uv))−1 ∗ c] and (W(u, v, c0))β =
S(u, v) ∩ [(1/(uv))−1 ∗ ℓ∞];
(c) (W(u, v,X)γ = S(u, v) ∩ [(1/(uv))−1 ∗ ℓ∞] for X = ℓ∞, c, c0.

Corollary 2.8. Let 0 < r < 1. We put

S1 = S(1/(n + 1), e) =
{
a ∈ ω :

(
(n + 1)∆+n a

)∞
n=0 ∈ ℓ1

}
=

a ∈ ω :
∞∑

n=0

(n + 1)|an − an+1| < ∞
 .

Then we have
(a) (ar

∞)α = (ar
c)α = (ar

0)α = (n + 1)−1 ∗ ℓ1;
(b) (ar

∞)β = S1 ∩ [(n + 1)−1 ∗ c0], (ar
c)β = S1 ∩ [(n + 1)−1 ∗ c], (ar

0)β = S1 ∩ [(n + 1)−1 ∗ ℓ∞;
(c) (ar

∞)γ = (ar
c)γ = (ar

0)γ = S1 ∩ [(n + 1)−1 ∗ ℓ∞].

Proof. Since XA(r) = XC(1) for X = ℓ∞, c, c0 by Theorem 2.4, we apply Proposition 2.7 (b) and (c) with
u = 1/(n + 1) and v = e, and immediately obtain Parts (b) and (c).

(a) Proposition 2.7 (a) yields that (XC(1) )α = S1 ∩ [(n + 1)−1 ∗ ℓ1]. Since

∞∑
n=0

(n + 1)|an − an+1| ≤
∞∑

n=0

(n + 1)|an| +
∞∑

n=0

(n + 2)|an+1|,

we have S1 ⊃ (n + 1)−1 ∗ ℓ1.

Remark 2.9. We obviously have e ∈ S1 \ [(n + 1)−1 ∗ ℓ∞]. Let an = (−1)n/(n + 1)3/2 for n = 0, 1, . . . . Then
(n + 1)an → 0 (n→∞), that is, a ∈ (n + 1)−1 ∗ c0, but

∞∑
n=0

(n + 1)|an − an+1| =
∞∑

n=0

(n + 1)
(

1
(n + 1)3/2

+
1

(n + 2)3/2

)
≥
∞∑

n=0

1√
n + 1

= ∞,

that is, a < S1. Therefore, the sets in Corollary 2.8 (b) and (c) cannot be reduced in a similar way as those in
Part (a).

Remark 2.10. Let u ∈ U, X be an arbitrary subset of ω and † denote any of the symbols α, β or γ. Then we
obviously have (u−1 ∗ X)† = (1/u)−1 ∗ X†. Since X† = ℓ1 for X = ℓ∞, c, c0, it follows from Corollary 2.5 that
(ar
∞(∆))† = (ar

c(∆))† = (ar
0(∆))† = (n + 1)−1 ∗ ℓ1.

We now retrieve [1, Theorems 4.4 and 4.5].

Remark 2.11. In view of Theorem 2.4, it suffices to compare the conditions in Corollary 2.8 (b) and (c) with
those of [1, Theorems 4.4 and 4.5] with r replaced by 0. Then the conditions are obviously identical in each
case except for Cβ.

By Corollary 2.8, we have a ∈ Cβ if and only if

a ∈ S1 and lim
n→∞

(n + 1)an exists, (6)
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whereas the corresponding conditions in [1, Theorems 4.4] are

a ∈ S1 and a ∈ cs. (7)

Applying Abel’s summation by parts

n∑
k=0

xkyk = xnYn +

n−1∑
k=0

Yk(xk − xk+1) where Yk =

k∑
j=0

y j (k = 0, 1, . . . ,n)

with x = a and y = e, we see that the conditions in (6) and (7) are equivalent.

The following remark concerns the α–duals of ar
0 and ar

c given in [1, Theorem 4.3]; as before, we may
replace r by 0.

Remark 2.12. As would be logical from the proof given there, the correct condition in [1, Theorem 4.3] for
a ∈ (XC(1) )α seems to be

sup
K ⊂N0

K finite

 ∞∑
n=0

∣∣∣∣∣∣∣an

∑
k∈K∩{n−1,n}

(−1)n−k(k + 1)

∣∣∣∣∣∣∣
 < ∞ (8)

instead of

sup
K ⊂N0

K finite

 ∞∑
n=0

∣∣∣∣∣∣∣an

∑
k∈K

(−1)n−k(k + 1)

∣∣∣∣∣∣∣
 < ∞. (9)

It is easy to see that the condition in (8) is equivalent to that in Corollary 2.8 (a) for a ∈ (XC(1) )α when
X = c0, c, ℓ∞.

On the other hand, if we define the sequence a = (an)∞n=0 by an = (n + 1)−5/2 (n = 0, 1, . . . ), then clearly
a ∈ (n + 1)−1 ∗ ℓ1, but, for each given m ∈N0 and Km = {0, 2, · · · , 2m}, we obtain

2m∑
n=0

|an| ·
∣∣∣∣∣∣∣

m∑
k=0

(−1)n−2k(2k + 1)

∣∣∣∣∣∣∣ =
2m∑
n=0

|an|(m + 1)2 ≥ 1
4
·

2m∑
n=0

|an|(n + 1)2 =
1
4

2m∑
n=0

1√
n + 1

,

and so the sequence a does not satisfy the condition in (9).

Finally, we retrieve [2, Theorems 4.5, 4.6 and 4.7].

Remark 2.13. In view of Theorem 2.4 and Remark 2.10, it suffices to compare the conditions in Remark 2.10
(b) and (c) with those of [2, Theorems 4.5, 4.6 and 4.7] with r replaced by 0.
By [2, Theorem 4.5], we have a ∈ (a0

0(∆))α = (a0
c (∆))α if and only if

sup
K ⊂N0

K finite

∞∑
n=0

∣∣∣∣∣∣∣an

∑
k∈K

c0
nk

∣∣∣∣∣∣∣ < ∞ where C0 is the diagonal matrix with c0
nn = (n + 1);

this condition obviously is equivalent to a ∈ (n + 1)−1 ∗ ℓ1.
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Furthermore, by [2, Theorem 4.6], we have a ∈ (a0
0(∆))β if and only if

sup
n

∞∑
k=0

|e0
nk| < ∞, where E0 is the triangle with e0

nk = (k + 1)ak for 0 ≤ k ≤ n, (10)

and
∞∑
j=k

a j exists for all j. (11)

Obviously the condition in (10) implies that in (11) and the condition in (10) is equivalent to a ∈ (n + 1)−1 ∗ℓ1.
We also have by [2, Theorem 4.6] that a ∈ (a0

c (∆))β if and only if a ∈ (a0
c )β and

lim
n→∞

n∑
k=0

(k + 1)ak exists. (12)

Since the condition in (10) obviously implies that in (12), the conditions in [2, Theorem 4.6] for a ∈ (a0
c (∆))β

are again equivalent to a ∈ (n + 1)−1 ∗ ℓ1.

Finally, by [2, Theorem 4.6], we have a ∈ (a0
0(∆))γ = (a0

c (∆))γ if and only if the condition in (10) holds
which is equivalent to a ∈ (n + 1)−1 ∗ ℓ1, as we have seen above.

We close with a few remarks on some characterisations of matrix transformations.

Remark 2.14. (a) The necessary and sufficient conditions for A ∈ (W(u, v,X); Y) for arbitrary sequences
u, v ∈ U were given in [6, Theorem 3.3] when X = ℓp (1 ≤ p ≤ ∞), X = c0 or X = c and Y = ℓ∞, c0, c or
Y = ℓr (1 < r < ∞; only for X = ℓ1). In particular, putting u = 1/n + 1 and v = e and applying Theorem
2.4, we observe that the characterisations of the classes (ar

c, ℓ1), (ar
c, ℓp) (1 < p < ∞), (ar

c, ℓ∞) ([1, Theorem 5.3])
and (ar

c, c) ([1, Theorem 5.4]) would be special cases of [6, Theorem 3.3 (12.), (19.), (9.), (11.)]. In the same
way we would obtain the characterisations of the classes (ar

c, c0) (ar
0, c0), (ar

0, c), (ar
0, ℓ∞), (ar

∞, c0), (ar
∞, c) and

(ar
∞, ℓ∞) from [6, Theorem 3.3, (10.), (6.), (7.), (5.), (14.), (15.) and (13.)]. Furthermore, by [6, Remark 3.1] the

necessary and sufficient conditions for C to map any of the above spaces into ar
0, ar

c or ar
∞ can immediately

be obtained from the respective one for A mapping into c0, c or ℓ∞ by replacing the entries ank of A by
cnk = (1/(n + 1))

∑k
j=0 ank (n, k = 0, 1, . . . ) in the corresponding conditions.

(b) Let u, v ∈ U. Then it is clear that

A ∈ (u−1 ∗ X, v−1 ∗ Y) if and only if B ∈ (X,Y) where bnk =
vnank

uk
for all n, k.

Applying this result with u = 1/n + 1 and v = e, and Corollary 2.5, we immediately obtain the character-
isations of the classes (ar

c(∆), ℓ1), (ar
c(∆), ℓp) (1 < p < ∞), (ar

c(∆), ℓ∞) and (ar
c(∆), c) ([2, Theorems 5.3 and 5.4])

from the well–known characterisations of the classical classes (c, ℓ1), (c, ℓp) (1 < p < ∞), (c, ℓ∞) and (c, c) in
[10, 8.4.9A, 8.4.8A, 8.4.5A, 8.4.5A]. Similarly, putting u = v = 1/n + 1 the characterisations of the classes
(X,Y) where X and Y are any of the spaces ar

0(∆), ar
c(∆) or ar

∞(∆) can easily be obtained from the well-known
characterisations of the classes of matrix transformations between the spaces c0, c and ℓ∞ that can be found
in [10].
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