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Ordering trees having small reverse Wiener indices

Rundan Xing?, Bo Zhou®*

?Department of Mathematics, South China Normal University, Guangzhou 510631, China

Abstract. The Wiener index W(G) of a connected graph G is defined as the sum of distances between
all unordered pairs of vertices of G. As a variation of the Wiener index, the reverse Wiener index of G is
defined as A(G) = %n(n —1)d — W(G), where n is the number of vertices, and d is the diameter of G. It is
known that the star is the unique n-vertex tree with the smallest reverse Wiener index. We now determine
the second and the third smallest reverse Wiener indices of n-vertex trees, and characterize the trees whose
reverse Wiener indices attain these values for n > 5.

1. Introduction

Let G be a simple connected graph. The Wiener index of G is defined as the sum of distances between
all unordered pairs of vertices of G, denoted by W(G) [14, 15, 28]. The Wiener index is one of the oldest
and the most useful molecular descriptors used to explain various chemical and physical properties of
molecules and to correlate the structure of molecules with their biological activity [17, 22, 25, 26]. It also
found applications in other fields such as social science and architecture, and among others, it is known
as the total status, the distance, or the transmission of a graph [3, 12, 13, 21, 24]. Equivalently, the average
distance or mean distance p(G) = ﬁW(G) (where n = |V(G)|) has also been studied [1, 5-8, 10]. The
mathematical properties of Wiener index for trees can be found in the review [9] and in the recent references
[11, 23, 27].

In 2000, Balaban ef al. [2] proposed a variant of the Wiener indeXx, the reverse Wiener index. The reverse
Wiener index of G is defined as [2]

A(G) = %n(n ~1)d - W(G),

where 7 is the number of vertices and d is the diameter of G. The reverse Wiener index is also a useful
structure—descriptor, with applications in quantitative structure—property relationship studies, as demon-
strated in [2, 16]. Zhang and Zhou [29] showed that the path P, and the star S, are respectively the unique
n-vertex trees with the largest and the smallest reverse Wiener indices. Cai and Zhou [4] determined the
trees with the largest reverse Wiener index within some subclasses of trees. Luo and Zhou determined
in [20] the n-vertex trees for n > 5 with the k-th largest reverse Wiener indices for all k up to [5] + 1,
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and determined in [19] the n-vertex trees that are not caterpillars (trees for which the removal of pendant
vertices results in a path) for n > 8 with the first a few largest reverse Wiener indices. Li and Zhou [18]
determined the n-vertex non-starlike trees with the first four largest reverse Wiener indices for n > 8, and
the n-vertex non-starlike non-caterpillar trees with the first four largest reverse Wiener indices for n > 10.
See the surveys [30, 31] for more results on the reverse Wiener index.

If G is a connected graph with diameter d, then the study of the reverse Wiener index A(G) is equivalent
to the study of d — u(G), the difference between the diameter and the average distance.

A k-cyclic graph is a connected graph with cyclomatic number k. If G is a connected graph with m edges
and diameter d, then [4]

AG) > (d - D)m

with equality if and only if d < 2. This implies that among n-vertex connected graphs, the complete graph
K, is the unique graph with the smallest reverse Wiener index, and the (k — 2)-cyclic graphs of diameter
two are the unique graph(s) with the kth smallest reverse Wiener index for k = 2,3,...,n — 1, respectively.

In this paper, we determine the second and the third smallest reverse Wiener indices of n-vertex trees
and characterize the trees whose reverse Wiener indices attain these values for n > 5.

2. Preliminaries

Let T be a tree with vertex set V(T) and edge set E(T). For any e € E(T), nr1(e) and nr,(e) respectively
denote the number of vertices of T lying on the two sides of the edge e. For a long time it is known [14, 28]
that

W) = ) nra(e) - n1a(0)

ecE(T)

A vertex is pendant if it is of degree one. Let 7, be the set of the trees on n vertices. A center of a tree is
a vertex whose eccentricity (the maximum distance from it to any other vertex) is minimal. Let C7, be the
set of trees T in 7, such that one center of T has at least one pendant neighbor.

For a tree T with v € V(T), T — v denotes the subgraph of T obtained by deleting the vertex v and its
incident edge(s). And for u,v € V(T), if u and v are adjacent in T, then T — uv denotes the graph obtained
from T by deleting the edge uv, and if u and v are not adjacent in T, then T + uv denotes the graph obtained
from T by adding an edge uv.

We need the following two lemmas from [29], and for completeness, we include their proofs.

Lemma 2.1. Let T € CT , with diameter d > 4. Then there is a tree T* € T, \ CT ,, with the same diameter as T
such that A(T*) < A(T).

Proof. Let v be a center of T with at least one pendant neighbor, say w. Obviously, there is at least one
subtree T1 in T — v not containing w that possesses n; < 5 — 1 vertices. Let v; be the neighbor of v in Tj.
Let T’ be the tree formed from T by deleting edge vw and adding edge wv;. Note that both T and T” have
diameter d. Then

AT)-AT)=W(T)-W(T)=mn-m)—(m+1n-mn-1) <0,
and thus A(T”") < A(T). Iterating the transformation from T to T” will finally yield the tree T* as required. [J

Lemma2.2. Let T € 7, \ CT , with diameter d > 4. Then there is a tree T* € CT , with diameter d — 2 such that
A(TY) < A(T).

Proof. Let v be a center of T with neighbors v1,vy,...,v,. Fori =1,2,...,p, let T; be the subtree in T — v with
v; € V(T}), vi1, Ui, . . ., Uir, be the neighbors of v; in T;, and n; = |V(T})|. Let T* be the tree formed from T by



R. Xing, B. Zhou / Filomat 26:4 (2012), 637-648 639

deleting edges v;v;; and adding edges vv;; foralli=1,2...,pand j = 1,2,...,r;. Obviously, T* € CT . Itis
easily seen that

A(T) = A(T)

—n(n —1) + W(T) — W(T*)
= —nn-1)+ )E ni(n —n;) —pn —1)
i=1

< —n(n—1)+(n—1)£n,-—p(n—1)
i=1

= —nn-1)+m-1)n-1)-pn-1)

-n-1)(1+p) <0,

as desired. [

Denote by S, the n-vertex star. An n-vertex tree of diameter 4 may be constructed as follows: For some
integer k > 2, it is obtained from the star Si;1 with center vy and pendant vertices v1,v;, ..., v, by attaching
m; pendant vertices to v; fori = 0,1,...,k, where mg > 0, m; > 1fori =1,...,k and Z?:o mi+k+1=n.
If there are s distinct (positive) numbers n; < n, < --- < n, among the numbers my, my, ..., m, where n;

b b by .
51], [22],...,n£-]) with ny = my,

wherek >2, Y7, b; =kand }.;_1bin; = n—ny—k—1. If ng = 0, then we write it simply Tn,k(n[bll a2l ngb“]).

appears b; times fori = 1,2,...,s, then such a tree is denoted by Tn,k(no; n',n

1 My e

Obviously, for an integer 1 > 2, there is a unique positive integer g such that 4> < n < (g + 1)?, and thus
n may be written as

n:q2+rwithr:1,2,...,2q+l. (@)

It is easily seen that

1-(n—l)-(n—l—k)+ib,'(n,'+l)(n—ni—l)

i=1

(n—1)% = (n— Dk + nZ bi(n; + 1) — Z bi(n; + 1)
=1 i=1

W (Tn,k (”0; ngblll n[zbz]/ " ”£b51)>

(n—1)2—(n—1)k+n(n—n0—1)—2(n—n0—k—1)—k—2bm?

i=1

(n—1)2n —3) — (n - 2k — (11 — ) — Z bin?.
i=1

Lemma 2.3. Let T = T, (no; ngb”,n[zbﬂ, ... ,n£b,~]) with k > 2. If T achieves the smallest reverse Wiener index for

fixed nand k, then s <2, and ny —ny = 1ifs = 2.

Proof. Suppose that there exist i and j with 1 < i, j < s such that n; —n; > 2 (which is obviously true if s > 3).
Suppose without loss of generality that v, has n; pendant neighbors, one of which is denoted by u, and v;
has n; pendant neighbors, where 1 <7, j’ <k. Let T* = T — uv; + uvy. Then

AT -AT) = W(T") - W(T)
= ni(n—m)+1nj+2)(n-—n;—2)— [(ni +Dn—-nm—-1)+n+1)n-n;- 1)]
= 2(mi—n;—-1)>0,
and thus A(T) > A(T"), a contradiction. The result follows. [
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Now we use techniques from [27] to prove the following lemma.

Lemma 2.4. For fixed n of the form (1), lank< ], ”’2], ..,n[b]) withk >2and s <2 whereny —ny =1ifs =2
achieves the smallest reverse Wiener index, then k =qifr=1,....qg kelgq+1}ifr=q+1,andk =q+1if
r=qg+2,...,2qg+1.

Proof. Let T = T,,k( [b1] ngbﬂ,...,n[b ]) where s = 1,2, and n, —n; = 1if s = 2, be a tree with the smallest

reverse Wiener 1ndex for fixed n.
Ifs=1,thenn; = — —1, b; =k, and thus

A(T) = 2n(n = 1) — W(T) = 1 — 1+(k+{TJ)(n 1.

Suppose thats = 2. Thenny = | 21| = 1,m = |52, by = [ %2 [k = (n =k = 1), by = n = 1 = | %2 | k, and thus

AT) = 2n(n—1)— W(T)
3(n—1)+(n—2)k+({nTJk n+k+1) ({ J )2+(n—1—{”;1JkH”;1J2
2(n—1)+(n—l)k—k{%r+2(n—l){ { J

J-
"= ”(k% K J)(”_l“(” 1= k{ J)Q k1 )

Note that k + [” 1J > 4 is an integer, and (n -1- k[”—;lJ) (lTlJ + ) by(mp+1)=n—-1-b(m +1)<n-1.
Since A(T) is minimal, k + [”—*1J = Lk + ”*1J is minimal.

Note that the function f(x) = x + =L for x > 0 attains its minimum at x = Vi —1. Then for s € {1,2},
k+ [”klj is minimal if k = | Vin — 1] or k = [ Vi — 1] (and perhaps for other values of k if s = 2). Since 7 may
be written in the form of (1), we have | Vn—1] = g, and [Vn—1]= gif r =1and g + 1 otherwise. Thus

{n—lJ 2q ifr=1,...,q,

k+ = ]

k 29+1 ifr=q+1,...,29+1.

For fixed n, let h,(k) = (n -1-k L”—Elj) (l"T_lJ + 1), which is minimal for integer k satisfying the above

equality.
Casel.r=1,...,9. Letk=g+tand [%J =g —tforsome0 <t <gq. Then

-1

hn(k):[q2+r—1—(q+t)(q—t)](q—t+1):—t[tz—(q+1)t+(r—1)]+rq+r—q—1.

Ift > 1, then 2~ (g+1)t+(r—1) = ( —%)ZJF( ~1)- 2 <y g-1<0,and thus by (k) > rg+7r—q—1 = h(q),

implying thatt =0, i.e, k =g.
Case2.r=g+1. Letk:q+tand{”7‘1j:q+1—tforsome0§t$q+1. Then

hn(k)=[q2+q+1—1—(q+t)(q+1—t)](q+1—t+1)=—t[t2—(q+3)t+(q+2)].

Ift > 2, then t? — (g + 3)t + (g + 2) < —q < 0, and thus h,(k) > 0 = h,(q) = h,(q + 1), implying that t € {0,1},
ie, kelgq+1}
Case3.r=g+2,...,29+1. Letk=g+1+tand |_” 1J q—tforsome 0 <t < g. Similarly as above, we have

hn(k):—t(tz—qt+r—2q—2)+(r—q—1)(q+1).

Ift>1thent? —qt+r—29—2<r-2q-2<-1<0,and thus h,(k) > (r—q—1)(g + 1) = hu(q + 1), implying
thatt=0,ie,k=g+1.
The result follows from Cases 1-3. [
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Let T}, 4 be the set of n-vertex trees with diameter d, where 2 < d <n — 1.

Lemma 2.5. Let T be a tree in T, 5 with the smallest reverse Wiener index. Then there exists T* € CT ,, with diameter
4 such that A(T*) < A(T).

Proof. Let T be a tree in T, 5 with the smallest reverse Wiener index. By Lemma 2.1, there exists no pendant
neighbor for the centers of T. Let T" be the tree obtained by contracting the edge connecting the centers
u and v of T followed by attaching a pendant vertex to the new vertex resulting from identifying # and .
Then T* € T, 4 and its center has a pendant neighbor. It is easily seen that

A(T) = A(T)

gn(n -1)-W(T) - 2n(n — 1) = W(T"))
= gn(n — 1) —nri(wo)nrr(uo) —2n(n - 1) + (n - 1)
> %(n D +2) - EJ m >0,

from which we get the desired result. [

For2 <d <n-1,let f(n,d) = min{A(T) : T € T, 4}, and let 7,4 be the set of trees in T, 4 with reverse
Wiener index f(n,d).

Obviously, T,» = {S,}, and f(n,2) = A(S,) =n—1.

For3<d<n-1,letg(nd) =min{A(T): T € T, 4\ 7,4}, and 77, 4 be the set of trees in T, ; with reverse
Wiener index g(n, d).

For 2 < a < | 7], let D, , be the tree formed by adding an edge between the centers of the stars S, and
Sy_a.

Proposition 2.6. Forn >4,

2

n 3n nifn
f(Tl,3) = ? + 7 -2- {EJ ’75“ and 7-,4,3 = {D"rL%J}'
Forn >6,
n*  3n n n )
on3) =3+ 5 =2~ (5] -1)(3] #1) e 70 = 1Dusz )

Proof. Obviously, the trees in T, 3 are of the type D,,,, where 2 <a < |5]. For2 <a < |5 ], we have

ADy) = Sn(n=1)=W(D,0)

= gn(n—l)—[(n—l)(n—2)+a(n—a)]
n?>  3n
?+7—2—a(n—a),

from which we know that, for fixed n, A(D,,) is decreasing for 2 < a < | 7]. The result follows. [

3. Trees with the second smallest reverse Wiener index

In this section, we determine the second smallest reverse Wiener index of n-vertex trees and characterize
the trees achieving this value.

The following proposition is essentially equivalent to [27, Theorem 3]. However, we give a proof (on
which part of the arguments following in Section 4 is based as well).
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Proposition 3.1. Let n > 5 be of the form (1). Then

f(}’l 4)_ 2q3+q2+37’q—3q+27’—2 ifr:l/.“,q,
2P+ P A3rg-4q+3r-3  ifr=q+1,...,27+1,

Tyq (7 -111)) ifr=1,

Thg (q - 1[q‘r+”,q[r‘1])} ifr=2,...,q,

Tug (9), Tuger (g - 170} ifr=g+1,

Tyg1 (q - 1[2('7“)"],0]““7‘1])} ifr=q+2,...,2q9+1.

ﬁ
Il

Proof. Let T be a tree with the smallest reverse Wiener index in T, 4. By Lemma 2.1, T must be written as
T = T, (n", nf, . ") with k > 2and Y., bin; = n —k - 1. By Lemma 2.3, 5 < 2. By Lemma 2.4, k = g
ifr=1,...,q,ke{gq+1}ifr=g+1,andk=g+1ifr=g+2,...,29+ 1.

Suppose thatk = g. If s = 1, thenn = > +r = 1 +k+mk = 1+g+n1g, and thus r— 1 = g(1 + n; — q), which
impliesthatr = 1,q+1,2g+1. Ifs = 2, thenn = q2+r = 14+g+bini+byny = 1+g+biny+by(n1+1) = 14+q+qn,+b;
where 1 < b, < g-1, and thus r — b, — 1 = g(1; + 1 — g), which implies thatr = 2,...,4,9+2,...,2g, i.e,
r# 1,4+1,29 + 1. In conclusion, if k = g, then s = 1 if and only if r = 1,4 + 1,29 + 1. Now suppose that
k=g+1.Ifs=1thenn=¢g>+r=1+(q+1)+n1(q+1),and thus r = (g + 1)(n; + 2 — q), which implies that
r=qg+1. Ifs =2, thenn :q2+r: 1+(@+1)+binmy +bonp =qg+2+(g+1)n; + b, wherel < b, <g,and
thus v — by = (g + 1)(m1 + 2 — q), which implies thatr=1,...,9,g+2,...,29+1,ie.,r # ¢ + 1. In conclusion,
ifk=g+1,thens=1ifand onlyifr =g+ 1.

Casel.r=1.Thenk=gands =1, and thus T = Ty, (q - 1[‘”) with A(T) = 24° + g%

Case2.7=2,...,9. Thenk = gand s = 2, and thus n; = VhTr_lJ—l =q-1l,m=qb=¢-(G*+r—g-1)=
g-r+landb,=r—1,ie,T=T,, (q - 1[‘7"+1],q["1]), where

A (Tn,q (q _ 1[q—r+1][ q[r—l]))

2n(n=1)—[(n-Dm-1-q) +qn—-q)(qg—-r+1)
@@+ —q=1)+ (=1

— n2+n_nq2+nq—nr+q3+21’q—3q+7’_2

= 2 +q*+3rqg—3q+2r-2.
Case3.r = g+1. Thenk € {g,q+1}. By direct calculation, A (TW7 (q[‘”)) =A (Tn,q+1 (q - 1[q+1])) =27 +44%+2q.
Sinces =1,wehave T = Thyg (q[‘”) or Ty g+1 (q - 1[q+1])-
Cased4. r=g+2,...,29+1. Thenk=g+1lands =2 and thusm =¢g—-1,n =q,b1 =2(q+1) —rand
bZ =r—q- 1,ie., Tn,q+1 (q - 1[2(q+1)—r]’ q[r—q—l]), where

A(Tuger (g = 12671, gl 0)) - = 2n(n = 1) = [(n = 1)(n =2 = ) + q(n — q) 27 +2 = 7)
+H@+ D —q -1 -q-1)]
= n*+2n—-ng*+ng-nr+q°—q*+2rg—4q+r-3
= 20 +¢*+3rqg—4q+3r-3.

The result follows from Cases 1-4. [

Now we are ready to give our main result in this section.

Theorem 3.2. Among the trees in T, with n > 4, Dy, |1 for n < 56, D728, Ts7;7 (7[7]) and Tsy8 (6[8]) forn =57,
and the trees in T, 4 for n > 58 are the unique trees with the second smallest reverse Wiener index, which is equal to
”; + 37” —2—|51[51for n < 56,896 for n = 57, and f(n,4) for n > 58, respectively, where T4 and f(n,4) are given
in Proposition 3.1.
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Proof. The case n = 4 is trivial. Suppose thatn > 5. Let T € 7,. Let d be the diameter of T. If d > 5, then by
Lemmas 2.1 and 2.2, we have

A(T) = f(n,d) > f(n,4) > f(n,2) for evend,
AT) = f(n,d) = f(n,5) > f(n,3) for odd d.

Thus the second smallest reverse Wiener index of the trees in 7, is equal to min{f(#n, 3), f(n,4)}, and by
Propositions 2.6 and 3.1, it is only achieved by D,z or trees in 7,4, where, with n being of the form (1),

rg® + %,72 + %72 + %r—% if n is odd,

g+
4 2 3.2 1.2 3 : .
q* +5rq” + 597 + 3r° + 3r =2 if niseven,

f(]’l,3) = {

FNERTN

1
2
1
2

and f(n,4) is given in Proposition 3.1. If n = 5,6, ...,56, then it can be checked that f(n,3) < f(n,4), and
thus the result follows from Proposition 2.6. Suppose that n > 57.

Casel.r=1,2,...,q. Since ¢° + 4 > 57, we have g > 8. Note that f(n,4) = 24> + ¢* + 3rg —3q + 2r = 2. If n is
odd, then since 34* - 37 — 1 > 0, we have

f(n,3) = f(n,4) }—Lq‘l + %rqz + ng + 11’2 + §r 7 <2q3 +q° +3rqg—3q +2r — 2)

4 2 4
1y 55,10 1.1, (12_ _1)
= 4q 2q +2q +3q+4+4r+2q 3 2r
1, ;3 1, 1 1 (12 1)
> gt —Z P - — J—
> 4q 2q +2q +3q+4+4+2q 3q >

= %“4f+¥=iﬁ¢—w+®zf>a

and if n is even, then

Thus f(n,3) > f(n,4).
Case2. 7 =qg+1,q9+2,...,2q+1. Since g*+2q+1 > 57, wehave g > 7. Note that f(n,4) = 2¢°+¢*+3rq—4q+3r-3.
Suppose first that 7 is odd. Since 4% — 37 — 2 > 0, we have

f(?’l, 3) - f(?l, 4)

1, 1 5, 3, 1, 3 7 3, 2
11 +2rq +2q +4r +27 1 <2q +q°-+3rg—4q +3r 3)

I SO S 5.1, (12_ _§)

= 4q 2q +2q +4q+4+4r+ 2q 3q 21’
1, ;3 1, 5 1 5 (12 3)

> gt — — — 4+ = —_g- — — -

> 4q 2q +2q +4q+4+4(q+1)+2q 3q 2(q+1)
1, 35 7,

= —gt—Zg - %>
27— 1 g7 20

and then f(n,3) > f(n,4) with equality if and only if g =7 and r = g + 1 = 8, i.e., n = 57. Now suppose that
nis even. If g = 7, then n = 58,60, 62, 64, and it is easily checked by the expressions for f(n,3) and f(n,4)
that f(n,3) > f(n,4). If g > 8, then

3p_7p 1

- >0,

1
f(”r3)_f(”/4)21‘74_2q 4q 4

and thus f(n,3) > f(n,4).
Combining Cases 1 and 2, we have f(n,3) > f(n,4) for n > 58 and f(57,3) = f(57,4). The result for
n > 57 follows from Propositions 2.6 and 3.1. [
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4. Trees with the third smallest reverse Wiener index

In this section, we determine the third smallest reverse Wiener index of n-vertex trees and characterize
the trees whose reverse Wiener indices achieve this value.

Proposition 4.1. Let n > 6 be of the form (1). Then

| fm,H+1 ifr=q,q9+2,
g(n'4)_{f(n,4)+2 ifr#q,q+2,

where f(n,4) is given in Proposition 3.1, and

Toyg (q —oMl g 1[4*7*1],,1[?])} ifr=1,2,
Ty (q — 10611 g 4 1[1]) ,Tog (q — 2l g — 14, q[SI)} ifr =3,
Toyg (q _ 1[’1_”2],!7[’_3],17 + 1[1]) ,Tog (q _ 2[1]Iq _ 1[4—7—1],q[71)} ifr=4,...,9-2,
Tugi1 (q —ol g 1[q—11) ,Tog (q — 181 gli41 g 4+ 1[11) ,Tog (q _o qw—u)} ifr=q-1,
Tug (q —oll 4 1[q])} ifr =g,
T s =T (q — 10, gl=21 4 + 1[11);[”,[7+1 (q —oMl g - 1[q—1],q[11)} ifr=q+1,
Tuq (71,9 +100)} ifr=q+2,
Tug (q[q—2], q+ 1[21) , Tog1 (q — 2ol g — 1093, qm) s Tt (q — 11,4 + 1[11)} ifr=q+3,
Tug1 (q — 2l g — 1291, q[r—q]) , Togs1 (q — 10204311 glr-9-31 4 4 1[11)} ifr=q+4,...,29-1,
Tuge1 (q _ 2[1],q[q]) , Thget (q — 181 gla-31 g 4+ 1[1])} ifr = 2g,
Tt (- 12,4172, g + 110} ifr=2q+1.

Proof. By Proposition 3.1, the second smallest reverse Wiener index in T, 4 is precisely achieved by the
smallest reverse Wiener index of trees in T, 4 \ 7;,4. Let T be a tree with the smallest reverse Wiener index
in Tn,4 \ Tn,4.
Case 1. T € CT . Then T may be written as T = T, (no;ngbll,nghﬂ, . ..,n£b5]). From the expression for
W(T) (given previous to Lemma 2.3), A(T) is increasing with respect to ny. Thus nyp = 1, k > 2 and
Y. 1bini = n—k—2,and by Lemma 2.3, we have s < 2, and 1, — n; = 1 if s = 2. Using the same method
in the proof of Lemma 2.4 to analyze A (T,,,k (1; nllhll,ngbﬂ, ... ,nghS])) =4dn-5+n-2)k+ Y, binf, we have
k=qifr=1,...,q9+1, kelgq+1}ifr=g+2,andk=q+1ifr=g+3,...,29+ 1. The rest of the proof is
similar to the proof of Proposition 3.1.

Ifr =1, then T = T, (1;q - 211, ¢ — 16-1) with A(T) = 2¢° + 2% - 29 + 2.

If r = 2, then T = T,,; (1;q — 1) with A(T) = 2¢° + 247 + g + 3.

Ifr=3,...,q+1, then T =T, (1;q - 117772, q"2)) with A(T) = 2¢° + 24> + 3rq — 5q + 3r - 3.

If r = q+2, then T = T, o (1;") with A(T) = 2¢° + 547 + 49 + 3.

Ifr=q+3,...,29+1, then T = T, g1 (1,9 — 11207+, ql=1-21) with A(T) = 2¢° + 297 + 3rq — 69 + 4r — 4.

Case 2. T ¢ CT .. Then T may be written as T = T,,x (nl"], ), nl"l). Note that T ¢ 7, 4. There are two
subcases.
Subcase2.1.s<2,andn, —n; =1ifs=2.

(i) r = 1. By the monotonicity of f(x) = x + “=L in the proof of Lemma 2.4 and Proposition 3.1, we have
kelg—1,q+1). Ifk=q-1,then T = T,01 (¢, g+ 111) with A(T) = 2¢° + 4> + g +2. If k = g + 1, then
T = Tygi1(q - 29, g - 100) with A(T) = 2¢° + g2 + q. Thus T = T,y s1(q — 219, — 1),
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(ii)r=2,...,9. Thenke {g—1,g+1}. If k = g —1, then
q q q q

Tuga (977 1,q+10)  ifr=2,...,9-2,
T={Ty1(q+10°1) ifr=g-1,
Tg1(q+1972,q+20) ifr=g,

where

A (Tn,qfl (q[q—r—lll g+ 1[7]))

2nn-1)-[n-1)n-q)+@+n-g-1)@g-r-1)
+(@+2)(n —q-2)r]

= n*—ng*+ng—nr+q°+q*+2rg—29+3r—1

= 2 +q +3rq-2q+3r—1,

A (T (q+12971)) 2 + 4% —2q — 4,

A(Tuga (7419729 +21)) = 247 +4¢% +9+1.
Ifk=q+1 then T =Tyg (- 271, g - 117), where

A(Tuger (-2, =11)) = 2n(n—1) = [(n - 1)(n -2 - q)
g =D =g+ 1) =7 +1) +q(n = q)]
= n?+2n—-ng*P+ng-nr+qg - +2rg—-2q-r—-1
= 2P+ +3rg-2q+r-1.
Thus T = Tyg41 (q —2lg=r+] 4 1[71) with A(T) =2¢° + ¢* +3rg —2q +r— 1.
(ii)r =g+ 1. Thenk € {g—1,9+2}. We have

o [T (q+10-3,q+20) ifk=q-1,
|\ Tugea(g-29,9-121)  ift=gq+2,

where A(Tyq1(q+197%, 9+ 200)) = 2° + 497 + 49 + 6 > 20° + 447 + 49 = A (T, 02 (7 - 21,9 - 1)), Thus
T = Tyga (g -2, g — 120) with A(T) = 2¢° + 4¢° + 4q.
(iv)r=g+2,...,29. Thenk € {g,9 + 2}. We have

Tug (qlzqﬂ—rll q+ 1[r—q—1l) ifk =g,
Tigea (g - 227177, g = 10-041) if k= g+ 2,

where
A(Tug (277, g +100710)) = 2n(n—1) = [(n-D(n—1-g)+ @+ Dn—g-1)2q+1-7)
+Hq+2)(n—q-2)r-q-1)]
= W +n-ng+ng-nr+q +2rq—5q+3r—4
= 2q3+q2+3rq—5q+4r—4,
A(Togia (g - 22717, g =11} = 2n(n—1) - [(n - 1)(n -3 —g)
a+2\q q q
+Hg =D —q+D2q+1-1)+qn—-g)(r—q-1)]
= 2P+ +3rg—q+2r-2
> A(Tog (211, g + 10-11)),
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Thus T = T,y (%17, q + 10-7-1) with A(T) = 24> + ¢ + 3rg — 5q + 4r — 4.

(v)r=2q+1. Thenk € {g,q+2}. Iftk = gq,thenT =T, , (q + 1[‘”), andifk = g+2,thenT = T, 412 (q - 1[‘7+2]),
both with reverse Wiener index 24° + 7¢° + 64.
Subcase 2.2. There exist 1 <i < j < s such that n; —n; > 2. Let T* be the tree constructed as in the proof of

Lemma 2.3 from T. By the proof there, we have A(T) = A(T") + 2(n; — n; — 1). Thus A(T) is minimum if and
only if T € 7, 4 and n; — n; = 2.

(i) r=1. Then T = T, (q — 211, q — 1172, g111) with A(T) = 2¢° + 4% + 2.
(ii) r =2,...,9. Then A(T) is at least the minimum of the reverse Wiener indices of
Toy(g-20,9 - 1090, ¢2), T, (g - 200, g — 1620 g+ 110) g =2,
Tog (g - 197, q +10), T, (g - 21,0 = 1979,g9), T, (g — 20, — 119790,V g +10) g r =3,

Tug (q 142 glr=31 gy 1[1]) T, (q — 2l g — qla=r-1] q[”),

Tog (g -2, = 197,42, g + 1)
Tog (9 - 1004174, g+ 100), T, (g = 200, 471, T, (g - 2, g = 100, g0 g 4 100)  ifr =g -1,
Tog(7-19,497%,q + 1), T, (g - 21,4772, + 117

ifr=4,...,9-2,

ifr=q.

By comparing the reverse Wiener indices of these trees, we have

T (g 20,9 - 1[qf31,q[2]) ifr=2,

Tug Eq — 10671 g 4 1[1]) ,Tog <q —2ol 4 - 1[q—41,q[31) ifr=3,
T={Tp,(q-102,q03, g+ 1), T, (g - 200, g — 119710, glT) iy =4,... -2,
Tug (g - 101, gl4, g + 1[11), Tug (q _ 2[1],q[q—1]) ifr=g-1,

Toq (9= 17,4179, +100) ifr=g

with A(T) = f(n,4) + 2, where f(n,4) is given in Proposition 3.1.

(iii) r =g+ 1. Then T = T,,,q<q — 100 gla=21 g 4 1[1]) or Tn,,ﬁl(q =201 g —1le-1) q[”), both with reverse
Wiener index 2¢° + 4¢% + 29 + 2.

(iv)r=g+2,...,29. Then A(T) is at least the minimum of the reverse Wiener indices of

Tyt (q — ol g1l qm) ,Tugen (q — ol g —qle-1l gy 1[11) ifr=q+2,
Togen (q —oll g 1[4‘3],51[31)  Togst <q L L 1[11) )
Ty 41 (q -1, 4+ 1[1]) ifr=q+3,
Toge1 (q -l g — 1201, q[r—q]) , Trgi1 (q — ol g 241l glr=g-2] gy 1[11)’
Tiger (g - 12797, g=03 g £ 1110)  ifr=g+4,...,29-1,
Tyt (q _ 2[1],q[q]), Tyt (q I B [ L i | 11)/
T q+1 (q — 181 gl=31 g + 1[”) ifr =2q.

Thus
Tyge1 (g - 21, - 1072, g ifr=q+2,
T Tyge1 (q— 201, g — 16731 gB1), nq+1(q 1'”q+1[1) ifr=q+3,
Tger (9 - 211, g — 12971, gl q]) Tge1 (q 10204311 glr-9-3] ¢ 4 1[1]) ifr=q+4,...,29-1,
]

Tn,q+1 q- 21! ,q ) n,q+1 (q 1[3] q la- 3]/q + 1[1]) ifr= Zq
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with A(T) = f(n,4) + 2, where f(n,4) is given in Proposition 3.1.

(v) 7 = 29 + 1. Then A(T) 2 min{A (T, g1 (7 - 204,671, g + 100)), A (T g1 (9 — 112, 91972, g + 100))). By
direct calculation, we have T = T}, 541 (q — 101 gla=21 4 + 1[1]) with A(T) = 24° + 79 + 5g + 2.

By comparing the above cases, we have: if r = 1, then A(T) is precisely the minimum of 2¢° + 24> =27 + 2,
2 +q? +gand 2g° +g* +2;ifr = 2,...,q—1, then A(T) is precisely the minimum of 24> +2¢* + 3rq —5q +3r -3,
2¢ +¢* +3rg—2q +r—1and 2¢° + ¢* + 3rq — 3q + 2r; if r = q, then A(T) is precisely the minimum of
2 + 54> =29 -3, 2% + 44> —q— 1 and 2¢° + 49> — q; if r = g + 1, then A(T) is precisely the minimum
of 2¢° + 54> + q, 2¢° + 4% + 4 and 24° + 4¢* + 29 + 2; if r = q + 2, then A(T) is precisely the minimum of
2 +5¢° +4q9+3,24° + 49> + 5 + 4 and 2¢° + 4% + 59 + 5;if r =g+ 3,...,29 + 1, then A(T) is precisely the
minimum of 2¢% + 292 + 3rq — 6q + 4r — 4, 24° + ¢* + 3rg — 5q + 4r — 4 and 2¢° + g* + 3rg — 4q + 3r — 1. Now the
result follows easily. [

Theorem 4.2. Among the trees in T, withn > 5, the treesin T , forn = 5o0rn = 58, Dy, z}-1 for 6 < n < 57 are the

unique trees with the third smallest reverse Wiener index, which is equal to 20 forn = 5, ”2—2 + 37" —2—(|_§J - 1) (l'%'l + 1)
for 6 <n <57, and g(n,4) for n > 58, where T , and g(n,4) are given in Proposition 4.1.

Proof. The case n = 5 is trivial. Suppose thatn > 6. By Theorem 3.2, among the trees in 7, withn > 6, Dy, 1)

for 6 < n < 56, Dsy0s, Ts77 (7[7]) and Ts7g (6[8]) for n = 57, and the trees in 7,4 for n > 58 are the unique
trees with the second smallest reverse Wiener index, which are equal to f(n,3) for n < 56, f(n,3) = f(n,4)
for n = 57 and f(n,4) for n > 58. By Proposition 4.1, and Lemmas 2.2 and 2.5, we have f(n,d) > g(n,4)
for 5 < d < n—1. Thus the third smallest reverse Wiener index in 77, is equal to min{g(n, 3), f(n, 4)} for
6 < n < 56, min{g(n, 3), g(n,4)} for n = 57 and min{f(n, 3), g(n,4)} for n > 58, and by Propositions 2.6 and
4.1, it is precisely achieved by graphs in 7,3 and 7,4 for 6 <n <56, 7', 3 and 7', 4 for n = 57, and 7,3
and 77,4 for n > 58.

Recall that the expressions for f(n,3) and g(n, 3) are given in Proposition 2.6, while the expressions for
f(n,4) and g(n,4) are given in Propositions 3.1 and 4.1, respectively. Let 1 be of the form (1). Recall that
f(n,3)> 1g* + 1rg? + 347 + 12 + 3r-2.

By direct checking, we have g(n,3) < f(n,4) for 6 <n <56, and g(57,3) < g(57,4). Thus the results for
cases nn = 6,...,57 follow from Proposition 2.6. Suppose that n > 58.

Casel.r=1,...,q—1. Thengq > 8. Note that 14> =39 — 1 > 0. We have

f(n,3)—gn,4) = }Iq4 + %rqz + ng + 11’2 + ér -2- (2q3 +q* +3rg—3q + Zr)

4 2
= %q4—2q3+%q2+3q—2+ir2+(%2—3q—%)r
> %q4—2q3+%q2+3q—2+}1+%q2—3q—%
1 4 3 2 9 1 202 9 2 9
= = — —__= - — _— > —_—
17 "2 HT =@ -8+ - 1247 -1 >0,

and thus f(n,3) > g(n,4).
Case 2. r = q. Then g > 8. We have

_ 1 353 92,5 1 Yo o o2 15722,
f,3) =g, 4) 2 20" 50" =7 +59-1= 299 =69 =9+ 59-12 74"+ 54 -1>0,

and thus f(n, 3) > g(n,4).
Case 3. r =g+ 2. Theng > 7. We have

_ 1a 35 5, 5 _
f(?’l,3) !7("/4)Z 45] zq 4q 2!] 2>0,

and thus f(n, 3) > g(n,4).
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Cased.r=q+1,q+3,...,29+ 1. Note that 24> — 37— 3 > 0. We have

[\

f(n,3)—g(n,4) %q‘l + %rqz + §q2 + 11’2 + §r -2- (2q3 +q* +3rg —4q +3r — 1)

4 2
_ Ly 55 1, IR (12_ _%)
= 77 2q +2q +4q 1+4r >4 3q )"
Ifr=gq+1,thenq > 8, and thus f(n,3) — g(n,4) > 1¢* = 2¢° - 24> = 2 > 0, while if r = g + 3,..,29 + 1, then
q >7,and thus f(n,3) — g(n,4) > 19* — 3¢° — 34> =59 — £ > 0. Thus f(n,3) > g(n, 4).

Combining Cases 1-4, we have f(n,3) > g(n,4) for n > 58. Then the result follows from Proposition
26. O

References

[1] I. Althofer, Average distance in undirected graphs and the removal of vertices, ]. Combin. Theory Ser. B 48 (1990) 140-142.
[2] A.T.Balaban, D. Mills, O. Ivanciuc, S. C. Basak, Reverse Wiener indices, Croat. Chem. Acta 73 (2000) 923-941.
[3] F Buckley, F. Harary, Distance in Graphs, Addison-Wesley, Reading, MA, 1990.
[4] X. Cai, B. Zhou, Reverse Wiener indices of connected graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 95-105.
[5] E R.K.Chung, The average distance and the independence number, J. Graph Theory 12 (1988) 229-235.
[6] P. Dankelmann, S. Mukwembi, H. C. Swart, Average distance and edge-connectivity I, SIAM J. Discrete Math. 22 (2008), 92-101.
[7] P. Dankelmann, S. Mukwembi, H. C. Swart, Average distance and edge-connectivity II, SIAM ]. Discrete Math. 21 (2008) 1035—
1052.
[8] P. Dankelmann, S. Mukwembi, H. C. Swart, Average distance and vertex-connectivity, ]. Graph Theory 62 (2009) 157-177.
[9] A.A.Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001) 211-249.
[10] J. K. Doyle, J. E. Graver, Mean distance in a graph, Discrete Appl. Math. 17 (1977) 147-154.
[11] Z. Du, B. Zhou, Minimum Wiener indices of trees and unicyclic graphs of given matching number, MATCH Commun. Math.
Comput. Chem. 63 (2010) 101-112.
[12] R.C. Entringer, D. E. Jackson, D. A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (1976) 283-296.
[13] W. Goddard, C.S. Swart, H. C. Swart, On the graphs with maximum distance or k-diameter, Math. Slovaca 55 (2005) 131-139.
[14] I Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer—Verlag, Berlin 1986.
[15] H.Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated
hydrocarbons, Bull. Chem. Soc. Japan 44 (1971) 2332-2339.
[16] O.Ivanciuc, T. Ivanciuc, A. T. Balaban, Quantitative structure—property relationship evaluation of structural descriptors derived
from the distance and reverse Wiener matrices, Internet Electron. J. Mol. Des. 1 (2002) 467-487.
[17] M. Karelson, Molecular Descriptors in QSAR/QSPR, Wiley, New York, 2000.
[18] S.Li, B. Zhou, Ordering the non-starlike trees with large reverse Wiener indices, Czechoslovak Math. J., in press.
[19] W. Luo, B. Zhou, On ordinary and reverse Wiener indices of non-caterpillars, Math. Comput. Modelling 50 (2009) 188-193.
[20] W. Luo, B. Zhou, Further properties of reverse Wiener index, MATCH Commun. Math. Comput. Chem. 61 (2009) 653-661.
[21] J. Plesnik, On the sum of all distances in a graph or digraph, J. Graph Theory 8 (1984) 1-21.
[22] D. H. Rouvray, The rich legacy of half a century of the Wiener index, in: D. H. Rouvray, R. B. King (Eds.), Topology in Chemistry
— Discrete Mathematics of Molecules, Horwood, Chichester 2002, pp. 16-37.
[23] D. Stevanovi¢, Maximizing Wiener index of graphs with fixed maximum degree, MATCH Commun. Math. Comput. Chem. 60
(2008) 71-83.
[24] L.Soltés, Transmission in graphs: a bound and vertex removing, Math. Slovaca 41 (1991) 11-16.
[25] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim 2000.
[26] N. Trinajsti¢, Chemical Graph Theory, (2nd revised edition) CRC press, Boca Raton, 1992.
[27] S. G. Wagner, A class of trees and its Wiener index, Acta Appl. Math. 91 (2006) 119-132.
[28] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
[29] B. Zhang, B. Zhou, Modified and reverse Wiener indices of trees, Z. Naturforsch. 61a (2006) 536-540.
[30] B.Zhou, N. Trinajsti¢, Mathematical properties of molecular descriptors based on distances, Croat. Chem. Acta 83 (2010), 227-242.
[31] B.Zhou, Reverse Wiener index, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors — Theory and Applications
II, Univ. Kragujevac, Kragujevac, 2010, pp. 193-204.



