
Filomat 26:4 (2012), 739–746
DOI 10.2298/FIL1204739H

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. The generalized universal lifting property plays an important role in classical topology. In
digital topology we also have its digital version [5, 6, 14]. More precisely, the paper [6] established the
concept of a digital covering (see also [11, 17]). It has substantially contributed to the calculation of digital
fundamental groups of some digital spaces, the classification of digital spaces and so forth. The paper [6]
also established the unique lifting property of a digital covering which plays an important role in studying
both digital covering and digital homotopy theory. Motivated by the unique lifting property, the paper
develops a pseudocovering which is weaker than a digital covering and investigates its various properties.
Furthermore, the paper proves that a pseudocovering with some hypothesis has the unique pseudolifting
property which is weaker than the unique lifting property in digital covering theory.

1. Introduction

Discrete geometry which includes digital topology emerged with the development of both computer and
information communications technology. It has played an important role in computer science such as image
analysis, pattern recognition, image processing, mathematical morphology and so forth [18, 19, 21, 22]. It
has its root in graph theory with the k-adjacency relations of Zn (see (2.1) of the present paper), where Zn

is the set of points in the Euclidean nD space with integer coordinates, n ∈ N and N is the set of natural
numbers.

A digital image (or a digital space) (X, k) can be considered to be a set X ⊂ Zn with one of the k-adjacency
of Zn (or a digital k-graph on Zn) [21]. It is well known that the notion of a graph covering has strongly
contributed to the classification of graphs [4]. Similarly, the notion of a covering space in algebraic topology
has been substantially used in classifying topological spaces [20, 23]. By analogy, in relation to the study
of digital topological properties of a digital space (X, k) in Zn, useful tools motivated from both graph
theory and algebraic topology include a digital covering space [5, 6], a digital k-fundamental group [2], an
automorphism group of a digital covering space [10] and so forth. These have been studied in many papers
including [1–3, 5–17].
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In digital covering theory the unique lifting property plays an important role in studying digital covering
spaces and their applications such as the winding number and so forth. Motivated by the property, the
paper develops the notion of a pseudocovering which is weaker than that of a digital covering and proves
that a pseudocovering has the unique pseudolifting property.

The paper is organized as follows. Section 2 provides some basic notions. Section 3 establishes the
notion of weakly local isomorphism and studies its properties. Section 4 develops the notion of a digital
pseudocovering and investigates its properties related to the unique pseudolifting property. Further, it
compares a digital pseudocovering with a digital covering. Finally, Section 5 concludes the paper with a
summary.

2. Preliminaries

Since a digital image (X, k) in Zn can be considered to be a set X in Zn with one of the k-adjacency
relations of Zn [21] (see also (2.1) of the present paper), a digital k-graph or a cell complex [19], the present
paper uses the terminology a digital space instead of a digital image.

In order to study multi-dimensional digital spaces, motivated by the k-adjacency relations of Z2 and Z3

in [18, 21], we have often used the k-adjacency relations of Zn, as follows [6] (for more details in [16]):
For a natural number m with 1 ≤ m ≤ n, two distinct points

p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) ∈ Zn

are k- (or k(m,n)-) adjacent if
• there are at most m indices i such that | pi − qi| = 1 and
• for all other indices i such that |pi − qi| , 1, pi = qi.
By using this operator, we can characterize the k-adjacency relations of Zn, denoted by k := km or k(m,n),

where k := km := k(m,n) is the number of points q which are k-adjacent to a given point p according to the
numbers m and n in N. Consequently, we can represent the k-adjacency relations of Zn, as follows [13] (for
more details, see also [16]).

k := k(m,n) =
n−1∑

i=n−m

2n−iCn
i , where Cn

i =
n!

(n − i)! i!
. (2.1)

By using the current k-adjacency relations of Zn, we can study digital topological properties of multi-
dimensional digital spaces in Zn.

A pair (X, k) is usually assumed to be a (binary) digital space with k-adjacency in a quadruple (Zn, k, k̄,X),
where k , k̄ except X ⊂ Z [21] and the pair (k, k̄) depends on the situation. But the current paper is not
concerned with the k̄-adjacency of Zn \ X. For {a, b} ⊂ Z with a � b, [a, b]Z = {a ≤ n ≤ b|n ∈ Z} is considered
in (Z, 2, 2, [a, b]Z) [1]. For a digital space (X, k), two points x, y ∈ X are k-connected in [18] if there is a k-path
from x to y in X and if any two points in X are k-connected, then X is called k-connected [18]. For an adjacency
relation k of Zn, a simple k-path with l elements in Zn is assumed to be an injective sequence (xi)i∈[0,l−1]Z ⊂ Zn

such that xi and x j are k-adjacent if and only if either j = i+ 1 or i = j+ 1 [18]. Besides, we say that the length
of a simple k-path is the number l. Furthermore, a simple closed k-curve with l elements in Zn is a sequence
(xi)i∈[0,l−1]Z derived from a simple k-curve (xi)i∈[0,l]Z with x0 = xl, where xi and x j are k-adjacent if and only if
j = i + 1(mod l) or i = j + 1(mod l) [18]. Let SCn,l

k denote a simple closed k-curve with l elements in Zn [6].
In order to study various properties of digital spaces, we have often used the following digital k-

neighborhood [6]. For a digital space (X, k) in Zn, the digital k-neighborhood of x0 ∈ X with radius ε is
defined in X to be the following subset of X

Nk(x0, ε) = {x ∈ X| lk(x0, x) ≤ ε} ∪ {x0}, (2.2)

where lk(x0, x) is the length of a shortest simple k-path from x0 to x and ε ∈ N.
To map every k0-connected subset of (X, k0) into a k0-connected subset of (Y, k1), the papers [1, 21]

established the notion of digital continuity. Since every point x of a digital space (X, k) in Zn always has an
Nk(x, 1) ⊂ X, the digital continuities of [1] and [21] can be represented as the following form.
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Proposition 2.1. ([11]) Let (X, k0) and (Y, k1) be digital spaces in Zn0 and Zn1 , respectively. A function f : X → Y
is (k0, k1)-continuous if and only if for every point x ∈ X, f (Nk0 (x, 1)) ⊂ Nk1 ( f (x), 1).

As mentioned in the previous part, since a digital space (X, k) can be considered to be a digital k-graph,
we have often used a (k0, k1)-isomorphism as in [11] instead of a (k0, k1)-homeomorphism as in [1], as follows:

Definition 2.2. ([1]; see also [11]) For two digital spaces (X, k0) in Zn0 and (Y, k1) in Zn1 , a map h : X → Y
is called a (k0, k1)-isomorphism if h is a (k0, k1)-continuous bijection and further, h−1 : Y → X is (k1, k0)-
continuous. Then we use the notation X ≈(k0,k1) Y. If n0 = n1 and k0 = k1, then we call it a k0-isomorphism and
use the notation X ≈k0 Y.

3. Weakly local (k0, k1)-isomorphism and its properties

In the study of the preservation of local properties of a digital space, this section establishes the notion
of weakly local (k0, k1)-isomorphism. Since the notion of local (k0, k1)-isomorphism is so related to the
establishment of that of weakly local (k0, k1)-isomorphism, let us now recall the following:

Definition 3.1. ([5]; see also [13]) For two digital spaces (X, k0) in Zn0 and (Y, k1) in Zn1 , a (k0, k1)-continuous
map h : X→ Y is called a local (k0, k1)-isomorphism if for every x ∈ X h maps Nk0 (x, 1) (k0, k1)-isomorphically
onto Nk1 (h(x), 1). If n0 = n1 and k0 = k1, then the map h is called a local k0-isomorphism.

Example 3.2. (1) Let us consider the map

f1 : [0, l − 1]Z → SCn,l
k := (ci)i∈[0,l−1]Z , l ≥ 4 (3.1)

given by f1(i) = ci.
Let us consider the map

f2 : Z+ → SCn,l
k := (ci)i∈[0,l−1]Z , l ≥ 4

given by f2(i) = ci, where Z+ := {n|n ≥ 0,n ∈ Z}.
Then, owing to the points 0 and l− 1 of [0, l− 1]Z, f1 cannot be a local (2, k)-isomorphism [13]. Owing to the
point 0 ∈ Z+, neither is f2.

(2) Let us consider the map

1 : SCn0,ml
k0

:= (ei)i∈[0,ml−1]Z → SCn1,l
k1

:= (c j) j∈[0,l−1]Z (3.2)

given by 1(ei) = ci(mod l). Then the map 1 is a local (k0, k1)-isomorphism [12].

The notion of local (k0, k1)-isomorphism can be often used for studying some local properties such as
the (generalized) topological k-number and preserving local properties of a digital space [12]. Besides,
for a local (k0, k1)-isomorphism h : (X, k0) → (Y, k1) its restriction on a subset of (X, k0) need not be a local
(k0, k1)-isomorphism [12]. As a weak form of the local (k0, k1)-isomorphism, we establish the following.

Definition 3.3. For two digital spaces (X, k0) in Zn0 and (Y, k1) in Zn1 , a map h : X → Y is called a weakly
local (k0, k1)-isomorphism (shortly, a WL-(k0, k1)-isomorphism) if for every x ∈ X h maps Nk0 (x, 1) ⊂ X
(k0, k1)-isomorphically onto h(Nk0 (x, 1)) ⊂ Y. If n0 = n1 and k0 = k1, then the map h is called a weakly local
k0-isomorphism (shortly, a WL-k0-isomorphism).

For instance, the maps fi, i ∈ {1, 2} in Example 3.2 are WL-(2, k)-isomorphisms. Also, it is clear that a
(k0, k1)-continuous map need not be a WL-(k0, k1)-isomorphism. We can observe a difference between a
WL-(k0, k1)-isomorphism and a local (k0, k1)-isomorphism, as follows.

Theorem 3.4. While a local (k0, k1)-isomorphism h : (X, k0) → (Y, k1) implies a WL-(k0, k1)-isomorphism, the
converse does not hold.
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Proof. Let us prove that a local (k0, k1)-isomorphism h : (X, k0)→ (Y, k1) implies a WL-(k0, k1)-isomorphism.
For any point x ∈ X since there is an Nk0 (x, 1) ⊂ X, according to the local (k0, k1)-isomorphism h, h maps
Nk0 (x, 1) (k0, k1)-isomorphically onto Nk1 (h(x), 1). Thus, we obtain that

h(Nk0 (x, 1)) ≈k1 Nk1 (h(x), 1). (3.3)

By using the restriction of h on Nk0 (x, 1), denoted by h|Nk0 (x,1), we obtain that

Nk0 (x, 1) ≈(k0,k1) h(Nk0 (x, 1)),

which makes the map h a WL-(k0, k1)-isomorphism.
Consequently, in view of the maps f1 and 1 in Example 3.2, the converse does not hold.

We can observe that a WL-(k0, k1)-isomorphism has its own intrinsic properties, as follows.

Theorem 3.5. (1) A WL-(k0, k1)-isomorphism is a (k0, k1)-continuous map.
(2) Consider two digital spaces (X, k0) in Zn0 and (Y, k1) in Zn1 . Let h : X → Y be a WL-(k0, k1)-isomorphism.

Then the restriction of h on a subset (X0, k0) is also a WL-(k0, k1)-isomorphism, where (X0, k0) ⊂ (X, k0).
(3) A WL-(k0, k1)-isomorphism does not imply an injection.
(4) A WL-(k0, k1)-isomorphic bijection does not imply a local (k0, k1)-isomorphism.

Proof. (1) For a WL-(k0, k1)-isomorphism h : (X, k0)→ (Y, k1) and any point x ∈ X we obtain that Nk0 (x, 1) ≈(k0,k1)
h(Nk0 (x, 1)) ⊂ Nk1 (h(x), 1), the proof is completed.

(2) Consider any subset (X0, k0) ⊂ (X, k0). For every point x ∈ X0 take Nk0 (x, 1) ⊂ X0. Then, by
using the restriction of the given WL-(k0, k1)-isomorphism h : (X, k0) → (Y, k1) on Nk0 (x, 1), we obtain that
Nk0 (x, 1) ≃(k0,k1) h(Nk0 (x, 1)) so that the restriction of h on (X0, k0) is a WL-(k0, k1)-isomorphism.
For instance, consider the map in (3.2)

h : SC2,8
8 := (ei)i∈[0,7]Z → SC2,4

8 := (c j) j∈[0,3]Z (3.4)

defined by h(ei) = ci(mod 4). Then we clearly observe that the map h is a WL-(8, 8)-isomorphism. Let us now
delete an arbitrary point ei ∈ SC2,8

8 . Then the restriction of h on SC2,8
8 − {ei} is also a WL-(8, 8)-isomorphism.

(3) While the map h in (3.4) is a WL-(k0, k1)-isomorphism, it cannot be an injection.
(4) In view of the map f1 in (3.1), we can prove the assertion.

Remark 3.6. In view of Theorems 3.4 and 3.5(2), while a WL-(k0, k1)-isomorphism is weaker than a local
(k0, k1)-isomorphism, in relation to the restriction property we can observe that a WL-(k0, k1)-isomorphism
has a useful property.

Even though both a WL-(k0, k1)-isomorphism and a local (k0, k1)-isomorphism can be used for preserving
local properties of a digital space, let us now discuss their limitations.

Remark 3.7. (1) In a digital 3-cube (see Figure 1), let us consider the map (see Figure 1)

h : (A := (ai)i∈[0,5]Z , 26)→ (B := (bi)i∈[0,5]Z , 26) (3.5)

given by h(ai) = bi, i ∈ [0, 5]Z. The map h is both a WL-26-isomorphism and a local 26-isomorphism because
for every point ai ∈ A and bi ∈ B, i ∈ [0, 5]Z we observe that N26(ai, 1) = A and N26(bi, 1) = B.

(2) In Figure 1 let us consider the spaces A and B with 18-adjacency instead of 26-adjacency. Then
for the two spaces (A, 18) and (B, 18) the map 1 : (A := (ai)i∈[0,5]Z , 18) → (B := (bi)i∈[0,5]Z , 18) given by
1(ai) = bi, i ∈ [0, 5]Z cannot be a WL-18-isomorphism.
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Figure 1: Comparison between a WL-(k0, k1)-isomorphism and a local (k0, k1)-isomorphism in a 3-cube, ki ∈ {26, 18} and i ∈ {0, 1}.

4. Digital pseudocovering space and unique pseudolifting property

Motivated by the notion of a digital covering space which has been often used in classifying digital
spaces [6, 11, 17], by using the notion of WL-(k0, k1)-isomorphism, this section establishes a pseudo-(k0, k1)-
covering which is weaker than a (k0, k1)-covering. Indeed, a (k0, k1)-covering map in Definition 4.4 satisfies
the unique lifting property which plays an important role in digital homotopy theory (see Theorem 4.7).
Since a pseudo-(k0, k1)-covering is weaker than a (k0, k1)-covering (Remark 4.6), we can prove that a pseudo-
(k0, k1)-covering with some hypothesis also has the unique pseudolifting property instead of the unique
lifting property (see Theorem 4.9 and Corollary 4.11).

Definition 4.1. Let (E, k0) and (B, k1) be digital spaces in Zn0 and Zn1 , respectively. Let p : (E, k0)→ (B, k1) be
a surjection. Suppose that for any b ∈ B the map p has the following properties.

(1) for some index set M p−1(Nk1 (b, 1)) = ∪i∈MNk0 (ei, 1) with ei ∈ p−1(b)
(2) if i, j ∈M and i , j, then Nk0 (ei, 1) ∩Nk0 (e j, 1) is an empty set; and
(3) the restriction of p on Nk0 (ei, 1) is a WL-(k0, k1)-isomorphism for all i ∈M.
Then the map p is called a pseudo-(k0, k1)-covering map, (E, p,B) is said to be a pseudo-(k0, k1)-covering

and (E, k0) is called a pseudo-(k0, k1)-covering space over (B, k1).

According to Definition 4.1, consider a pseudo-(k0, k1)-covering map, ((E, e0), p, (B, b0)) such that p(e0) =
b0. Then we say that the map p is a pointed pseudo-(k0, k1)-covering map.

Remark 4.2. In the property (2) of Definition 4.1, for i, j ∈ M and i , j Nk0 (ei, 1) need not be k0-isomorphic
to Nk0 (e j, 1).

Example 4.3. (1) The maps fi, i ∈ {1, 2} in Example 3.2(1) are clearly pseudo-(2, 8)-covering maps and the
map 1 in (3.2) is also a pseudo-(k0, k1)-covering map.

(2) The map h of (3.5) is a pseudo-26-covering map
(3) The map p : (C, 8) → (D, 8) given by p(ci) = di, i ∈ [0, 3]Z in Figure 2 is clearly a pseudo-8-covering

map.
(4) In Figure 2 let us consider the two sets C and D with 4-adjacency instead of 8-adjacency. Then the

map q : (C, 4) → (D, 4) given by q(ci) = di, i ∈ [0, 3]Z cannot be a pseudo-4-covering map (see the point
c1 ∈ C).

Since the notion of a digital covering space has been often used in calculating the digital fundamental
group [2, 6, 11, 12, 14, 15, 17] and classifying digital covering spaces [2, 8, 10, 11, 14–16]. Let us now recall
the axiom of a digital covering space which is equivalent to the previous version in [5].

Let us now recall the typical axioms of a digital covering space.

Definition 4.4. ([5]; see also [11, 17]) Let (E, k0) and (B, k1) be digital spaces in Zn0 and Zn1 , respectively. Let
p : E→ B be a ((k0, k1)-continuous) surjection. Suppose, for any b ∈ B there exists ε ∈ N such that
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Figure 2: Pseudo-(8, 8)-covering and a non-pseudo-(4, 4)-covering

(1) for some index set M, p−1(Nk1 (b, ε)) = ∪i∈MNk0 (ei, ε) with ei ∈ p−1(b);
(2) if i, j ∈M and i , j, then Nk0 (ei, ε) ∩Nk0 (e j, ε) is an empty set; and
(3) the restriction map p on Nk0 (ei, ε) is a (k0, k1)-isomorphism for all i ∈M.
Then the map p is called a (k0, k1)-covering map, (E, p,B) is said to be a (k0, k1)-covering and (E, k0) is called
a digital (k0, k1)-covering space over (B, k1).

The k1-neighborhood Nk1 (b, ε) of Definition 4.4 is called an elementary k1-neighborhood of b with some
radius ε. While in Definition 4.4 we may take ε = 1 [8], the paper [17] established a simpler form of the
axioms of a digital covering space, as follows.

Remark 4.5. ([17]) For the (k0, k1)-covering of Definition 4.4 we can replace “(k0, k1)-continuous surjection”
with “surjection” because the surjection of p with the properties (1) and (3) of Definition 4.4 implies that p
is (k0, k1)-continuous. Furthermore, we may take ε = 1.

By comparing between a (k0, k1)-covering and a pseudo-(k0, k1)-covering (see Definitions 4.1 and 4.4, and
Theorem 3.4), we obtain the following:

Remark 4.6. While a (k0, k1)-covering implies a pseudo-(k0, k1)-covering, the converse does not hold.

Proof. A (k0, k1)-covering clearly implies a pseudo-(k0, k1)-covering. In view of the maps f1 and f2 in Example
3.2(1), the converse need not be successful.

Let us now review the unique lifting property of a digital covering. For three digital spaces (E, k0) in
Zn0 , (B, k1) in Zn1 , and (X, k2) in Zn2 , let p : E → B be a (k0, k1)-covering map. For a (k2, k1)-continuous map
f : (X, k2)→ (B, k1) we say that a digital lifting of f is a (k2, k0)-continuous map f̃ : X→ E such that p ◦ f̃ = f
[6]. We now recall a theorem related to the unique lifting property in [6] as follows:

Theorem 4.7. ([5]) For pointed digital spaces ((E, e0), k0) in Zn0 and ((B, b0), k1) in Zn1 , let p : (E, e0)→ (B, b0) be a
pointed (k0, k1)-covering map. Any k1-path f : [0,m]Z → B beginning at b0 has a unique lifting to a k0-path f̃ in E
beginning at e0.

Unlike the unique lifting property of a digital covering space in [6], we can observe that a pseudo-
(k0, k1)-covering map does not have the unique lifting property, as follows.

Remark 4.8. Consider the map

p : SC2,8
8 − {e2, e7} := A→ SC2,4

8 := (c j) j∈[0,3]Z

given by p(ei) = ci(mod 4), where SC2,8
8 := (ei)i∈[0,7]Z which is a sequence with 8-connectivity. Furthermore,

assume an 8-path f : [0, 2]Z → SC2,4
8 defined by f (i) = ci, i ∈ [0, 2]Z. While the map p is a pseudo-8-covering

map, it cannot have the unique lifting property owing to the point 2 ∈ [0, 2]Z. More precisely, we cannot
have a digital lifting of f , such as f̃ : [0, 2]Z → A such that p ◦ f̃ = f because the given space SC2,8

8 − {e2, e7}
is not 8-connected.
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Let us now prove that a pseudo-(k0, k1)-covering map with some hypothesis has the following property.

Theorem 4.9. Consider digital spaces (X̃, k0), (X, k1) and (Y, k) such that Y is k-connected and X̃ is k0-connected.
Let (X̃, p,X) be a pseudo-(k0, k1)-covering. Let 1 : (Y, k) → (X, k1) be a (k, k1)-continuous map. If there are two
(k, k0)-continuous maps f0, f1 : Y → X̃ both coinciding at one point y0 ∈ Y and satisfying p ◦ f0 = p ◦ f1 = 1, then
f0 = f1.

Before proving the assertion, we need to point out that a pseudo-(k0, k1)-covering (X̃, p,X) such that X̃ is
k0-connected need not be a (k0, k1)-covering (see the maps f1 and f2 in Example 3.2(1)). More precisely, the
maps f1 and f2 are pseudo-(2, k)-covering maps such that Dom( fi) is 2-connected, i ∈ {1, 2}. Owing to the
point 0 ∈ [0, l − 1]Z and Z+ each of these two pseudo-(2, k)-covering maps cannot be a (2, k)-covering map.

Proof. Suppose that there is a point y ∈ Y such that f0(y) , f1(y). Since the digital space (Y, k) is k-connected,
there is a k-path s on Y, denoted by s : [0, l]Z → Y, such that s(0) = y0 and s(l) = y. Since there is y ∈ Y such
that f0(y) , f1(y), we may assume that l 
 1 is the smallest t ∈ [0, l]Z such that f0(s(t)) , f1(s(t)). Thus we
have the following: {

f0(s(l)) , f1(s(l)); and
p ◦ f0(s(t)) = p ◦ f1(s(t)) = 1(s(t)), t ∈ [0, l − 1]Z.

}
Take the following four digital neighborhoods of the points l − 1, s(l − 1), 1(s(l − 1)) and fi(s(l − 1)){

N2(l − 1, 1) ⊂ [0, l]Z,Nk(s(l − 1), 1) ⊂ Y,

Nk1 (1(s(l − 1)), 1) ⊂ X and Nk0 ( fi(s(l − 1)), 1) ⊂ X̃, i ∈ {0, 1}.

}
Due to the hypothesis of p ◦ f0 = p ◦ f1 = 1 and the (k, k0)-continuity of fi, i ∈ {0, 1}, we obtain that{

fi(Nk(s(l − 1), 1)) ⊂ Nk0 ( fi(s(l − 1)), 1), i ∈ {0, 1}; and
fi(s(l)) ∈ Nk0 ( f (s(l − 1)), 1),

}
and further,

p ◦ f0(Nk(s(l − 1), 1)) = p ◦ f1(Nk(s(l − 1), 1)) = 1(Nk(s(l − 1), 1)). (4.1)

Furthermore, by using the pseudo-(k0, k1)-covering map p at the points fi(s(l − 1)), i ∈ {0, 1}, we obtain that

Nk0 ( fi(s(l − 1)), 1) ≃(k0,k1) p(Nk0 ( fi(s(l − 1)), 1)) ⊂ X, i ∈ {0, 1}. (4.2)

Since {
fi(y) ∈ Nk0 ( fi(s(l − 1)), 1), i ∈ {0, 1}; and
1(s(l)) ∈ Nk1 (1(s(l − 1)), 1),

}
by (4.1) and (4.2), f0(y) should be equal to f1(y), which contradicts to the assumption of f0(y) , f1(y).

Corollary 4.10. For pointed digital spaces ((E, e0), k0) in Zn0 and ((B, b0), k1) in Zn1 let ((X̃, x̃0), p, (X, x0)) be a pointed
pseudo-(k0, k1)-covering such that X̃ is k0-connected. Let 1 : [0,m]Z → X be a (2, k1)-continuous map beginning at
x0. If there are two (2, k0)-continuous maps f0, f1 : [0,m]Z → X̃ both coinciding at one point y0 ∈ Y and satisfying
p ◦ f0 = p ◦ f1 = 1, then f0 = f1.

As proved in Theorem 4.9, for digital spaces (X̃, k0), (X, k1) and (Y, k) such that Y is k-connected and X̃ is
k0-connected, let (X̃, p,X) be a (k0, k1)-continuous map. Let 1 : (Y, k) → (X, k1) be a (k, k1)-continuous map.
Assume that there are two (k, k0)-continuous maps f0, f1 : Y → X̃ both coinciding at one point y0 ∈ Y such
that p ◦ f0 = p ◦ f1 = 1. If we obtain that f0 = f1, then we say that the map p has the unique pseudolifting
property.

Motivated by Corollary 4.10, we can point out the following:
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Corollary 4.11. Consider pointed digital spaces (X̃, x̃0), k0) in Zn0 and ((X, x0), k1) in Zn1 such that X̃ is k0-connected.
Then a pointed pseudo-(k0, k1)-covering ((X̃, x̃0), p, (X, x0)) has the unique pseudolifting property.

Remark 4.12. Since a pointed (k0, k1)-covering map implies a pointed pseudo-(k0, k1)-covering map, a
pointed (k0, k1)-covering has the unique pseudolifting property.

Example 4.13. The maps f1 and f2 in Example 3.2(1) have the unique pseudolifting property.

5. Summary and concluding remark

We have established the notion of a pseudo-(k0, k1)-covering space and have proved that a pseudo-
(k0, k1)-covering map has the unique pseudolifting property instead of the unique lifting property. As a
further work, we can study a pseudo-(k0, k1)-covering map satisfying the unique lifting property and can
investigate some properties of a pseudo-(k0, k1)-covering map related to digital homotopic properties.
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